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Preface

Scope: SLATEC3 contains brief descriptions ("prologues") for the SLATEC (version 4.1)
mathematical library subroutines with names from DACOSH through DS2Y.

Availability: The SLATEC library is downloadable through LINMath (URL:
http://www.llnl.gov/LCdocs/nmg1) and can be run on all LC production computers.

Consultant: For help contact the LC customer service and support hotline at 925-422-4531 (open
e-mail: lc-hotline@llnl.gov, secure e-mail: lc-hotline@pop.scf.cln).

Printing: The print file for this document can be found at:

on the OCF: http://www.llnl.gov/LCdocs/slatec3/slatec3.pdf
on the SCF: https://lc.llnl.gov/LCdocs/slatec3/slatec3_scf.pdf
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Introduction

Using SLATEC Documentation
Over 1600 pages of online documentation describe the 902 user-callable subroutines available in version

4.1 of the SLATEC library. Because of this unwieldy bulk, the documentation is published in five separate,
but interrelated, volumes:

SLATEC1 provides introductory information on the whole library, explains the subject categories
into which the SLATEC routines are grouped, and includes short descriptions of all
routines (alphabetical within each subject category). Every category code is also a
link (keyword) for retrieving the brief descriptions of the included routines. SLATEC1
provides the only way to compare related routines by the tasks they perform, rather
than just by name.

SLATEC2 contains the calling sequence and usage details for each of the 225 subroutines from
AAAAAA through D9UPAK, arranged alphabetically by name. Every subroutine
name is also a link (keyword) for retrieving the corresponding description if you start
at the index.

SLATEC3 (THIS DOCUMENT) contains the calling sequence and usage details for each of the
225 subroutines from DACOSH through DS2Y, arranged alphabetically by name.
Every subroutine name is also a link (keyword) for retrieving the corresponding
description if you start at the index.

SLATEC4 contains the calling sequence and usage details for each of the 226 subroutines from
DSBMV through RD, arranged alphabetically by name. Every subroutine name is
also a link (keyword) for retrieving the corresponding description if you start at the
index.

SLATEC5 contains the calling sequence and usage details for each of the 226 subroutines from
REBAK through ZBIRY, arranged alphabetically by name. Every subroutine name
is also a link (keyword) for retrieving the corresponding description if you start at the
index.

You can consult any of these documents from any open machine by running your choice of WWW
client and selecting the document you want from the descriptive LC collection directory available at . Or
you can specifically request the URL

     http://www.llnl.gov/LCdocs/slatecn

where slatecn is any one of slatec1 through slatec5, depending on which volume you want.

Loading SLATEC Under UNICOS
On LC machines, the SLATEC math library file is called LIBSLATEC.A and has the full pathname
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     /usr/local/lib/libslatec.a
The routines in LIBSLATEC.A may use externals in LIBSCI for optimization, and that library is on the
default search path (loaded automatically) under UNICOS.
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Subroutine Descriptions

DACOSH

      DOUBLE PRECISION FUNCTION DACOSH (X)
 ***BEGIN PROLOGUE  DACOSH
 ***PURPOSE  Compute the arc hyperbolic cosine.
 ***LIBRARY   SLATEC (FNLIB)
 ***CATEGORY  C4C
 ***TYPE      DOUBLE PRECISION (ACOSH-S, DACOSH-D, CACOSH-C)
 ***KEYWORDS  ACOSH, ARC HYPERBOLIC COSINE, ELEMENTARY FUNCTIONS, FNLIB,
              INVERSE HYPERBOLIC COSINE
 ***AUTHOR  Fullerton, W., (LANL)
 ***DESCRIPTION
 
  DACOSH(X) calculates the double precision arc hyperbolic cosine for
  double precision argument X.  The result is returned on the
  positive branch.
 
 ***REFERENCES  (NONE)
 ***ROUTINES CALLED  D1MACH, XERMSG
 ***REVISION HISTORY  (YYMMDD)
    770601  DATE WRITTEN
    890531  Changed all specific intrinsics to generic.  (WRB)
    890531  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    900315  CALLs to XERROR changed to CALLs to XERMSG.  (THJ)
    END PROLOGUE
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DAI

      DOUBLE PRECISION FUNCTION DAI (X)
 ***BEGIN PROLOGUE  DAI
 ***PURPOSE  Evaluate the Airy function.
 ***LIBRARY   SLATEC (FNLIB)
 ***CATEGORY  C10D
 ***TYPE      DOUBLE PRECISION (AI-S, DAI-D)
 ***KEYWORDS  AIRY FUNCTION, FNLIB, SPECIAL FUNCTIONS
 ***AUTHOR  Fullerton, W., (LANL)
 ***DESCRIPTION
 
  DAI(X) calculates the double precision Airy function for double
  precision argument X.
 
  Series for AIF        on the interval -1.00000E+00 to  1.00000E+00
                                         with weighted error   8.37E-33
                                          log weighted error  32.08
                                significant figures required  30.87
                                     decimal places required  32.63
 
  Series for AIG        on the interval -1.00000E+00 to  1.00000E+00
                                         with weighted error   7.47E-34
                                          log weighted error  33.13
                                significant figures required  31.50
                                     decimal places required  33.68
 
 ***REFERENCES  (NONE)
 ***ROUTINES CALLED  D1MACH, D9AIMP, DAIE, DCSEVL, INITDS, XERMSG
 ***REVISION HISTORY  (YYMMDD)
    770701  DATE WRITTEN
    890531  Changed all specific intrinsics to generic.  (WRB)
    890531  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    900315  CALLs to XERROR changed to CALLs to XERMSG.  (THJ)
    920618  Removed space from variable names.  (RWC, WRB)
    END PROLOGUE
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DAIE

      DOUBLE PRECISION FUNCTION DAIE (X)
 ***BEGIN PROLOGUE  DAIE
 ***PURPOSE  Calculate the Airy function for a negative argument and an
             exponentially scaled Airy function for a non-negative
             argument.
 ***LIBRARY   SLATEC (FNLIB)
 ***CATEGORY  C10D
 ***TYPE      DOUBLE PRECISION (AIE-S, DAIE-D)
 ***KEYWORDS  EXPONENTIALLY SCALED AIRY FUNCTION, FNLIB,
              SPECIAL FUNCTIONS
 ***AUTHOR  Fullerton, W., (LANL)
 ***DESCRIPTION
 
  DAIE(X) calculates the Airy function or the exponentially scaled
  Airy function depending on the value of the argument.  The function
  and argument are both double precision.
 
  Evaluate AI(X) for X .LE. 0.0 and AI(X)*EXP(ZETA) where
  ZETA = 2/3 * X**(3/2)  for X .GE. 0.0
 
  Series for AIF        on the interval -1.00000E+00 to  1.00000E+00
                                         with weighted error   8.37E-33
                                          log weighted error  32.08
                                significant figures required  30.87
                                     decimal places required  32.63
 
  Series for AIG        on the interval -1.00000E+00 to  1.00000E+00
                                         with weighted error   7.47E-34
                                          log weighted error  33.13
                                significant figures required  31.50
                                     decimal places required  33.68
 
  Series for AIP1       on the interval  1.25000E-01 to  1.00000E+00
                                         with weighted error   3.69E-32
                                          log weighted error  31.43
                                significant figures required  29.55
                                     decimal places required  32.31
 
  Series for AIP2       on the interval  0.          to  1.25000E-01
                                         with weighted error   3.48E-32
                                          log weighted error  31.46
                                significant figures required  28.74
                                     decimal places required  32.24
 
 ***REFERENCES  (NONE)
 ***ROUTINES CALLED  D1MACH, D9AIMP, DCSEVL, INITDS
 ***REVISION HISTORY  (YYMMDD)
    770701  DATE WRITTEN
    890531  Changed all specific intrinsics to generic.  (WRB)
    890531  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    920618  Removed space from variable names.  (RWC, WRB)
    END PROLOGUE
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DASINH

      DOUBLE PRECISION FUNCTION DASINH (X)
 ***BEGIN PROLOGUE  DASINH
 ***PURPOSE  Compute the arc hyperbolic sine.
 ***LIBRARY   SLATEC (FNLIB)
 ***CATEGORY  C4C
 ***TYPE      DOUBLE PRECISION (ASINH-S, DASINH-D, CASINH-C)
 ***KEYWORDS  ARC HYPERBOLIC SINE, ASINH, ELEMENTARY FUNCTIONS, FNLIB,
              INVERSE HYPERBOLIC SINE
 ***AUTHOR  Fullerton, W., (LANL)
 ***DESCRIPTION
 
  DASINH(X) calculates the double precision arc hyperbolic
  sine for double precision argument X.
 
 ***REFERENCES  (NONE)
 ***ROUTINES CALLED  D1MACH, DCSEVL, INITDS
 ***REVISION HISTORY  (YYMMDD)
    770601  DATE WRITTEN
    890531  Changed all specific intrinsics to generic.  (WRB)
    890531  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    END PROLOGUE
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DASUM

      DOUBLE PRECISION FUNCTION DASUM (N, DX, INCX)
 ***BEGIN PROLOGUE  DASUM
 ***PURPOSE  Compute the sum of the magnitudes of the elements of a
             vector.
 ***LIBRARY   SLATEC (BLAS)
 ***CATEGORY  D1A3A
 ***TYPE      DOUBLE PRECISION (SASUM-S, DASUM-D, SCASUM-C)
 ***KEYWORDS  BLAS, LINEAR ALGEBRA, SUM OF MAGNITUDES OF A VECTOR
 ***AUTHOR  Lawson, C. L., (JPL)
            Hanson, R. J., (SNLA)
            Kincaid, D. R., (U. of Texas)
            Krogh, F. T., (JPL)
 ***DESCRIPTION
 
                 B L A S  Subprogram
     Description of Parameters
 
      --Input--
         N  number of elements in input vector(s)
        DX  double precision vector with N elements
      INCX  storage spacing between elements of DX
 
      --Output--
     DASUM  double precision result (zero if N .LE. 0)
 
      Returns sum of magnitudes of double precision DX.
      DASUM = sum from 0 to N-1 of ABS(DX(IX+I*INCX)),
      where IX = 1 if INCX .GE. 0, else IX = 1+(1-N)*INCX.
 
 ***REFERENCES  C. L. Lawson, R. J. Hanson, D. R. Kincaid and F. T.
                  Krogh, Basic linear algebra subprograms for Fortran
                  usage, Algorithm No. 539, Transactions on Mathematical
                  Software 5, 3 (September 1979), pp. 308-323.
 ***ROUTINES CALLED  (NONE)
 ***REVISION HISTORY  (YYMMDD)
    791001  DATE WRITTEN
    890531  Changed all specific intrinsics to generic.  (WRB)
    890831  Modified array declarations.  (WRB)
    890831  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    900821  Modified to correct problem with a negative increment.
            (WRB)
    920501  Reformatted the REFERENCES section.  (WRB)
    END PROLOGUE
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DATANH

      DOUBLE PRECISION FUNCTION DATANH (X)
 ***BEGIN PROLOGUE  DATANH
 ***PURPOSE  Compute the arc hyperbolic tangent.
 ***LIBRARY   SLATEC (FNLIB)
 ***CATEGORY  C4C
 ***TYPE      DOUBLE PRECISION (ATANH-S, DATANH-D, CATANH-C)
 ***KEYWORDS  ARC HYPERBOLIC TANGENT, ATANH, ELEMENTARY FUNCTIONS,
              FNLIB, INVERSE HYPERBOLIC TANGENT
 ***AUTHOR  Fullerton, W., (LANL)
 ***DESCRIPTION
 
  DATANH(X) calculates the double precision arc hyperbolic
  tangent for double precision argument X.
 
  Series for ATNH       on the interval  0.          to  2.50000E-01
                                         with weighted error   6.86E-32
                                          log weighted error  31.16
                                significant figures required  30.00
                                     decimal places required  31.88
 
 ***REFERENCES  (NONE)
 ***ROUTINES CALLED  D1MACH, DCSEVL, INITDS, XERMSG
 ***REVISION HISTORY  (YYMMDD)
    770601  DATE WRITTEN
    890531  Changed all specific intrinsics to generic.  (WRB)
    890531  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    900315  CALLs to XERROR changed to CALLs to XERMSG.  (THJ)
    END PROLOGUE
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DAVINT

      SUBROUTINE DAVINT (X, Y, N, XLO, XUP, ANS, IERR)
 ***BEGIN PROLOGUE  DAVINT
 ***PURPOSE  Integrate a function tabulated at arbitrarily spaced
             abscissas using overlapping parabolas.
 ***LIBRARY   SLATEC
 ***CATEGORY  H2A1B2
 ***TYPE      DOUBLE PRECISION (AVINT-S, DAVINT-D)
 ***KEYWORDS  INTEGRATION, QUADRATURE, TABULATED DATA
 ***AUTHOR  Jones, R. E., (SNLA)
 ***DESCRIPTION
 
      Abstract
          DAVINT integrates a function tabulated at arbitrarily spaced
          abscissas.  The limits of integration need not coincide
          with the tabulated abscissas.
 
          A method of overlapping parabolas fitted to the data is used
          provided that there are at least 3 abscissas between the
          limits of integration.  DAVINT also handles two special cases.
          If the limits of integration are equal, DAVINT returns a
          result of zero regardless of the number of tabulated values.
          If there are only two function values, DAVINT uses the
          trapezoid rule.
 
      Description of Parameters
          The user must dimension all arrays appearing in the call list
               X(N), Y(N)
 
          Input--
       X    - DOUBLE PRECISION array of abscissas, which must be in
              increasing order.
       Y    - DOUBLE PRECISION array of function values. i.e.,
                 Y(I)=FUNC(X(I))
       N    - The integer number of function values supplied.
                 N .GE. 2 unless XLO = XUP.
       XLO  - DOUBLE PRECISION lower limit of integration
       XUP  - DOUBLE PRECISION upper limit of integration.  Must have
               XLO.LE.XUP
 
          Output--
       ANS  - Double Precision computed approximate value of integral
       IERR - A status code
            --Normal Code
                 =1 Means the requested integration was performed.
            --Abnormal Codes
                 =2 Means XUP was less than XLO.
                 =3 Means the number of X(I) between XLO and XUP
                    (inclusive) was less than 3 and neither of the two
                    special cases described in the abstract occurred.
                    No integration was performed.
                 =4 Means the restriction X(I+1).GT.X(I) was violated.
                 =5 Means the number N of function values was .lt. 2.
                    ANS is set to zero if IERR=2,3,4,or 5.
 
     DAVINT is documented completely in SC-M-69-335
     Original program from *Numerical Integration* by Davis & Rabinowitz
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     Adaptation and modifications by Rondall E Jones.
 
 ***REFERENCES  R. E. Jones, Approximate integrator of functions
                  tabulated at arbitrarily spaced abscissas,
                  Report SC-M-69-335, Sandia Laboratories, 1969.
 ***ROUTINES CALLED  XERMSG
 ***REVISION HISTORY  (YYMMDD)
    690901  DATE WRITTEN
    890831  Modified array declarations.  (WRB)
    890831  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    900315  CALLs to XERROR changed to CALLs to XERMSG.  (THJ)
    920501  Reformatted the REFERENCES section.  (WRB)
    END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 18



DAWS

      FUNCTION DAWS (X)
 ***BEGIN PROLOGUE  DAWS
 ***PURPOSE  Compute Dawson's function.
 ***LIBRARY   SLATEC (FNLIB)
 ***CATEGORY  C8C
 ***TYPE      SINGLE PRECISION (DAWS-S, DDAWS-D)
 ***KEYWORDS  DAWSON'S FUNCTION, FNLIB, SPECIAL FUNCTIONS
 ***AUTHOR  Fullerton, W., (LANL)
 ***DESCRIPTION
 
  DAWS(X) calculates Dawson's integral for real argument X.
 
  Series for DAW        on the interval  0.          to  1.00000D+00
                                         with weighted error   3.83E-17
                                          log weighted error  16.42
                                significant figures required  15.78
                                     decimal places required  16.97
 
  Series for DAW2       on the interval  0.          to  1.60000D+01
                                         with weighted error   5.17E-17
                                          log weighted error  16.29
                                significant figures required  15.90
                                     decimal places required  17.02
 
  Series for DAWA       on the interval  0.          to  6.25000D-02
                                         with weighted error   2.24E-17
                                          log weighted error  16.65
                                significant figures required  14.73
                                     decimal places required  17.36
 
 ***REFERENCES  (NONE)
 ***ROUTINES CALLED  CSEVL, INITS, R1MACH, XERMSG
 ***REVISION HISTORY  (YYMMDD)
    780401  DATE WRITTEN
    890531  Changed all specific intrinsics to generic.  (WRB)
    890531  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    900315  CALLs to XERROR changed to CALLs to XERMSG.  (THJ)
    920618  Removed space from variable names.  (RWC, WRB)
    END PROLOGUE
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DAXPY

      SUBROUTINE DAXPY (N, DA, DX, INCX, DY, INCY)
 ***BEGIN PROLOGUE  DAXPY
 ***PURPOSE  Compute a constant times a vector plus a vector.
 ***LIBRARY   SLATEC (BLAS)
 ***CATEGORY  D1A7
 ***TYPE      DOUBLE PRECISION (SAXPY-S, DAXPY-D, CAXPY-C)
 ***KEYWORDS  BLAS, LINEAR ALGEBRA, TRIAD, VECTOR
 ***AUTHOR  Lawson, C. L., (JPL)
            Hanson, R. J., (SNLA)
            Kincaid, D. R., (U. of Texas)
            Krogh, F. T., (JPL)
 ***DESCRIPTION
 
                 B L A S  Subprogram
     Description of Parameters
 
      --Input--
         N  number of elements in input vector(s)
        DA  double precision scalar multiplier
        DX  double precision vector with N elements
      INCX  storage spacing between elements of DX
        DY  double precision vector with N elements
      INCY  storage spacing between elements of DY
 
      --Output--
        DY  double precision result (unchanged if N .LE. 0)
 
      Overwrite double precision DY with double precision DA*DX + DY.
      For I = 0 to N-1, replace  DY(LY+I*INCY) with DA*DX(LX+I*INCX) +
        DY(LY+I*INCY),
      where LX = 1 if INCX .GE. 0, else LX = 1+(1-N)*INCX, and LY is
      defined in a similar way using INCY.
 
 ***REFERENCES  C. L. Lawson, R. J. Hanson, D. R. Kincaid and F. T.
                  Krogh, Basic linear algebra subprograms for Fortran
                  usage, Algorithm No. 539, Transactions on Mathematical
                  Software 5, 3 (September 1979), pp. 308-323.
 ***ROUTINES CALLED  (NONE)
 ***REVISION HISTORY  (YYMMDD)
    791001  DATE WRITTEN
    890831  Modified array declarations.  (WRB)
    890831  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    920310  Corrected definition of LX in DESCRIPTION.  (WRB)
    920501  Reformatted the REFERENCES section.  (WRB)
    END PROLOGUE
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DBCG

       SUBROUTINE DBCG(N, B, X, NELT, IA, JA, A, ISYM, MATVEC, MTTVEC,
      $     MSOLVE, MTSOLV, ITOL, TOL, ITMAX, ITER, ERR, IERR, IUNIT,
      $     R, Z, P, RR, ZZ, PP, DZ, RWORK, IWORK)
 ***BEGIN PROLOGUE  DBCG
 ***PURPOSE  Preconditioned BiConjugate Gradient Sparse Ax = b Solver.
             Routine to solve a Non-Symmetric linear system  Ax = b
             using the Preconditioned BiConjugate Gradient method.
 ***LIBRARY   SLATEC (SLAP)
 ***CATEGORY  D2A4, D2B4
 ***TYPE      DOUBLE PRECISION (SBCG-S, DBCG-D)
 ***KEYWORDS  BICONJUGATE GRADIENT, ITERATIVE PRECONDITION,
              NON-SYMMETRIC LINEAR SYSTEM, SLAP, SPARSE
 ***AUTHOR  Greenbaum, Anne, (Courant Institute)
            Seager, Mark K., (LLNL)
              Lawrence Livermore National Laboratory
              PO BOX 808, L-60
              Livermore, CA 94550 (510) 423-3141
              seager@llnl.gov
 ***DESCRIPTION
 
  *Usage:
       INTEGER N, NELT, IA(NELT), JA(NELT), ISYM, ITOL, ITMAX
       INTEGER ITER, IERR, IUNIT, IWORK(USER DEFINED)
       DOUBLE PRECISION B(N), X(N), A(NELT), TOL, ERR, R(N), Z(N), P(N)
       DOUBLE PRECISION RR(N), ZZ(N), PP(N), DZ(N)
       DOUBLE PRECISION RWORK(USER DEFINED)
       EXTERNAL MATVEC, MTTVEC, MSOLVE, MTSOLV
 
       CALL DBCG(N, B, X, NELT, IA, JA, A, ISYM, MATVEC, MTTVEC,
      $     MSOLVE, MTSOLV, ITOL, TOL, ITMAX, ITER, ERR, IERR, IUNIT,
      $     R, Z, P, RR, ZZ, PP, DZ, RWORK, IWORK)
 
  *Arguments:
  N      :IN       Integer
          Order of the Matrix.
  B      :IN       Double Precision B(N).
          Right-hand side vector.
  X      :INOUT    Double Precision X(N).
          On input X is your initial guess for solution vector.
          On output X is the final approximate solution.
  NELT   :IN       Integer.
          Number of Non-Zeros stored in A.
  IA     :IN       Integer IA(NELT).
  JA     :IN       Integer JA(NELT).
  A      :IN       Double Precision A(NELT).
          These arrays contain the matrix data structure for A.
          It could take any form.  See "Description", below, for more
          details.
  ISYM   :IN       Integer.
          Flag to indicate symmetric storage format.
          If ISYM=0, all non-zero entries of the matrix are stored.
          If ISYM=1, the matrix is symmetric, and only the upper
          or lower triangle of the matrix is stored.
  MATVEC :EXT      External.
          Name of a routine which  performs the matrix vector multiply
          operation  Y = A*X  given A and X.  The  name of  the MATVEC
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          routine must  be declared external  in the  calling program.
          The calling sequence of MATVEC is:
              CALL MATVEC( N, X, Y, NELT, IA, JA, A, ISYM )
          Where N is the number of unknowns, Y is the product A*X upon
          return,  X is an input  vector.  NELT, IA,  JA,  A and  ISYM
          define the SLAP matrix data structure: see Description,below.
  MTTVEC :EXT      External.
          Name of a routine which performs the matrix transpose vector
          multiply y = A'*X given A and X (where ' denotes transpose).
          The name of the MTTVEC routine must be declared external  in
          the calling program.  The calling sequence to MTTVEC is  the
          same as that for MTTVEC, viz.:
              CALL MTTVEC( N, X, Y, NELT, IA, JA, A, ISYM )
          Where N  is the number  of unknowns, Y is the   product A'*X
          upon return, X is an input vector.  NELT, IA, JA, A and ISYM
          define the SLAP matrix data structure: see Description,below.
  MSOLVE :EXT      External.
          Name of a routine which solves a linear system MZ = R  for Z
          given R with the preconditioning matrix M (M is supplied via
          RWORK  and IWORK arrays).   The name  of  the MSOLVE routine
          must be declared  external  in the  calling   program.   The
          calling sequence of MSOLVE is:
              CALL MSOLVE(N, R, Z, NELT, IA, JA, A, ISYM, RWORK, IWORK)
          Where N is the number of unknowns, R is  the right-hand side
          vector, and Z is the solution upon return.  NELT,  IA, JA, A
          and  ISYM define the SLAP  matrix  data structure: see
          Description, below.  RWORK is a  double precision array that
          can be used to pass necessary preconditioning information and/
          or workspace to MSOLVE.  IWORK is an integer work array for
          the same purpose as RWORK.
  MTSOLV :EXT      External.
          Name of a routine which solves a linear system M'ZZ = RR for
          ZZ given RR with the preconditioning matrix M (M is supplied
          via RWORK and IWORK arrays).  The name of the MTSOLV routine
          must be declared external in the calling program.  The call-
          ing sequence to MTSOLV is:
             CALL MTSOLV(N, RR, ZZ, NELT, IA, JA, A, ISYM, RWORK, IWORK)
          Where N is the number of unknowns, RR is the right-hand side
          vector, and ZZ is the solution upon return.  NELT, IA, JA, A
          and  ISYM define the SLAP  matrix  data structure: see
          Description, below.  RWORK is a  double precision array that
          can be used to pass necessary preconditioning information and/
          or workspace to MTSOLV.  IWORK is an integer work array for
          the same purpose as RWORK.
  ITOL   :IN       Integer.
          Flag to indicate type of convergence criterion.
          If ITOL=1, iteration stops when the 2-norm of the residual
          divided by the 2-norm of the right-hand side is less than TOL.
          If ITOL=2, iteration stops when the 2-norm of M-inv times the
          residual divided by the 2-norm of M-inv times the right hand
          side is less than TOL, where M-inv is the inverse of the
          diagonal of A.
          ITOL=11 is often useful for checking and comparing different
          routines.  For this case, the user must supply the "exact"
          solution or a very accurate approximation (one with an error
          much less than TOL) through a common block,
              COMMON /DSLBLK/ SOLN( )
          If ITOL=11, iteration stops when the 2-norm of the difference
          between the iterative approximation and the user-supplied
          solution divided by the 2-norm of the user-supplied solution

SLATEC3 (DACOSH through DS2Y) - 22



          is less than TOL.  Note that this requires the user to set up
          the "COMMON /DSLBLK/ SOLN(LENGTH)" in the calling routine.
          The routine with this declaration should be loaded before the
          stop test so that the correct length is used by the loader.
          This procedure is not standard Fortran and may not work
          correctly on your system (although it has worked on every
          system the authors have tried).  If ITOL is not 11 then this
          common block is indeed standard Fortran.
  TOL    :INOUT    Double Precision.
          Convergence criterion, as described above.  (Reset if IERR=4.)
  ITMAX  :IN       Integer.
          Maximum number of iterations.
  ITER   :OUT      Integer.
          Number of iterations required to reach convergence, or
          ITMAX+1 if convergence criterion could not be achieved in
          ITMAX iterations.
  ERR    :OUT      Double Precision.
          Error estimate of error in final approximate solution, as
          defined by ITOL.
  IERR   :OUT      Integer.
          Return error flag.
            IERR = 0 => All went well.
            IERR = 1 => Insufficient space allocated for WORK or IWORK.
            IERR = 2 => Method failed to converge in ITMAX steps.
            IERR = 3 => Error in user input.
                        Check input values of N, ITOL.
            IERR = 4 => User error tolerance set too tight.
                        Reset to 500*D1MACH(3).  Iteration proceeded.
            IERR = 5 => Preconditioning matrix, M, is not positive
                        definite.  (r,z) < 0.
            IERR = 6 => Matrix A is not positive definite.  (p,Ap) < 0.
  IUNIT  :IN       Integer.
          Unit number on which to write the error at each iteration,
          if this is desired for monitoring convergence.  If unit
          number is 0, no writing will occur.
  R      :WORK     Double Precision R(N).
  Z      :WORK     Double Precision Z(N).
  P      :WORK     Double Precision P(N).
  RR     :WORK     Double Precision RR(N).
  ZZ     :WORK     Double Precision ZZ(N).
  PP     :WORK     Double Precision PP(N).
  DZ     :WORK     Double Precision DZ(N).
          Double Precision arrays used for workspace.
  RWORK  :WORK     Double Precision RWORK(USER DEFINED).
          Double Precision array that can be used for workspace in
          MSOLVE and MTSOLV.
  IWORK  :WORK     Integer IWORK(USER DEFINED).
          Integer array that can be used for workspace in MSOLVE
          and MTSOLV.
 
  *Description
       This routine does not care what matrix data structure is used
        for A and M.  It simply calls MATVEC, MTTVEC, MSOLVE, MTSOLV
        routines, with arguments as above.  The user could write any
        type of structure, and  appropriate  MATVEC, MSOLVE, MTTVEC,
        and MTSOLV routines.  It  is assumed that A is stored in the
        IA, JA, A  arrays in some fashion and  that M (or INV(M)) is
        stored  in  IWORK  and  RWORK   in  some fashion.   The SLAP
        routines DSDBCG and DSLUBC are examples of this procedure.
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        Two  examples  of  matrix  data structures  are the: 1) SLAP
        Triad  format and 2) SLAP Column format.
 
        =================== S L A P Triad format ===================
        In  this   format only the  non-zeros are  stored.  They may
        appear  in *ANY* order.   The user  supplies three arrays of
        length NELT, where  NELT  is the number  of non-zeros in the
        matrix:  (IA(NELT), JA(NELT),  A(NELT)).  For each  non-zero
        the  user puts   the row  and  column index   of that matrix
        element in the IA and JA arrays.  The  value of the non-zero
        matrix  element is  placed in  the corresponding location of
        the A  array.  This is  an extremely easy data  structure to
        generate.  On  the other hand it  is  not too  efficient  on
        vector  computers   for the  iterative  solution  of  linear
        systems.  Hence, SLAP  changes this input  data structure to
        the SLAP   Column  format for the  iteration (but   does not
        change it back).
 
        Here is an example of the  SLAP Triad   storage format for a
        5x5 Matrix.  Recall that the entries may appear in any order.
 
            5x5 Matrix      SLAP Triad format for 5x5 matrix on left.
                               1  2  3  4  5  6  7  8  9 10 11
        |11 12  0  0 15|   A: 51 12 11 33 15 53 55 22 35 44 21
        |21 22  0  0  0|  IA:  5  1  1  3  1  5  5  2  3  4  2
        | 0  0 33  0 35|  JA:  1  2  1  3  5  3  5  2  5  4  1
        | 0  0  0 44  0|
        |51  0 53  0 55|
 
        =================== S L A P Column format ==================
 
        In  this format   the non-zeros are    stored counting  down
        columns (except  for the diagonal  entry, which must  appear
        first  in each "column") and are  stored in the  double pre-
        cision array  A. In  other  words,  for each  column  in the
        matrix  first put  the diagonal entry in A.  Then put in the
        other non-zero  elements going  down the column  (except the
        diagonal)  in order.  The IA array  holds the  row index for
        each non-zero.  The JA array  holds the offsets into the IA,
        A  arrays  for  the  beginning  of  each  column.  That  is,
        IA(JA(ICOL)),A(JA(ICOL)) are the first elements of the ICOL-
        th column in IA and A, and IA(JA(ICOL+1)-1), A(JA(ICOL+1)-1)
        are  the last elements of the ICOL-th column.   Note that we
        always have JA(N+1)=NELT+1, where N is the number of columns
        in the matrix  and NELT  is the number  of non-zeros  in the
        matrix.
 
        Here is an example of the  SLAP Column  storage format for a
        5x5 Matrix (in the A and IA arrays '|'  denotes the end of a
        column):
 
            5x5 Matrix      SLAP Column format for 5x5 matrix on left.
                               1  2  3    4  5    6  7    8    9 10 11
        |11 12  0  0 15|   A: 11 21 51 | 22 12 | 33 53 | 44 | 55 15 35
        |21 22  0  0  0|  IA:  1  2  5 |  2  1 |  3  5 |  4 |  5  1  3
        | 0  0 33  0 35|  JA:  1  4  6    8  9   12
        | 0  0  0 44  0|
        |51  0 53  0 55|
 
  *Cautions:
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      This routine will attempt to write to the Fortran logical output
      unit IUNIT, if IUNIT .ne. 0.  Thus, the user must make sure that
      this logical unit is attached to a file or terminal before calling
      this routine with a non-zero value for IUNIT.  This routine does
      not check for the validity of a non-zero IUNIT unit number.
 
 ***SEE ALSO  DSDBCG, DSLUBC
 ***REFERENCES  1. Mark K. Seager, A SLAP for the Masses, in
                   G. F. Carey, Ed., Parallel Supercomputing: Methods,
                   Algorithms and Applications, Wiley, 1989, pp.135-155.
 ***ROUTINES CALLED  D1MACH, DAXPY, DCOPY, DDOT, ISDBCG
 ***REVISION HISTORY  (YYMMDD)
    890404  DATE WRITTEN
    890404  Previous REVISION DATE
    890915  Made changes requested at July 1989 CML Meeting.  (MKS)
    890921  Removed TeX from comments.  (FNF)
    890922  Numerous changes to prologue to make closer to SLATEC
            standard.  (FNF)
    890929  Numerous changes to reduce SP/DP differences.  (FNF)
    891004  Added new reference.
    910411  Prologue converted to Version 4.0 format.  (BAB)
    910502  Removed MATVEC, MTTVEC, MSOLVE, MTSOLV from ROUTINES
            CALLED list.  (FNF)
    920407  COMMON BLOCK renamed DSLBLK.  (WRB)
    920511  Added complete declaration section.  (WRB)
    920929  Corrected format of reference.  (FNF)
    921019  Changed 500.0 to 500 to reduce SP/DP differences.  (FNF)
    921113  Corrected C***CATEGORY line.  (FNF)
    END PROLOGUE
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DBESI

      SUBROUTINE DBESI (X, ALPHA, KODE, N, Y, NZ)
 ***BEGIN PROLOGUE  DBESI
 ***PURPOSE  Compute an N member sequence of I Bessel functions
             I/SUB(ALPHA+K-1)/(X), K=1,...,N or scaled Bessel functions
             EXP(-X)*I/SUB(ALPHA+K-1)/(X), K=1,...,N for nonnegative
             ALPHA and X.
 ***LIBRARY   SLATEC
 ***CATEGORY  C10B3
 ***TYPE      DOUBLE PRECISION (BESI-S, DBESI-D)
 ***KEYWORDS  I BESSEL FUNCTION, SPECIAL FUNCTIONS
 ***AUTHOR  Amos, D. E., (SNLA)
            Daniel, S. L., (SNLA)
 ***DESCRIPTION
 
      Abstract  **** a double precision routine ****
          DBESI computes an N member sequence of I Bessel functions
          I/sub(ALPHA+K-1)/(X), K=1,...,N or scaled Bessel functions
          EXP(-X)*I/sub(ALPHA+K-1)/(X), K=1,...,N for nonnegative ALPHA
          and X.  A combination of the power series, the asymptotic
          expansion for X to infinity, and the uniform asymptotic
          expansion for NU to infinity are applied over subdivisions of
          the (NU,X) plane.  For values not covered by one of these
          formulae, the order is incremented by an integer so that one
          of these formulae apply.  Backward recursion is used to reduce
          orders by integer values.  The asymptotic expansion for X to
          infinity is used only when the entire sequence (specifically
          the last member) lies within the region covered by the
          expansion.  Leading terms of these expansions are used to test
          for over or underflow where appropriate.  If a sequence is
          requested and the last member would underflow, the result is
          set to zero and the next lower order tried, etc., until a
          member comes on scale or all are set to zero.  An overflow
          cannot occur with scaling.
 
          The maximum number of significant digits obtainable
          is the smaller of 14 and the number of digits carried in
          double precision arithmetic.
 
      Description of Arguments
 
          Input      X,ALPHA are double precision
            X      - X .GE. 0.0D0
            ALPHA  - order of first member of the sequence,
                     ALPHA .GE. 0.0D0
            KODE   - a parameter to indicate the scaling option
                     KODE=1 returns
                            Y(K)=        I/sub(ALPHA+K-1)/(X),
                                 K=1,...,N
                     KODE=2 returns
                            Y(K)=EXP(-X)*I/sub(ALPHA+K-1)/(X),
                                 K=1,...,N
            N      - number of members in the sequence, N .GE. 1
 
          Output     Y is double precision
            Y      - a vector whose first N components contain
                     values for I/sub(ALPHA+K-1)/(X) or scaled
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                     values for EXP(-X)*I/sub(ALPHA+K-1)/(X),
                     K=1,...,N depending on KODE
            NZ     - number of components of Y set to zero due to
                     underflow,
                     NZ=0   , normal return, computation completed
                     NZ .NE. 0, last NZ components of Y set to zero,
                              Y(K)=0.0D0, K=N-NZ+1,...,N.
 
      Error Conditions
          Improper input arguments - a fatal error
          Overflow with KODE=1 - a fatal error
          Underflow - a non-fatal error(NZ .NE. 0)
 
 ***REFERENCES  D. E. Amos, S. L. Daniel and M. K. Weston, CDC 6600
                  subroutines IBESS and JBESS for Bessel functions
                  I(NU,X) and J(NU,X), X .GE. 0, NU .GE. 0, ACM
                  Transactions on Mathematical Software 3, (1977),
                  pp. 76-92.
                F. W. J. Olver, Tables of Bessel Functions of Moderate
                  or Large Orders, NPL Mathematical Tables 6, Her
                  Majesty's Stationery Office, London, 1962.
 ***ROUTINES CALLED  D1MACH, DASYIK, DLNGAM, I1MACH, XERMSG
 ***REVISION HISTORY  (YYMMDD)
    750101  DATE WRITTEN
    890531  Changed all specific intrinsics to generic.  (WRB)
    890911  Removed unnecessary intrinsics.  (WRB)
    890911  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    900315  CALLs to XERROR changed to CALLs to XERMSG.  (THJ)
    900326  Removed duplicate information from DESCRIPTION section.
            (WRB)
    920501  Reformatted the REFERENCES section.  (WRB)
    END PROLOGUE
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DBESI0

      DOUBLE PRECISION FUNCTION DBESI0 (X)
 ***BEGIN PROLOGUE  DBESI0
 ***PURPOSE  Compute the hyperbolic Bessel function of the first kind
             of order zero.
 ***LIBRARY   SLATEC (FNLIB)
 ***CATEGORY  C10B1
 ***TYPE      DOUBLE PRECISION (BESI0-S, DBESI0-D)
 ***KEYWORDS  FIRST KIND, FNLIB, HYPERBOLIC BESSEL FUNCTION,
              MODIFIED BESSEL FUNCTION, ORDER ZERO, SPECIAL FUNCTIONS
 ***AUTHOR  Fullerton, W., (LANL)
 ***DESCRIPTION
 
  DBESI0(X) calculates the double precision modified (hyperbolic)
  Bessel function of the first kind of order zero and double
  precision argument X.
 
  Series for BI0        on the interval  0.          to  9.00000E+00
                                         with weighted error   9.51E-34
                                          log weighted error  33.02
                                significant figures required  33.31
                                     decimal places required  33.65
 
 ***REFERENCES  (NONE)
 ***ROUTINES CALLED  D1MACH, DBSI0E, DCSEVL, INITDS, XERMSG
 ***REVISION HISTORY  (YYMMDD)
    770701  DATE WRITTEN
    890531  Changed all specific intrinsics to generic.  (WRB)
    890531  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    900315  CALLs to XERROR changed to CALLs to XERMSG.  (THJ)
    END PROLOGUE
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DBESI1

      DOUBLE PRECISION FUNCTION DBESI1 (X)
 ***BEGIN PROLOGUE  DBESI1
 ***PURPOSE  Compute the modified (hyperbolic) Bessel function of the
             first kind of order one.
 ***LIBRARY   SLATEC (FNLIB)
 ***CATEGORY  C10B1
 ***TYPE      DOUBLE PRECISION (BESI1-S, DBESI1-D)
 ***KEYWORDS  FIRST KIND, FNLIB, HYPERBOLIC BESSEL FUNCTION,
              MODIFIED BESSEL FUNCTION, ORDER ONE, SPECIAL FUNCTIONS
 ***AUTHOR  Fullerton, W., (LANL)
 ***DESCRIPTION
 
  DBESI1(X) calculates the double precision modified (hyperbolic)
  Bessel function of the first kind of order one and double precision
  argument X.
 
  Series for BI1        on the interval  0.          to  9.00000E+00
                                         with weighted error   1.44E-32
                                          log weighted error  31.84
                                significant figures required  31.45
                                     decimal places required  32.46
 
 ***REFERENCES  (NONE)
 ***ROUTINES CALLED  D1MACH, DBSI1E, DCSEVL, INITDS, XERMSG
 ***REVISION HISTORY  (YYMMDD)
    770701  DATE WRITTEN
    890531  Changed all specific intrinsics to generic.  (WRB)
    890531  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    900315  CALLs to XERROR changed to CALLs to XERMSG.  (THJ)
    END PROLOGUE
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DBESJ

      SUBROUTINE DBESJ (X, ALPHA, N, Y, NZ)
 ***BEGIN PROLOGUE  DBESJ
 ***PURPOSE  Compute an N member sequence of J Bessel functions
             J/SUB(ALPHA+K-1)/(X), K=1,...,N for non-negative ALPHA
             and X.
 ***LIBRARY   SLATEC
 ***CATEGORY  C10A3
 ***TYPE      DOUBLE PRECISION (BESJ-S, DBESJ-D)
 ***KEYWORDS  J BESSEL FUNCTION, SPECIAL FUNCTIONS
 ***AUTHOR  Amos, D. E., (SNLA)
            Daniel, S. L., (SNLA)
            Weston, M. K., (SNLA)
 ***DESCRIPTION
 
      Abstract  **** a double precision routine ****
          DBESJ computes an N member sequence of J Bessel functions
          J/sub(ALPHA+K-1)/(X), K=1,...,N for non-negative ALPHA and X.
          A combination of the power series, the asymptotic expansion
          for X to infinity and the uniform asymptotic expansion for
          NU to infinity are applied over subdivisions of the (NU,X)
          plane.  For values of (NU,X) not covered by one of these
          formulae, the order is incremented or decremented by integer
          values into a region where one of the formulae apply. Backward
          recursion is applied to reduce orders by integer values except
          where the entire sequence lies in the oscillatory region.  In
          this case forward recursion is stable and values from the
          asymptotic expansion for X to infinity start the recursion
          when it is efficient to do so. Leading terms of the series and
          uniform expansion are tested for underflow.  If a sequence is
          requested and the last member would underflow, the result is
          set to zero and the next lower order tried, etc., until a
          member comes on scale or all members are set to zero.
          Overflow cannot occur.
 
          The maximum number of significant digits obtainable
          is the smaller of 14 and the number of digits carried in
          double precision arithmetic.
 
      Description of Arguments
 
          Input      X,ALPHA are double precision
            X      - X .GE. 0.0D0
            ALPHA  - order of first member of the sequence,
                     ALPHA .GE. 0.0D0
            N      - number of members in the sequence, N .GE. 1
 
          Output     Y is double precision
            Y      - a vector whose first N components contain
                     values for J/sub(ALPHA+K-1)/(X), K=1,...,N
            NZ     - number of components of Y set to zero due to
                     underflow,
                     NZ=0   , normal return, computation completed
                     NZ .NE. 0, last NZ components of Y set to zero,
                              Y(K)=0.0D0, K=N-NZ+1,...,N.
 
      Error Conditions
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          Improper input arguments - a fatal error
          Underflow  - a non-fatal error (NZ .NE. 0)
 
 ***REFERENCES  D. E. Amos, S. L. Daniel and M. K. Weston, CDC 6600
                  subroutines IBESS and JBESS for Bessel functions
                  I(NU,X) and J(NU,X), X .GE. 0, NU .GE. 0, ACM
                  Transactions on Mathematical Software 3, (1977),
                  pp. 76-92.
                F. W. J. Olver, Tables of Bessel Functions of Moderate
                  or Large Orders, NPL Mathematical Tables 6, Her
                  Majesty's Stationery Office, London, 1962.
 ***ROUTINES CALLED  D1MACH, DASYJY, DJAIRY, DLNGAM, I1MACH, XERMSG
 ***REVISION HISTORY  (YYMMDD)
    750101  DATE WRITTEN
    890531  Changed all specific intrinsics to generic.  (WRB)
    890911  Removed unnecessary intrinsics.  (WRB)
    890911  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    900315  CALLs to XERROR changed to CALLs to XERMSG.  (THJ)
    900326  Removed duplicate information from DESCRIPTION section.
            (WRB)
    920501  Reformatted the REFERENCES section.  (WRB)
    END PROLOGUE
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DBESJ0

      DOUBLE PRECISION FUNCTION DBESJ0 (X)
 ***BEGIN PROLOGUE  DBESJ0
 ***PURPOSE  Compute the Bessel function of the first kind of order
             zero.
 ***LIBRARY   SLATEC (FNLIB)
 ***CATEGORY  C10A1
 ***TYPE      DOUBLE PRECISION (BESJ0-S, DBESJ0-D)
 ***KEYWORDS  BESSEL FUNCTION, FIRST KIND, FNLIB, ORDER ZERO,
              SPECIAL FUNCTIONS
 ***AUTHOR  Fullerton, W., (LANL)
 ***DESCRIPTION
 
  DBESJ0(X) calculates the double precision Bessel function of
  the first kind of order zero for double precision argument X.
 
  Series for BJ0        on the interval  0.          to  1.60000E+01
                                         with weighted error   4.39E-32
                                          log weighted error  31.36
                                significant figures required  31.21
                                     decimal places required  32.00
 
 ***REFERENCES  (NONE)
 ***ROUTINES CALLED  D1MACH, D9B0MP, DCSEVL, INITDS
 ***REVISION HISTORY  (YYMMDD)
    770701  DATE WRITTEN
    890531  Changed all specific intrinsics to generic.  (WRB)
    890531  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    END PROLOGUE
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DBESJ1

      DOUBLE PRECISION FUNCTION DBESJ1 (X)
 ***BEGIN PROLOGUE  DBESJ1
 ***PURPOSE  Compute the Bessel function of the first kind of order one.
 ***LIBRARY   SLATEC (FNLIB)
 ***CATEGORY  C10A1
 ***TYPE      DOUBLE PRECISION (BESJ1-S, DBESJ1-D)
 ***KEYWORDS  BESSEL FUNCTION, FIRST KIND, FNLIB, ORDER ONE,
              SPECIAL FUNCTIONS
 ***AUTHOR  Fullerton, W., (LANL)
 ***DESCRIPTION
 
  DBESJ1(X) calculates the double precision Bessel function of the
  first kind of order one for double precision argument X.
 
  Series for BJ1        on the interval  0.          to  1.60000E+01
                                         with weighted error   1.16E-33
                                          log weighted error  32.93
                                significant figures required  32.36
                                     decimal places required  33.57
 
 ***REFERENCES  (NONE)
 ***ROUTINES CALLED  D1MACH, D9B1MP, DCSEVL, INITDS, XERMSG
 ***REVISION HISTORY  (YYMMDD)
    780601  DATE WRITTEN
    890531  Changed all specific intrinsics to generic.  (WRB)
    890531  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    900315  CALLs to XERROR changed to CALLs to XERMSG.  (THJ)
    910401  Corrected error in code which caused values to have the
            wrong sign for arguments less than 4.0.  (WRB)
    END PROLOGUE
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DBESK

      SUBROUTINE DBESK (X, FNU, KODE, N, Y, NZ)
 ***BEGIN PROLOGUE  DBESK
 ***PURPOSE  Implement forward recursion on the three term recursion
             relation for a sequence of non-negative order Bessel
             functions K/SUB(FNU+I-1)/(X), or scaled Bessel functions
             EXP(X)*K/SUB(FNU+I-1)/(X), I=1,...,N for real, positive
             X and non-negative orders FNU.
 ***LIBRARY   SLATEC
 ***CATEGORY  C10B3
 ***TYPE      DOUBLE PRECISION (BESK-S, DBESK-D)
 ***KEYWORDS  K BESSEL FUNCTION, SPECIAL FUNCTIONS
 ***AUTHOR  Amos, D. E., (SNLA)
 ***DESCRIPTION
 
      Abstract  **** a double precision routine ****
          DBESK implements forward recursion on the three term
          recursion relation for a sequence of non-negative order Bessel
          functions K/sub(FNU+I-1)/(X), or scaled Bessel functions
          EXP(X)*K/sub(FNU+I-1)/(X), I=1,..,N for real X .GT. 0.0D0 and
          non-negative orders FNU.  If FNU .LT. NULIM, orders FNU and
          FNU+1 are obtained from DBSKNU to start the recursion.  If
          FNU .GE. NULIM, the uniform asymptotic expansion is used for
          orders FNU and FNU+1 to start the recursion.  NULIM is 35 or
          70 depending on whether N=1 or N .GE. 2.  Under and overflow
          tests are made on the leading term of the asymptotic expansion
          before any extensive computation is done.
 
          The maximum number of significant digits obtainable
          is the smaller of 14 and the number of digits carried in
          double precision arithmetic.
 
      Description of Arguments
 
          Input      X,FNU are double precision
            X      - X .GT. 0.0D0
            FNU    - order of the initial K function, FNU .GE. 0.0D0
            KODE   - a parameter to indicate the scaling option
                     KODE=1 returns Y(I)=       K/sub(FNU+I-1)/(X),
                                         I=1,...,N
                     KODE=2 returns Y(I)=EXP(X)*K/sub(FNU+I-1)/(X),
                                         I=1,...,N
            N      - number of members in the sequence, N .GE. 1
 
          Output     Y is double precision
            Y      - a vector whose first N components contain values
                     for the sequence
                     Y(I)=       k/sub(FNU+I-1)/(X), I=1,...,N  or
                     Y(I)=EXP(X)*K/sub(FNU+I-1)/(X), I=1,...,N
                     depending on KODE
            NZ     - number of components of Y set to zero due to
                     underflow with KODE=1,
                     NZ=0   , normal return, computation completed
                     NZ .NE. 0, first NZ components of Y set to zero
                              due to underflow, Y(I)=0.0D0, I=1,...,NZ
 
      Error Conditions
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          Improper input arguments - a fatal error
          Overflow - a fatal error
          Underflow with KODE=1 -  a non-fatal error (NZ .NE. 0)
 
 ***REFERENCES  F. W. J. Olver, Tables of Bessel Functions of Moderate
                  or Large Orders, NPL Mathematical Tables 6, Her
                  Majesty's Stationery Office, London, 1962.
                N. M. Temme, On the numerical evaluation of the modified
                  Bessel function of the third kind, Journal of
                  Computational Physics 19, (1975), pp. 324-337.
 ***ROUTINES CALLED  D1MACH, DASYIK, DBESK0, DBESK1, DBSK0E, DBSK1E,
                     DBSKNU, I1MACH, XERMSG
 ***REVISION HISTORY  (YYMMDD)
    790201  DATE WRITTEN
    890531  Changed all specific intrinsics to generic.  (WRB)
    890911  Removed unnecessary intrinsics.  (WRB)
    890911  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    900315  CALLs to XERROR changed to CALLs to XERMSG.  (THJ)
    920501  Reformatted the REFERENCES section.  (WRB)
    END PROLOGUE
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DBESK0

      DOUBLE PRECISION FUNCTION DBESK0 (X)
 ***BEGIN PROLOGUE  DBESK0
 ***PURPOSE  Compute the modified (hyperbolic) Bessel function of the
             third kind of order zero.
 ***LIBRARY   SLATEC (FNLIB)
 ***CATEGORY  C10B1
 ***TYPE      DOUBLE PRECISION (BESK0-S, DBESK0-D)
 ***KEYWORDS  FNLIB, HYPERBOLIC BESSEL FUNCTION,
              MODIFIED BESSEL FUNCTION, ORDER ZERO, SPECIAL FUNCTIONS,
              THIRD KIND
 ***AUTHOR  Fullerton, W., (LANL)
 ***DESCRIPTION
 
  DBESK0(X) calculates the double precision modified (hyperbolic)
  Bessel function of the third kind of order zero for double
  precision argument X.  The argument must be greater than zero
  but not so large that the result underflows.
 
  Series for BK0        on the interval  0.          to  4.00000E+00
                                         with weighted error   3.08E-33
                                          log weighted error  32.51
                                significant figures required  32.05
                                     decimal places required  33.11
 
 ***REFERENCES  (NONE)
 ***ROUTINES CALLED  D1MACH, DBESI0, DBSK0E, DCSEVL, INITDS, XERMSG
 ***REVISION HISTORY  (YYMMDD)
    770701  DATE WRITTEN
    890531  Changed all specific intrinsics to generic.  (WRB)
    890531  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    900315  CALLs to XERROR changed to CALLs to XERMSG.  (THJ)
    END PROLOGUE
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DBESK1

      DOUBLE PRECISION FUNCTION DBESK1 (X)
 ***BEGIN PROLOGUE  DBESK1
 ***PURPOSE  Compute the modified (hyperbolic) Bessel function of the
             third kind of order one.
 ***LIBRARY   SLATEC (FNLIB)
 ***CATEGORY  C10B1
 ***TYPE      DOUBLE PRECISION (BESK1-S, DBESK1-D)
 ***KEYWORDS  FNLIB, HYPERBOLIC BESSEL FUNCTION,
              MODIFIED BESSEL FUNCTION, ORDER ONE, SPECIAL FUNCTIONS,
              THIRD KIND
 ***AUTHOR  Fullerton, W., (LANL)
 ***DESCRIPTION
 
  DBESK1(X) calculates the double precision modified (hyperbolic)
  Bessel function of the third kind of order one for double precision
  argument X.  The argument must be large enough that the result does
  not overflow and small enough that the result does not underflow.
 
  Series for BK1        on the interval  0.          to  4.00000E+00
                                         with weighted error   9.16E-32
                                          log weighted error  31.04
                                significant figures required  30.61
                                     decimal places required  31.64
 
 ***REFERENCES  (NONE)
 ***ROUTINES CALLED  D1MACH, DBESI1, DBSK1E, DCSEVL, INITDS, XERMSG
 ***REVISION HISTORY  (YYMMDD)
    770701  DATE WRITTEN
    890531  Changed all specific intrinsics to generic.  (WRB)
    890531  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    900315  CALLs to XERROR changed to CALLs to XERMSG.  (THJ)
    END PROLOGUE
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DBESKS

      SUBROUTINE DBESKS (XNU, X, NIN, BK)
 ***BEGIN PROLOGUE  DBESKS
 ***PURPOSE  Compute a sequence of modified Bessel functions of the
             third kind of fractional order.
 ***LIBRARY   SLATEC (FNLIB)
 ***CATEGORY  C10B3
 ***TYPE      DOUBLE PRECISION (BESKS-S, DBESKS-D)
 ***KEYWORDS  FNLIB, FRACTIONAL ORDER, MODIFIED BESSEL FUNCTION,
              SEQUENCE OF BESSEL FUNCTIONS, SPECIAL FUNCTIONS,
              THIRD KIND
 ***AUTHOR  Fullerton, W., (LANL)
 ***DESCRIPTION
 
  DBESKS computes a sequence of modified Bessel functions of the third
  kind of order XNU + I at X, where X .GT. 0, XNU lies in (-1,1),
  and I = 0, 1, ... , NIN - 1, if NIN is positive and I = 0, 1, ... ,
  NIN + 1, if NIN is negative.  On return, the vector BK(.) contains
  the results at X for order starting at XNU.  XNU, X, and BK are
  double precision.  NIN is an integer.
 
 ***REFERENCES  (NONE)
 ***ROUTINES CALLED  D1MACH, DBSKES, XERMSG
 ***REVISION HISTORY  (YYMMDD)
    770601  DATE WRITTEN
    890531  Changed all specific intrinsics to generic.  (WRB)
    890831  Modified array declarations.  (WRB)
    890831  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    900315  CALLs to XERROR changed to CALLs to XERMSG.  (THJ)
    END PROLOGUE
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DBESY

      SUBROUTINE DBESY (X, FNU, N, Y)
 ***BEGIN PROLOGUE  DBESY
 ***PURPOSE  Implement forward recursion on the three term recursion
             relation for a sequence of non-negative order Bessel
             functions Y/SUB(FNU+I-1)/(X), I=1,...,N for real, positive
             X and non-negative orders FNU.
 ***LIBRARY   SLATEC
 ***CATEGORY  C10A3
 ***TYPE      DOUBLE PRECISION (BESY-S, DBESY-D)
 ***KEYWORDS  SPECIAL FUNCTIONS, Y BESSEL FUNCTION
 ***AUTHOR  Amos, D. E., (SNLA)
 ***DESCRIPTION
 
      Abstract  **** a double precision routine ****
          DBESY implements forward recursion on the three term
          recursion relation for a sequence of non-negative order Bessel
          functions Y/sub(FNU+I-1)/(X), I=1,N for real X .GT. 0.0D0 and
          non-negative orders FNU.  If FNU .LT. NULIM, orders FNU and
          FNU+1 are obtained from DBSYNU which computes by a power
          series for X .LE. 2, the K Bessel function of an imaginary
          argument for 2 .LT. X .LE. 20 and the asymptotic expansion for
          X .GT. 20.
 
          If FNU .GE. NULIM, the uniform asymptotic expansion is coded
          in DASYJY for orders FNU and FNU+1 to start the recursion.
          NULIM is 70 or 100 depending on whether N=1 or N .GE. 2.  An
          overflow test is made on the leading term of the asymptotic
          expansion before any extensive computation is done.
 
          The maximum number of significant digits obtainable
          is the smaller of 14 and the number of digits carried in
          double precision arithmetic.
 
      Description of Arguments
 
          Input
            X      - X .GT. 0.0D0
            FNU    - order of the initial Y function, FNU .GE. 0.0D0
            N      - number of members in the sequence, N .GE. 1
 
          Output
            Y      - a vector whose first N components contain values
                     for the sequence Y(I)=Y/sub(FNU+I-1)/(X), I=1,N.
 
      Error Conditions
          Improper input arguments - a fatal error
          Overflow - a fatal error
 
 ***REFERENCES  F. W. J. Olver, Tables of Bessel Functions of Moderate
                  or Large Orders, NPL Mathematical Tables 6, Her
                  Majesty's Stationery Office, London, 1962.
                N. M. Temme, On the numerical evaluation of the modified
                  Bessel function of the third kind, Journal of
                  Computational Physics 19, (1975), pp. 324-337.
                N. M. Temme, On the numerical evaluation of the ordinary
                  Bessel function of the second kind, Journal of
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                  Computational Physics 21, (1976), pp. 343-350.
 ***ROUTINES CALLED  D1MACH, DASYJY, DBESY0, DBESY1, DBSYNU, DYAIRY,
                     I1MACH, XERMSG
 ***REVISION HISTORY  (YYMMDD)
    800501  DATE WRITTEN
    890531  Changed all specific intrinsics to generic.  (WRB)
    890911  Removed unnecessary intrinsics.  (WRB)
    890911  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    900315  CALLs to XERROR changed to CALLs to XERMSG.  (THJ)
    920501  Reformatted the REFERENCES section.  (WRB)
    END PROLOGUE
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DBESY0

      DOUBLE PRECISION FUNCTION DBESY0 (X)
 ***BEGIN PROLOGUE  DBESY0
 ***PURPOSE  Compute the Bessel function of the second kind of order
             zero.
 ***LIBRARY   SLATEC (FNLIB)
 ***CATEGORY  C10A1
 ***TYPE      DOUBLE PRECISION (BESY0-S, DBESY0-D)
 ***KEYWORDS  BESSEL FUNCTION, FNLIB, ORDER ZERO, SECOND KIND,
              SPECIAL FUNCTIONS
 ***AUTHOR  Fullerton, W., (LANL)
 ***DESCRIPTION
 
  DBESY0(X) calculates the double precision Bessel function of the
  second kind of order zero for double precision argument X.
 
  Series for BY0        on the interval  0.          to  1.60000E+01
                                         with weighted error   8.14E-32
                                          log weighted error  31.09
                                significant figures required  30.31
                                     decimal places required  31.73
 
 ***REFERENCES  (NONE)
 ***ROUTINES CALLED  D1MACH, D9B0MP, DBESJ0, DCSEVL, INITDS, XERMSG
 ***REVISION HISTORY  (YYMMDD)
    770701  DATE WRITTEN
    890531  Changed all specific intrinsics to generic.  (WRB)
    890531  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    900315  CALLs to XERROR changed to CALLs to XERMSG.  (THJ)
    END PROLOGUE
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DBESY1

      DOUBLE PRECISION FUNCTION DBESY1 (X)
 ***BEGIN PROLOGUE  DBESY1
 ***PURPOSE  Compute the Bessel function of the second kind of order
             one.
 ***LIBRARY   SLATEC (FNLIB)
 ***CATEGORY  C10A1
 ***TYPE      DOUBLE PRECISION (BESY1-S, DBESY1-D)
 ***KEYWORDS  BESSEL FUNCTION, FNLIB, ORDER ONE, SECOND KIND,
              SPECIAL FUNCTIONS
 ***AUTHOR  Fullerton, W., (LANL)
 ***DESCRIPTION
 
  DBESY1(X) calculates the double precision Bessel function of the
  second kind of order for double precision argument X.
 
  Series for BY1        on the interval  0.          to  1.60000E+01
                                         with weighted error   8.65E-33
                                          log weighted error  32.06
                                significant figures required  32.17
                                     decimal places required  32.71
 
 ***REFERENCES  (NONE)
 ***ROUTINES CALLED  D1MACH, D9B1MP, DBESJ1, DCSEVL, INITDS, XERMSG
 ***REVISION HISTORY  (YYMMDD)
    770701  DATE WRITTEN
    890531  Changed all specific intrinsics to generic.  (WRB)
    890531  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    900315  CALLs to XERROR changed to CALLs to XERMSG.  (THJ)
    END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 42



DBETA

      DOUBLE PRECISION FUNCTION DBETA (A, B)
 ***BEGIN PROLOGUE  DBETA
 ***PURPOSE  Compute the complete Beta function.
 ***LIBRARY   SLATEC (FNLIB)
 ***CATEGORY  C7B
 ***TYPE      DOUBLE PRECISION (BETA-S, DBETA-D, CBETA-C)
 ***KEYWORDS  COMPLETE BETA FUNCTION, FNLIB, SPECIAL FUNCTIONS
 ***AUTHOR  Fullerton, W., (LANL)
 ***DESCRIPTION
 
  DBETA(A,B) calculates the double precision complete beta function
  for double precision arguments A and B.
 
 ***REFERENCES  (NONE)
 ***ROUTINES CALLED  D1MACH, DGAMLM, DGAMMA, DLBETA, XERMSG
 ***REVISION HISTORY  (YYMMDD)
    770601  DATE WRITTEN
    890531  Changed all specific intrinsics to generic.  (WRB)
    890531  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    900315  CALLs to XERROR changed to CALLs to XERMSG.  (THJ)
    900727  Added EXTERNAL statement.  (WRB)
    END PROLOGUE
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DBETAI

      DOUBLE PRECISION FUNCTION DBETAI (X, PIN, QIN)
 ***BEGIN PROLOGUE  DBETAI
 ***PURPOSE  Calculate the incomplete Beta function.
 ***LIBRARY   SLATEC (FNLIB)
 ***CATEGORY  C7F
 ***TYPE      DOUBLE PRECISION (BETAI-S, DBETAI-D)
 ***KEYWORDS  FNLIB, INCOMPLETE BETA FUNCTION, SPECIAL FUNCTIONS
 ***AUTHOR  Fullerton, W., (LANL)
 ***DESCRIPTION
 
    DBETAI calculates the DOUBLE PRECISION incomplete beta function.
 
    The incomplete beta function ratio is the probability that a
    random variable from a beta distribution having parameters PIN and
    QIN will be less than or equal to X.
 
      -- Input Arguments -- All arguments are DOUBLE PRECISION.
    X      upper limit of integration.  X must be in (0,1) inclusive.
    PIN    first beta distribution parameter.  PIN must be .GT. 0.0.
    QIN    second beta distribution parameter.  QIN must be .GT. 0.0.
 
 ***REFERENCES  Nancy E. Bosten and E. L. Battiste, Remark on Algorithm
                  179, Communications of the ACM 17, 3 (March 1974),
                  pp. 156.
 ***ROUTINES CALLED  D1MACH, DLBETA, XERMSG
 ***REVISION HISTORY  (YYMMDD)
    770701  DATE WRITTEN
    890531  Changed all specific intrinsics to generic.  (WRB)
    890911  Removed unnecessary intrinsics.  (WRB)
    890911  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    900315  CALLs to XERROR changed to CALLs to XERMSG.  (THJ)
    920528  DESCRIPTION and REFERENCES sections revised.  (WRB)
    END PROLOGUE
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DBFQAD

      SUBROUTINE DBFQAD (F, T, BCOEF, N, K, ID, X1, X2, TOL, QUAD, IERR,
     +   WORK)
 ***BEGIN PROLOGUE  DBFQAD
 ***PURPOSE  Compute the integral of a product of a function and a
             derivative of a K-th order B-spline.
 ***LIBRARY   SLATEC
 ***CATEGORY  H2A2A1, E3, K6
 ***TYPE      DOUBLE PRECISION (BFQAD-S, DBFQAD-D)
 ***KEYWORDS  INTEGRAL OF B-SPLINE, QUADRATURE
 ***AUTHOR  Amos, D. E., (SNLA)
 ***DESCRIPTION
 
      Abstract    **** a double precision routine ****
 
          DBFQAD computes the integral on (X1,X2) of a product of a
          function F and the ID-th derivative of a K-th order B-spline,
          using the B-representation (T,BCOEF,N,K).  (X1,X2) must be a
          subinterval of T(K) .LE. X .LE. T(N+1).  An integration rou-
          tine, DBSGQ8 (a modification of GAUS8), integrates the product
          on subintervals of (X1,X2) formed by included (distinct) knots
 
          The maximum number of significant digits obtainable in
          DBSQAD is the smaller of 18 and the number of digits
          carried in double precision arithmetic.
 
      Description of Arguments
          Input      F,T,BCOEF,X1,X2,TOL are double precision
            F      - external function of one argument for the
                     integrand BF(X)=F(X)*DBVALU(T,BCOEF,N,K,ID,X,INBV,
                     WORK)
            T      - knot array of length N+K
            BCOEF  - coefficient array of length N
            N      - length of coefficient array
            K      - order of B-spline, K .GE. 1
            ID     - order of the spline derivative, 0 .LE. ID .LE. K-1
                     ID=0 gives the spline function
            X1,X2  - end points of quadrature interval in
                     T(K) .LE. X .LE. T(N+1)
            TOL    - desired accuracy for the quadrature, suggest
                     10.*DTOL .LT. TOL .LE. .1 where DTOL is the maximum
                     of 1.0D-18 and double precision unit roundoff for
                     the machine = D1MACH(4)
 
          Output     QUAD,WORK are double precision
            QUAD   - integral of BF(X) on (X1,X2)
            IERR   - a status code
                     IERR=1  normal return
                          2  some quadrature on (X1,X2) does not meet
                             the requested tolerance.
            WORK   - work vector of length 3*K
 
      Error Conditions
          Improper input is a fatal error
          Some quadrature fails to meet the requested tolerance
 
 ***REFERENCES  D. E. Amos, Quadrature subroutines for splines and
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                  B-splines, Report SAND79-1825, Sandia Laboratories,
                  December 1979.
 ***ROUTINES CALLED  D1MACH, DBSGQ8, DINTRV, XERMSG
 ***REVISION HISTORY  (YYMMDD)
    800901  DATE WRITTEN
    890531  Changed all specific intrinsics to generic.  (WRB)
    890531  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    900315  CALLs to XERROR changed to CALLs to XERMSG.  (THJ)
    900326  Removed duplicate information from DESCRIPTION section.
            (WRB)
    920501  Reformatted the REFERENCES section.  (WRB)
    END PROLOGUE
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DBHIN

      SUBROUTINE DBHIN (N, NELT, IA, JA, A, ISYM, SOLN, RHS, IUNIT, JOB)
 ***BEGIN PROLOGUE  DBHIN
 ***PURPOSE  Read a Sparse Linear System in the Boeing/Harwell Format.
             The matrix is read in and if the right hand side is also
             present in the input file then it too is read in.  The
             matrix is then modified to be in the SLAP Column format.
 ***LIBRARY   SLATEC (SLAP)
 ***CATEGORY  N1
 ***TYPE      DOUBLE PRECISION (SBHIN-S, DBHIN-D)
 ***KEYWORDS  LINEAR SYSTEM, MATRIX READ, SLAP SPARSE
 ***AUTHOR  Seager, Mark K., (LLNL)
              Lawrence Livermore National Laboratory
              PO BOX 808, L-60
              Livermore, CA 94550 (510) 423-3141
              seager@llnl.gov
 ***DESCRIPTION
 
  *Usage:
      INTEGER N, NELT, IA(NELT), JA(NELT), ISYM, IUNIT, JOB
      DOUBLE PRECISION A(NELT), SOLN(N), RHS(N)
 
      CALL DBHIN( N, NELT, IA, JA, A, ISYM, SOLN, RHS, IUNIT, JOB )
 
  *Arguments:
  N      :OUT      Integer
          Order of the Matrix.
  NELT   :INOUT    Integer.
          On input NELT is the maximum number of non-zeros that
          can be stored in the IA, JA, A arrays.
          On output NELT is the number of non-zeros stored in A.
  IA     :OUT      Integer IA(NELT).
  JA     :OUT      Integer JA(NELT).
  A      :OUT      Double Precision A(NELT).
          On output these arrays hold the matrix A in the SLAP
          Triad format.  See "Description", below.
  ISYM   :OUT      Integer.
          Flag to indicate symmetric storage format.
          If ISYM=0, all non-zero entries of the matrix are stored.
          If ISYM=1, the matrix is symmetric, and only the lower
          triangle of the matrix is stored.
  SOLN   :OUT      Double Precision SOLN(N).
          The solution to the linear system, if present.  This array
          is accessed if and only if JOB is set to read it in, see
          below.  If the user requests that SOLN be read in, but it is
          not in the file, then it is simply zeroed out.
  RHS    :OUT      Double Precision RHS(N).
          The right hand side vector.  This array is accessed if and
          only if JOB is set to read it in, see below.
          If the user requests that RHS be read in, but it is not in
          the file, then it is simply zeroed out.
  IUNIT  :IN       Integer.
          Fortran logical I/O device unit number to read the matrix
          from.  This unit must be connected in a system dependent
          fashion to a file, or you will get a nasty message
          from the Fortran I/O libraries.
  JOB    :INOUT    Integer.
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          Flag indicating what I/O operations to perform.
          On input JOB indicates what Input operations to try to
          perform.
          JOB = 0 => Read only the matrix.
          JOB = 1 => Read matrix and RHS (if present).
          JOB = 2 => Read matrix and SOLN (if present).
          JOB = 3 => Read matrix, RHS and SOLN (if present).
          On output JOB indicates what operations were actually
          performed.
          JOB = -3 => Unable to parse matrix "CODE" from input file
                      to determine if only the lower triangle of matrix
                      is stored.
          JOB = -2 => Number of non-zeros (NELT) too large.
          JOB = -1 => System size (N) too large.
          JOB =  0 => Read in only the matrix.
          JOB =  1 => Read in the matrix and RHS.
          JOB =  2 => Read in the matrix and SOLN.
          JOB =  3 => Read in the matrix, RHS and SOLN.
          JOB = 10 => Read in only the matrix *STRUCTURE*, but no
                      non-zero entries.  Hence, A(*) is not referenced
                      and has the return values the same as the input.
          JOB = 11 => Read in the matrix *STRUCTURE* and RHS.
          JOB = 12 => Read in the matrix *STRUCTURE* and SOLN.
          JOB = 13 => Read in the matrix *STRUCTURE*, RHS and SOLN.
 
  *Description:
        The format for the input is as follows.  The first line contains
        a title to identify the data file.  On the second line (5I4) are
        counters: NLINE, NPLS, NRILS, NNVLS, NRHSLS.
         NLINE  Number of data lines (after the header) in the file.
         NPLS   Number of lines for the Column Pointer data in the file.
         NRILS  Number of lines for the Row indices in the file.
         NNVLS  Number of lines for the Matrix elements in the file.
         NRHSLS Number of lines for the RHS in the file.
        The third line (A3,11X,4I4) contains a symmetry code and some
        additional counters: CODE, NROW, NCOL, NIND, NELE.
        On the fourth line (2A16,2A20) are formats to be used to read
        the following data: PNTFNT, RINFMT, NVLFMT, RHSFMT.
        Following that are the blocks of data in the order indicated.
 
        =================== S L A P Triad format ===================
        This routine requires that the  matrix A be   stored in  the
        SLAP  Triad format.  In  this format only the non-zeros  are
        stored.  They may appear in  *ANY* order.  The user supplies
        three arrays of  length NELT, where  NELT is  the number  of
        non-zeros in the matrix: (IA(NELT), JA(NELT), A(NELT)).  For
        each non-zero the user puts the row and column index of that
        matrix element  in the IA and  JA arrays.  The  value of the
        non-zero  matrix  element is  placed   in  the corresponding
        location of the A array.   This is  an  extremely  easy data
        structure to generate.  On  the  other hand it   is  not too
        efficient on vector computers for  the iterative solution of
        linear systems.  Hence,   SLAP changes   this  input    data
        structure to the SLAP Column format  for  the iteration (but
        does not change it back).
 
        Here is an example of the  SLAP Triad   storage format for a
        5x5 Matrix.  Recall that the entries may appear in any order.
 
            5x5 Matrix      SLAP Triad format for 5x5 matrix on left.
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                               1  2  3  4  5  6  7  8  9 10 11
        |11 12  0  0 15|   A: 51 12 11 33 15 53 55 22 35 44 21
        |21 22  0  0  0|  IA:  5  1  1  3  1  5  5  2  3  4  2
        | 0  0 33  0 35|  JA:  1  2  1  3  5  3  5  2  5  4  1
        | 0  0  0 44  0|
        |51  0 53  0 55|
 
  *Portability:
          You must make sure that IUNIT is a valid Fortran logical
          I/O device unit number and that the unit number has been
          associated with a file or the console.  This is a system
          dependent function.
 
  *Implementation note:
          SOLN is not read by this version.  It will simply be
          zeroed out if JOB = 2 or 3 and the returned value of
          JOB will indicate SOLN has not been read.
 ***REFERENCES  (NONE)
 ***ROUTINES CALLED  (NONE)
 ***REVISION HISTORY  (YYMMDD)
    881107  DATE WRITTEN
    881213  Previous REVISION DATE
    890915  Made changes requested at July 1989 CML Meeting.  (MKS)
    890922  Numerous changes to prologue to make closer to SLATEC
            standard.  (FNF)
    890929  Numerous changes to reduce SP/DP differences.  (FNF)
    910411  Prologue converted to Version 4.0 format.  (BAB)
    911122  Added loop to zero out RHS if user wants to read RHS, but
            it's not in the input file. (MKS)
    911125  Minor improvements to prologue.  (FNF)
    920511  Added complete declaration section.  (WRB)
    921007  Corrected description of input format.  (FNF)
    921208  Added Implementation Note and code to zero out SOLN.  (FNF)
    930701  Updated CATEGORY section.  (FNF, WRB)
    END PROLOGUE
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DBI

      DOUBLE PRECISION FUNCTION DBI (X)
 ***BEGIN PROLOGUE  DBI
 ***PURPOSE  Evaluate the Bairy function (the Airy function of the
             second kind).
 ***LIBRARY   SLATEC (FNLIB)
 ***CATEGORY  C10D
 ***TYPE      DOUBLE PRECISION (BI-S, DBI-D)
 ***KEYWORDS  BAIRY FUNCTION, FNLIB, SPECIAL FUNCTIONS
 ***AUTHOR  Fullerton, W., (LANL)
 ***DESCRIPTION
 
  DBI(X) calculates the double precision Airy function of the
  second kind for double precision argument X.
 
  Series for BIF        on the interval -1.00000E+00 to  1.00000E+00
                                         with weighted error   1.45E-32
                                          log weighted error  31.84
                                significant figures required  30.85
                                     decimal places required  32.40
 
  Series for BIG        on the interval -1.00000E+00 to  1.00000E+00
                                         with weighted error   1.29E-33
                                          log weighted error  32.89
                                significant figures required  31.48
                                     decimal places required  33.45
 
  Series for BIF2       on the interval  1.00000E+00 to  8.00000E+00
                                         with weighted error   6.08E-32
                                          log weighted error  31.22
                         approx significant figures required  30.8
                                     decimal places required  31.80
 
  Series for BIG2       on the interval  1.00000E+00 to  8.00000E+00
                                         with weighted error   4.91E-33
                                          log weighted error  32.31
                         approx significant figures required  31.6
                                     decimal places required  32.90
 
 ***REFERENCES  (NONE)
 ***ROUTINES CALLED  D1MACH, D9AIMP, DBIE, DCSEVL, INITDS, XERMSG
 ***REVISION HISTORY  (YYMMDD)
    770701  DATE WRITTEN
    890531  Changed all specific intrinsics to generic.  (WRB)
    890531  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    900315  CALLs to XERROR changed to CALLs to XERMSG.  (THJ)
    END PROLOGUE
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DBIE

      DOUBLE PRECISION FUNCTION DBIE (X)
 ***BEGIN PROLOGUE  DBIE
 ***PURPOSE  Calculate the Bairy function for a negative argument and an
             exponentially scaled Bairy function for a non-negative
             argument.
 ***LIBRARY   SLATEC (FNLIB)
 ***CATEGORY  C10D
 ***TYPE      DOUBLE PRECISION (BIE-S, DBIE-D)
 ***KEYWORDS  BAIRY FUNCTION, EXPONENTIALLY SCALED, FNLIB,
              SPECIAL FUNCTIONS
 ***AUTHOR  Fullerton, W., (LANL)
 ***DESCRIPTION
 
  DBIE(X) calculates the double precision Airy function of the
  second kind or the double precision exponentially scaled Airy
  function of the second kind, depending on the value of the
  double precision argument X.
 
  Evaluate BI(X) for X .LE. 0.0  and  BI(X)*EXP(-ZETA)  where
  ZETA = 2/3 * X**(3/2)  for X .GE. 0.0
 
 
  Series for BIF        on the interval -1.00000E+00 to  1.00000E+00
                                         with weighted error   1.45E-32
                                          log weighted error  31.84
                                significant figures required  30.85
                                     decimal places required  32.40
 
 
  Series for BIG        on the interval -1.00000E+00 to  1.00000E+00
                                         with weighted error   1.29E-33
                                          log weighted error  32.89
                                significant figures required  31.48
                                     decimal places required  33.45
 
 
  Series for BIF2       on the interval  1.00000E+00 to  8.00000E+00
                                         with weighted error   6.08E-32
                                          log weighted error  31.22
                         approx significant figures required  30.8
                                     decimal places required  31.80
 
 
  Series for BIG2       on the interval  1.00000E+00 to  8.00000E+00
                                         with weighted error   4.91E-33
                                          log weighted error  32.31
                         approx significant figures required  31.6
                                     decimal places required  32.90
 
 
  Series for BIP1       on the interval  1.25000E-01 to  3.53553E-01
                                         with weighted error   1.06E-32
                                          log weighted error  31.98
                                significant figures required  30.61
                                     decimal places required  32.81
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  Series for BIP2       on the interval  0.          to  1.25000E-01
                                         with weighted error   4.04E-33
                                          log weighted error  32.39
                                significant figures required  31.15
                                     decimal places required  33.37
 
 ***REFERENCES  (NONE)
 ***ROUTINES CALLED  D1MACH, D9AIMP, DCSEVL, INITDS
 ***REVISION HISTORY  (YYMMDD)
    770701  DATE WRITTEN
    890531  Changed all specific intrinsics to generic.  (WRB)
    890531  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    END PROLOGUE
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DBINOM

      DOUBLE PRECISION FUNCTION DBINOM (N, M)
 ***BEGIN PROLOGUE  DBINOM
 ***PURPOSE  Compute the binomial coefficients.
 ***LIBRARY   SLATEC (FNLIB)
 ***CATEGORY  C1
 ***TYPE      DOUBLE PRECISION (BINOM-S, DBINOM-D)
 ***KEYWORDS  BINOMIAL COEFFICIENTS, FNLIB, SPECIAL FUNCTIONS
 ***AUTHOR  Fullerton, W., (LANL)
 ***DESCRIPTION
 
  DBINOM(N,M) calculates the double precision binomial coefficient
  for integer arguments N and M.  The result is (N!)/((M!)(N-M)!).
 
 ***REFERENCES  (NONE)
 ***ROUTINES CALLED  D1MACH, D9LGMC, DLNREL, XERMSG
 ***REVISION HISTORY  (YYMMDD)
    770601  DATE WRITTEN
    890531  Changed all specific intrinsics to generic.  (WRB)
    890531  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    900315  CALLs to XERROR changed to CALLs to XERMSG.  (THJ)
    END PROLOGUE
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DBINT4

      SUBROUTINE DBINT4 (X, Y, NDATA, IBCL, IBCR, FBCL, FBCR, KNTOPT, T,
     +   BCOEF, N, K, W)
 ***BEGIN PROLOGUE  DBINT4
 ***PURPOSE  Compute the B-representation of a cubic spline
             which interpolates given data.
 ***LIBRARY   SLATEC
 ***CATEGORY  E1A
 ***TYPE      DOUBLE PRECISION (BINT4-S, DBINT4-D)
 ***KEYWORDS  B-SPLINE, CUBIC SPLINES, DATA FITTING, INTERPOLATION
 ***AUTHOR  Amos, D. E., (SNLA)
 ***DESCRIPTION
 
      Abstract    **** a double precision routine ****
 
          DBINT4 computes the B representation (T,BCOEF,N,K) of a
          cubic spline (K=4) which interpolates data (X(I),Y(I)),
          I=1,NDATA.  Parameters IBCL, IBCR, FBCL, FBCR allow the
          specification of the spline first or second derivative at
          both X(1) and X(NDATA).  When this data is not specified
          by the problem, it is common practice to use a natural
          spline by setting second derivatives at X(1) and X(NDATA)
          to zero (IBCL=IBCR=2,FBCL=FBCR=0.0).  The spline is defined
          on T(4) .LE. X .LE. T(N+1) with (ordered) interior knots at
          X(I) values where N=NDATA+2.  The knots T(1),T(2),T(3) lie to
          the left of T(4)=X(1) and the knots T(N+2), T(N+3), T(N+4)
          lie to the right of T(N+1)=X(NDATA) in increasing order.  If
          no extrapolation outside (X(1),X(NDATA)) is anticipated, the
          knots T(1)=T(2)=T(3)=T(4)=X(1) and T(N+2)=T(N+3)=T(N+4)=
          T(N+1)=X(NDATA) can be specified by KNTOPT=1.  KNTOPT=2
          selects a knot placement for T(1), T(2), T(3) to make the
          first 7 knots symmetric about T(4)=X(1) and similarly for
          T(N+2), T(N+3), T(N+4) about T(N+1)=X(NDATA).  KNTOPT=3
          allows the user to make his own selection, in increasing
          order, for T(1), T(2), T(3) to the left of X(1) and T(N+2),
          T(N+3), T(N+4) to the right of X(NDATA) in the work array
          W(1) through W(6).  In any case, the interpolation on
          T(4) .LE. X .LE. T(N+1) by using function DBVALU is unique
          for given boundary conditions.
 
      Description of Arguments
 
          Input      X,Y,FBCL,FBCR,W are double precision
            X      - X vector of abscissae of length NDATA, distinct
                     and in increasing order
            Y      - Y vector of ordinates of length NDATA
            NDATA  - number of data points, NDATA .GE. 2
            IBCL   - selection parameter for left boundary condition
                     IBCL = 1 constrain the first derivative at
                              X(1) to FBCL
                          = 2 constrain the second derivative at
                              X(1) to FBCL
            IBCR   - selection parameter for right boundary condition
                     IBCR = 1 constrain first derivative at
                              X(NDATA) to FBCR
                     IBCR = 2 constrain second derivative at
                              X(NDATA) to FBCR
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            FBCL   - left boundary values governed by IBCL
            FBCR   - right boundary values governed by IBCR
            KNTOPT - knot selection parameter
                     KNTOPT = 1 sets knot multiplicity at T(4) and
                                T(N+1) to 4
                            = 2 sets a symmetric placement of knots
                                about T(4) and T(N+1)
                            = 3 sets T(I)=W(I) and T(N+1+I)=W(3+I),I=1,3
                                where W(I),I=1,6 is supplied by the user
            W      - work array of dimension at least 5*(NDATA+2)
                     If KNTOPT=3, then W(1),W(2),W(3) are knot values to
                     the left of X(1) and W(4),W(5),W(6) are knot
                     values to the right of X(NDATA) in increasing
                     order to be supplied by the user
 
          Output     T,BCOEF are double precision
            T      - knot array of length N+4
            BCOEF  - B spline coefficient array of length N
            N      - number of coefficients, N=NDATA+2
            K      - order of spline, K=4
 
      Error Conditions
          Improper  input is a fatal error
          Singular system of equations is a fatal error
 
 ***REFERENCES  D. E. Amos, Computation with splines and B-splines,
                  Report SAND78-1968, Sandia Laboratories, March 1979.
                Carl de Boor, Package for calculating with B-splines,
                  SIAM Journal on Numerical Analysis 14, 3 (June 1977),
                  pp. 441-472.
                Carl de Boor, A Practical Guide to Splines, Applied
                  Mathematics Series 27, Springer-Verlag, New York,
                  1978.
 ***ROUTINES CALLED  D1MACH, DBNFAC, DBNSLV, DBSPVD, XERMSG
 ***REVISION HISTORY  (YYMMDD)
    800901  DATE WRITTEN
    890531  Changed all specific intrinsics to generic.  (WRB)
    890531  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    900315  CALLs to XERROR changed to CALLs to XERMSG.  (THJ)
    900326  Removed duplicate information from DESCRIPTION section.
            (WRB)
    920501  Reformatted the REFERENCES section.  (WRB)
    END PROLOGUE
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DBINTK

      SUBROUTINE DBINTK (X, Y, T, N, K, BCOEF, Q, WORK)
 ***BEGIN PROLOGUE  DBINTK
 ***PURPOSE  Compute the B-representation of a spline which interpolates
             given data.
 ***LIBRARY   SLATEC
 ***CATEGORY  E1A
 ***TYPE      DOUBLE PRECISION (BINTK-S, DBINTK-D)
 ***KEYWORDS  B-SPLINE, DATA FITTING, INTERPOLATION
 ***AUTHOR  Amos, D. E., (SNLA)
 ***DESCRIPTION
 
      Written by Carl de Boor and modified by D. E. Amos
 
      Abstract    **** a double precision routine ****
 
          DBINTK is the SPLINT routine of the reference.
 
          DBINTK produces the B-spline coefficients, BCOEF, of the
          B-spline of order K with knots T(I), I=1,...,N+K, which
          takes on the value Y(I) at X(I), I=1,...,N.  The spline or
          any of its derivatives can be evaluated by calls to DBVALU.
 
          The I-th equation of the linear system A*BCOEF = B for the
          coefficients of the interpolant enforces interpolation at
          X(I), I=1,...,N.  Hence, B(I) = Y(I), for all I, and A is
          a band matrix with 2K-1 bands if A is invertible.  The matrix
          A is generated row by row and stored, diagonal by diagonal,
          in the rows of Q, with the main diagonal going into row K.
          The banded system is then solved by a call to DBNFAC (which
          constructs the triangular factorization for A and stores it
          again in Q), followed by a call to DBNSLV (which then
          obtains the solution BCOEF by substitution).  DBNFAC does no
          pivoting, since the total positivity of the matrix A makes
          this unnecessary.  The linear system to be solved is
          (theoretically) invertible if and only if
                  T(I) .LT. X(I) .LT. T(I+K),        for all I.
          Equality is permitted on the left for I=1 and on the right
          for I=N when K knots are used at X(1) or X(N).  Otherwise,
          violation of this condition is certain to lead to an error.
 
      Description of Arguments
 
          Input       X,Y,T are double precision
            X       - vector of length N containing data point abscissa
                      in strictly increasing order.
            Y       - corresponding vector of length N containing data
                      point ordinates.
            T       - knot vector of length N+K
                      Since T(1),..,T(K) .LE. X(1) and T(N+1),..,T(N+K)
                      .GE. X(N), this leaves only N-K knots (not nec-
                      essarily X(I) values) interior to (X(1),X(N))
            N       - number of data points, N .GE. K
            K       - order of the spline, K .GE. 1
 
          Output      BCOEF,Q,WORK are double precision
            BCOEF   - a vector of length N containing the B-spline
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                      coefficients
            Q       - a work vector of length (2*K-1)*N, containing
                      the triangular factorization of the coefficient
                      matrix of the linear system being solved.  The
                      coefficients for the interpolant of an
                      additional data set (X(I),YY(I)), I=1,...,N
                      with the same abscissa can be obtained by loading
                      YY into BCOEF and then executing
                          CALL DBNSLV (Q,2K-1,N,K-1,K-1,BCOEF)
            WORK    - work vector of length 2*K
 
      Error Conditions
          Improper input is a fatal error
          Singular system of equations is a fatal error
 
 ***REFERENCES  D. E. Amos, Computation with splines and B-splines,
                  Report SAND78-1968, Sandia Laboratories, March 1979.
                Carl de Boor, Package for calculating with B-splines,
                  SIAM Journal on Numerical Analysis 14, 3 (June 1977),
                  pp. 441-472.
                Carl de Boor, A Practical Guide to Splines, Applied
                  Mathematics Series 27, Springer-Verlag, New York,
                  1978.
 ***ROUTINES CALLED  DBNFAC, DBNSLV, DBSPVN, XERMSG
 ***REVISION HISTORY  (YYMMDD)
    800901  DATE WRITTEN
    890531  Changed all specific intrinsics to generic.  (WRB)
    890831  Modified array declarations.  (WRB)
    890831  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    900315  CALLs to XERROR changed to CALLs to XERMSG.  (THJ)
    900326  Removed duplicate information from DESCRIPTION section.
            (WRB)
    920501  Reformatted the REFERENCES section.  (WRB)
    END PROLOGUE
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DBNDAC

      SUBROUTINE DBNDAC (G, MDG, NB, IP, IR, MT, JT)
 ***BEGIN PROLOGUE  DBNDAC
 ***PURPOSE  Compute the LU factorization of a  banded matrices using
             sequential accumulation of rows of the data matrix.
             Exactly one right-hand side vector is permitted.
 ***LIBRARY   SLATEC
 ***CATEGORY  D9
 ***TYPE      DOUBLE PRECISION (BNDACC-S, DBNDAC-D)
 ***KEYWORDS  BANDED MATRIX, CURVE FITTING, LEAST SQUARES
 ***AUTHOR  Lawson, C. L., (JPL)
            Hanson, R. J., (SNLA)
 ***DESCRIPTION
 
      These subroutines solve the least squares problem Ax = b for
      banded matrices A using sequential accumulation of rows of the
      data matrix.  Exactly one right-hand side vector is permitted.
 
      These subroutines are intended for the type of least squares
      systems that arise in applications such as curve or surface
      fitting of data.  The least squares equations are accumulated and
      processed using only part of the data.  This requires a certain
      user interaction during the solution of Ax = b.
 
      Specifically, suppose the data matrix (A B) is row partitioned
      into Q submatrices.  Let (E F) be the T-th one of these
      submatrices where E = (0 C 0).  Here the dimension of E is MT by N
      and the dimension of C is MT by NB.  The value of NB is the
      bandwidth of A.  The dimensions of the leading block of zeros in E
      are MT by JT-1.
 
      The user of the subroutine DBNDAC provides MT,JT,C and F for
      T=1,...,Q.  Not all of this data must be supplied at once.
 
      Following the processing of the various blocks (E F), the matrix
      (A B) has been transformed to the form (R D) where R is upper
      triangular and banded with bandwidth NB.  The least squares
      system Rx = d is then easily solved using back substitution by
      executing the statement CALL DBNDSL(1,...). The sequence of
      values for JT must be nondecreasing.  This may require some
      preliminary interchanges of rows and columns of the matrix A.
 
      The primary reason for these subroutines is that the total
      processing can take place in a working array of dimension MU by
      NB+1.  An acceptable value for MU is
 
                        MU = MAX(MT + N + 1),
 
      where N is the number of unknowns.
 
      Here the maximum is taken over all values of MT for T=1,...,Q.
      Notice that MT can be taken to be a small as one, showing that
      MU can be as small as N+2.  The subprogram DBNDAC processes the
      rows more efficiently if MU is large enough so that each new
      block (C F) has a distinct value of JT.
 
      The four principle parts of these algorithms are obtained by the
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      following call statements
 
      CALL DBNDAC(...)  Introduce new blocks of data.
 
      CALL DBNDSL(1,...)Compute solution vector and length of
                        residual vector.
 
      CALL DBNDSL(2,...)Given any row vector H solve YR = H for the
                        row vector Y.
 
      CALL DBNDSL(3,...)Given any column vector W solve RZ = W for
                        the column vector Z.
 
      The dots in the above call statements indicate additional
      arguments that will be specified in the following paragraphs.
 
      The user must dimension the array appearing in the call list..
      G(MDG,NB+1)
 
      Description of calling sequence for DBNDAC..
 
      The entire set of parameters for DBNDAC are
 
      Input.. All Type REAL variables are DOUBLE PRECISION
 
      G(*,*)            The working array into which the user will
                        place the MT by NB+1 block (C F) in rows IR
                        through IR+MT-1, columns 1 through NB+1.
                        See descriptions of IR and MT below.
 
      MDG               The number of rows in the working array
                        G(*,*).  The value of MDG should be .GE. MU.
                        The value of MU is defined in the abstract
                        of these subprograms.
 
      NB                The bandwidth of the data matrix A.
 
      IP                Set by the user to the value 1 before the
                        first call to DBNDAC.  Its subsequent value
                        is controlled by DBNDAC to set up for the
                        next call to DBNDAC.
 
      IR                Index of the row of G(*,*) where the user is
                        to place the new block of data (C F).  Set by
                        the user to the value 1 before the first call
                        to DBNDAC.  Its subsequent value is controlled
                        by DBNDAC. A value of IR .GT. MDG is considered
                        an error.
 
      MT,JT             Set by the user to indicate respectively the
                        number of new rows of data in the block and
                        the index of the first nonzero column in that
                        set of rows (E F) = (0 C 0 F) being processed.
 
      Output.. All Type REAL variables are DOUBLE PRECISION
 
      G(*,*)            The working array which will contain the
                        processed rows of that part of the data
                        matrix which has been passed to DBNDAC.
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      IP,IR             The values of these arguments are advanced by
                        DBNDAC to be ready for storing and processing
                        a new block of data in G(*,*).
 
      Description of calling sequence for DBNDSL..
 
      The user must dimension the arrays appearing in the call list..
 
      G(MDG,NB+1), X(N)
 
      The entire set of parameters for DBNDSL are
 
      Input.. All Type REAL variables are DOUBLE PRECISION
 
      MODE              Set by the user to one of the values 1, 2, or
                        3.  These values respectively indicate that
                        the solution of AX = B, YR = H or RZ = W is
                        required.
 
      G(*,*),MDG,       These arguments all have the same meaning and
       NB,IP,IR         contents as following the last call to DBNDAC.
 
      X(*)              With mode=2 or 3 this array contains,
                        respectively, the right-side vectors H or W of
                        the systems YR = H or RZ = W.
 
      N                 The number of variables in the solution
                        vector.  If any of the N diagonal terms are
                        zero the subroutine DBNDSL prints an
                        appropriate message.  This condition is
                        considered an error.
 
      Output.. All Type REAL variables are DOUBLE PRECISION
 
      X(*)              This array contains the solution vectors X,
                        Y or Z of the systems AX = B, YR = H or
                        RZ = W depending on the value of MODE=1,
                        2 or 3.
 
      RNORM             If MODE=1 RNORM is the Euclidean length of the
                        residual vector AX-B.  When MODE=2 or 3 RNORM
                        is set to zero.
 
      Remarks..
 
      To obtain the upper triangular matrix and transformed right-hand
      side vector D so that the super diagonals of R form the columns
      of G(*,*), execute the following Fortran statements.
 
      NBP1=NB+1
 
      DO 10 J=1, NBP1
 
   10 G(IR,J) = 0.E0
 
      MT=1
 
      JT=N+1
 
      CALL DBNDAC(G,MDG,NB,IP,IR,MT,JT)
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 ***REFERENCES  C. L. Lawson and R. J. Hanson, Solving Least Squares
                  Problems, Prentice-Hall, Inc., 1974, Chapter 27.
 ***ROUTINES CALLED  DH12, XERMSG
 ***REVISION HISTORY  (YYMMDD)
    790101  DATE WRITTEN
    890531  Changed all specific intrinsics to generic.  (WRB)
    891006  Cosmetic changes to prologue.  (WRB)
    891006  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    900315  CALLs to XERROR changed to CALLs to XERMSG.  (THJ)
    920501  Reformatted the REFERENCES section.  (WRB)
    END PROLOGUE
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DBNDSL

      SUBROUTINE DBNDSL (MODE, G, MDG, NB, IP, IR, X, N, RNORM)
 ***BEGIN PROLOGUE  DBNDSL
 ***PURPOSE  Solve the least squares problem for a banded matrix using
             sequential accumulation of rows of the data matrix.
             Exactly one right-hand side vector is permitted.
 ***LIBRARY   SLATEC
 ***CATEGORY  D9
 ***TYPE      DOUBLE PRECISION (BNDSOL-S, DBNDSL-D)
 ***KEYWORDS  BANDED MATRIX, CURVE FITTING, LEAST SQUARES
 ***AUTHOR  Lawson, C. L., (JPL)
            Hanson, R. J., (SNLA)
 ***DESCRIPTION
 
      These subroutines solve the least squares problem Ax = b for
      banded matrices A using sequential accumulation of rows of the
      data matrix.  Exactly one right-hand side vector is permitted.
 
      These subroutines are intended for the type of least squares
      systems that arise in applications such as curve or surface
      fitting of data.  The least squares equations are accumulated and
      processed using only part of the data.  This requires a certain
      user interaction during the solution of Ax = b.
 
      Specifically, suppose the data matrix (A B) is row partitioned
      into Q submatrices.  Let (E F) be the T-th one of these
      submatrices where E = (0 C 0).  Here the dimension of E is MT by N
      and the dimension of C is MT by NB.  The value of NB is the
      bandwidth of A.  The dimensions of the leading block of zeros in E
      are MT by JT-1.
 
      The user of the subroutine DBNDAC provides MT,JT,C and F for
      T=1,...,Q.  Not all of this data must be supplied at once.
 
      Following the processing of the various blocks (E F), the matrix
      (A B) has been transformed to the form (R D) where R is upper
      triangular and banded with bandwidth NB.  The least squares
      system Rx = d is then easily solved using back substitution by
      executing the statement CALL DBNDSL(1,...). The sequence of
      values for JT must be nondecreasing.  This may require some
      preliminary interchanges of rows and columns of the matrix A.
 
      The primary reason for these subroutines is that the total
      processing can take place in a working array of dimension MU by
      NB+1.  An acceptable value for MU is
 
                        MU = MAX(MT + N + 1),
 
      where N is the number of unknowns.
 
      Here the maximum is taken over all values of MT for T=1,...,Q.
      Notice that MT can be taken to be a small as one, showing that
      MU can be as small as N+2.  The subprogram DBNDAC processes the
      rows more efficiently if MU is large enough so that each new
      block (C F) has a distinct value of JT.
 
      The four principle parts of these algorithms are obtained by the
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      following call statements
 
      CALL DBNDAC(...)  Introduce new blocks of data.
 
      CALL DBNDSL(1,...)Compute solution vector and length of
                        residual vector.
 
      CALL DBNDSL(2,...)Given any row vector H solve YR = H for the
                        row vector Y.
 
      CALL DBNDSL(3,...)Given any column vector W solve RZ = W for
                        the column vector Z.
 
      The dots in the above call statements indicate additional
      arguments that will be specified in the following paragraphs.
 
      The user must dimension the array appearing in the call list..
      G(MDG,NB+1)
 
      Description of calling sequence for DBNDAC..
 
      The entire set of parameters for DBNDAC are
 
      Input.. All Type REAL variables are DOUBLE PRECISION
 
      G(*,*)            The working array into which the user will
                        place the MT by NB+1 block (C F) in rows IR
                        through IR+MT-1, columns 1 through NB+1.
                        See descriptions of IR and MT below.
 
      MDG               The number of rows in the working array
                        G(*,*).  The value of MDG should be .GE. MU.
                        The value of MU is defined in the abstract
                        of these subprograms.
 
      NB                The bandwidth of the data matrix A.
 
      IP                Set by the user to the value 1 before the
                        first call to DBNDAC.  Its subsequent value
                        is controlled by DBNDAC to set up for the
                        next call to DBNDAC.
 
      IR                Index of the row of G(*,*) where the user is
                        the user to the value 1 before the first call
                        to DBNDAC.  Its subsequent value is controlled
                        by DBNDAC. A value of IR .GT. MDG is considered
                        an error.
 
      MT,JT             Set by the user to indicate respectively the
                        number of new rows of data in the block and
                        the index of the first nonzero column in that
                        set of rows (E F) = (0 C 0 F) being processed.
      Output.. All Type REAL variables are DOUBLE PRECISION
 
      G(*,*)            The working array which will contain the
                        processed rows of that part of the data
                        matrix which has been passed to DBNDAC.
 
      IP,IR             The values of these arguments are advanced by
                        DBNDAC to be ready for storing and processing
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                        a new block of data in G(*,*).
 
      Description of calling sequence for DBNDSL..
 
      The user must dimension the arrays appearing in the call list..
 
      G(MDG,NB+1), X(N)
 
      The entire set of parameters for DBNDSL are
 
      Input..
 
      MODE              Set by the user to one of the values 1, 2, or
                        3.  These values respectively indicate that
                        the solution of AX = B, YR = H or RZ = W is
                        required.
 
      G(*,*),MDG,       These arguments all have the same meaning and
       NB,IP,IR         contents as following the last call to DBNDAC.
 
      X(*)              With mode=2 or 3 this array contains,
                        respectively, the right-side vectors H or W of
                        the systems YR = H or RZ = W.
 
      N                 The number of variables in the solution
                        vector.  If any of the N diagonal terms are
                        zero the subroutine DBNDSL prints an
                        appropriate message.  This condition is
                        considered an error.
 
      Output..
 
      X(*)              This array contains the solution vectors X,
                        Y or Z of the systems AX = B, YR = H or
                        RZ = W depending on the value of MODE=1,
                        2 or 3.
 
      RNORM             If MODE=1 RNORM is the Euclidean length of the
                        residual vector AX-B.  When MODE=2 or 3 RNORM
                        is set to zero.
 
      Remarks..
 
      To obtain the upper triangular matrix and transformed right-hand
      side vector D so that the super diagonals of R form the columns
      of G(*,*), execute the following Fortran statements.
 
      NBP1=NB+1
 
      DO 10 J=1, NBP1
 
   10 G(IR,J) = 0.E0
 
      MT=1
 
      JT=N+1
 
      CALL DBNDAC(G,MDG,NB,IP,IR,MT,JT)
 
 ***REFERENCES  C. L. Lawson and R. J. Hanson, Solving Least Squares
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                  Problems, Prentice-Hall, Inc., 1974, Chapter 27.
 ***ROUTINES CALLED  XERMSG
 ***REVISION HISTORY  (YYMMDD)
    790101  DATE WRITTEN
    890531  Changed all specific intrinsics to generic.  (WRB)
    890831  Modified array declarations.  (WRB)
    891006  Cosmetic changes to prologue.  (WRB)
    891006  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    900315  CALLs to XERROR changed to CALLs to XERMSG.  (THJ)
    920501  Reformatted the REFERENCES section.  (WRB)
    END PROLOGUE
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DBOCLS

      SUBROUTINE DBOCLS (W, MDW, MCON, MROWS, NCOLS, BL, BU, IND, IOPT,
     +   X, RNORMC, RNORM, MODE, RW, IW)
 ***BEGIN PROLOGUE  DBOCLS
 ***PURPOSE  Solve the bounded and constrained least squares
             problem consisting of solving the equation
                       E*X = F  (in the least squares sense)
              subject to the linear constraints
                             C*X = Y.
 ***LIBRARY   SLATEC
 ***CATEGORY  K1A2A, G2E, G2H1, G2H2
 ***TYPE      DOUBLE PRECISION (SBOCLS-S, DBOCLS-D)
 ***KEYWORDS  BOUNDS, CONSTRAINTS, INEQUALITY, LEAST SQUARES, LINEAR
 ***AUTHOR  Hanson, R. J., (SNLA)
 ***DESCRIPTION
 
    **** All INPUT and OUTPUT real variables are DOUBLE PRECISION ****
 
      This subprogram solves the bounded and constrained least squares
      problem. The problem statement is:
 
      Solve E*X = F (least squares sense), subject to constraints
      C*X=Y.
 
      In this formulation both X and Y are unknowns, and both may
      have bounds on any of their components.  This formulation
      of the problem allows the user to have equality and inequality
      constraints as well as simple bounds on the solution components.
 
      This constrained linear least squares subprogram solves E*X=F
      subject to C*X=Y, where E is MROWS by NCOLS, C is MCON by NCOLS.
 
       The user must have dimension statements of the form
 
       DIMENSION W(MDW,NCOLS+MCON+1), BL(NCOLS+MCON), BU(NCOLS+MCON),
      * X(2*(NCOLS+MCON)+2+NX), RW(6*NCOLS+5*MCON)
        INTEGER IND(NCOLS+MCON), IOPT(17+NI), IW(2*(NCOLS+MCON))
 
      (here NX=number of extra locations required for the options; NX=0
      if no options are in use. Also NI=number of extra locations
      for options 1-9.)
 
     INPUT
     -----
 
     -------------------------
     W(MDW,*),MCON,MROWS,NCOLS
     -------------------------
      The array W contains the (possibly null) matrix [C:*] followed by
      [E:F].  This must be placed in W as follows:
           [C  :  *]
      W  = [       ]
           [E  :  F]
      The (*) after C indicates that this data can be undefined. The
      matrix [E:F] has MROWS rows and NCOLS+1 columns. The matrix C is
      placed in the first MCON rows of W(*,*) while [E:F]
      follows in rows MCON+1 through MCON+MROWS of W(*,*). The vector F
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      is placed in rows MCON+1 through MCON+MROWS, column NCOLS+1. The
      values of MDW and NCOLS must be positive; the value of MCON must
      be nonnegative. An exception to this occurs when using option 1
      for accumulation of blocks of equations. In that case MROWS is an
      OUTPUT variable only, and the matrix data for [E:F] is placed in
      W(*,*), one block of rows at a time. See IOPT(*) contents, option
      number 1, for further details. The row dimension, MDW, of the
      array W(*,*) must satisfy the inequality:
 
      If using option 1,
                      MDW .ge. MCON + max(max. number of
                      rows accumulated, NCOLS) + 1.
      If using option 8,
                      MDW .ge. MCON + MROWS.
      Else
                      MDW .ge. MCON + max(MROWS, NCOLS).
 
      Other values are errors, but this is checked only when using
      option=2.  The value of MROWS is an output parameter when
      using option number 1 for accumulating large blocks of least
      squares equations before solving the problem.
      See IOPT(*) contents for details about option 1.
 
     ------------------
     BL(*),BU(*),IND(*)
     ------------------
      These arrays contain the information about the bounds that the
      solution values are to satisfy. The value of IND(J) tells the
      type of bound and BL(J) and BU(J) give the explicit values for
      the respective upper and lower bounds on the unknowns X and Y.
      The first NVARS entries of IND(*), BL(*) and BU(*) specify
      bounds on X; the next MCON entries specify bounds on Y.
 
     1.    For IND(J)=1, require X(J) .ge. BL(J);
           IF J.gt.NCOLS,        Y(J-NCOLS) .ge. BL(J).
           (the value of BU(J) is not used.)
     2.    For IND(J)=2, require X(J) .le. BU(J);
           IF J.gt.NCOLS,        Y(J-NCOLS) .le. BU(J).
           (the value of BL(J) is not used.)
     3.    For IND(J)=3, require X(J) .ge. BL(J) and
                                 X(J) .le. BU(J);
           IF J.gt.NCOLS,        Y(J-NCOLS) .ge. BL(J) and
                                 Y(J-NCOLS) .le. BU(J).
           (to impose equality constraints have BL(J)=BU(J)=
           constraining value.)
     4.    For IND(J)=4, no bounds on X(J) or Y(J-NCOLS) are required.
           (the values of BL(J) and BU(J) are not used.)
 
      Values other than 1,2,3 or 4 for IND(J) are errors. In the case
      IND(J)=3 (upper and lower bounds) the condition BL(J) .gt. BU(J)
      is  an  error.   The values BL(J), BU(J), J .gt. NCOLS, will be
      changed.  Significant changes mean that the constraints are
      infeasible.  (Users must make this decision themselves.)
      The new values for BL(J), BU(J), J .gt. NCOLS, define a
      region such that the perturbed problem is feasible.  If users
      know that their problem is feasible, this step can be skipped
      by using option number 8 described below.
      See IOPT(*) description.
 
 

SLATEC3 (DACOSH through DS2Y) - 67



     -------
     IOPT(*)
     -------
      This is the array where the user can specify nonstandard options
      for DBOCLS( ). Most of the time this feature can be ignored by
      setting the input value IOPT(1)=99. Occasionally users may have
      needs that require use of the following subprogram options. For
      details about how to use the options see below: IOPT(*) CONTENTS.
 
      Option Number   Brief Statement of Purpose
      ------ ------   ----- --------- -- -------
            1         Return to user for accumulation of blocks
                      of least squares equations.  The values
                      of IOPT(*) are changed with this option.
                      The changes are updates to pointers for
                      placing the rows of equations into position
                      for processing.
            2         Check lengths of all arrays used in the
                      subprogram.
            3         Column scaling of the data matrix, [C].
                                                         [E]
            4         User provides column scaling for matrix [C].
                                                              [E]
            5         Provide option array to the low-level
                      subprogram SBOLS( ).
            6         Provide option array to the low-level
                      subprogram SBOLSM( ).
            7         Move the IOPT(*) processing pointer.
            8         Do not preprocess the constraints to
                      resolve infeasibilities.
            9         Do not pretriangularize the least squares matrix.
           99         No more options to change.
 
     ----
     X(*)
     ----
      This array is used to pass data associated with options 4,5 and
      6. Ignore this parameter (on input) if no options are used.
      Otherwise see below: IOPT(*) CONTENTS.
 
 
     OUTPUT
     ------
 
     -----------------
     X(*),RNORMC,RNORM
     -----------------
      The array X(*) contains a solution (if MODE .ge.0 or .eq.-22) for
      the constrained least squares problem. The value RNORMC is the
      minimum residual vector length for the constraints C*X - Y = 0.
      The value RNORM is the minimum residual vector length for the
      least squares equations. Normally RNORMC=0, but in the case of
      inconsistent constraints this value will be nonzero.
      The values of X are returned in the first NVARS entries of X(*).
      The values of Y are returned in the last MCON entries of X(*).
 
     ----
     MODE
     ----
      The sign of MODE determines whether the subprogram has completed
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      normally, or encountered an error condition or abnormal status. A
      value of MODE .ge. 0 signifies that the subprogram has completed
      normally. The value of mode (.ge. 0) is the number of variables
      in an active status: not at a bound nor at the value zero, for
      the case of free variables. A negative value of MODE will be one
      of the cases (-57)-(-41), (-37)-(-22), (-19)-(-2). Values .lt. -1
      correspond to an abnormal completion of the subprogram. These
      error messages are in groups for the subprograms DBOCLS(),
      SBOLSM(), and SBOLS().  An approximate solution will be returned
      to the user only when max. iterations is reached, MODE=-22.
 
     -----------
     RW(*),IW(*)
     -----------
      These are working arrays.  (normally the user can ignore the
      contents of these arrays.)
 
     IOPT(*) CONTENTS
     ------- --------
      The option array allows a user to modify some internal variables
      in the subprogram without recompiling the source code. A central
      goal of the initial software design was to do a good job for most
      people. Thus the use of options will be restricted to a select
      group of users. The processing of the option array proceeds as
      follows: a pointer, here called LP, is initially set to the value
      1. At the pointer position the option number is extracted and
      used for locating other information that allows for options to be
      changed. The portion of the array IOPT(*) that is used for each
      option is fixed; the user and the subprogram both know how many
      locations are needed for each option. The value of LP is updated
      for each option based on the amount of storage in IOPT(*) that is
      required. A great deal of error checking is done by the
      subprogram on the contents of the option array. Nevertheless it
      is still possible to give the subprogram optional input that is
      meaningless. For example option 4 uses the locations
      X(NCOLS+IOFF),...,X(NCOLS+IOFF+NCOLS-1) for passing scaling data.
      The user must manage the allocation of these locations.
 
    1
    -
      This option allows the user to solve problems with a large number
      of rows compared to the number of variables. The idea is that the
      subprogram returns to the user (perhaps many times) and receives
      new least squares equations from the calling program unit.
      Eventually the user signals "that's all" and a solution is then
      computed. The value of MROWS is an output variable when this
      option is used. Its value is always in the range 0 .le. MROWS
      .le. NCOLS+1. It is the number of rows after the
      triangularization of the entire set of equations. If LP is the
      processing pointer for IOPT(*), the usage for the sequential
      processing of blocks of equations is
 
 
         IOPT(LP)=1
          Move block of equations to W(*,*) starting at
          the first row of W(*,*).
         IOPT(LP+3)=# of rows in the block; user defined
 
      The user now calls DBOCLS( ) in a loop. The value of IOPT(LP+1)
      directs the user's action. The value of IOPT(LP+2) points to
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      where the subsequent rows are to be placed in W(*,*). Both of
      these values are first defined in the subprogram. The user
      changes the value of IOPT(LP+1) (to 2) as a signal that all of
      the rows have been processed.
 
 
       .<LOOP
       . CALL DBOCLS( )
       . IF(IOPT(LP+1) .EQ. 1) THEN
       .    IOPT(LP+3)=# OF ROWS IN THE NEW BLOCK; USER DEFINED
       .    PLACE NEW BLOCK OF IOPT(LP+3) ROWS IN
       .    W(*,*) STARTING AT ROW MCON + IOPT(LP+2).
       .
       .    IF( THIS IS THE LAST BLOCK OF EQUATIONS ) THEN
       .       IOPT(LP+1)=2
       .<------CYCLE LOOP
       .    ELSE IF (IOPT(LP+1) .EQ. 2) THEN
       <-------EXIT LOOP SOLUTION COMPUTED IF MODE .GE. 0
       . ELSE
       . ERROR CONDITION; SHOULD NOT HAPPEN.
       .<END LOOP
 
      Use of this option adds 4 to the required length of IOPT(*).
 
    2
    -
      This option is useful for checking the lengths of all arrays used
      by DBOCLS( ) against their actual requirements for this problem.
      The idea is simple: the user's program unit passes the declared
      dimension information of the arrays. These values are compared
      against the problem-dependent needs within the subprogram. If any
      of the dimensions are too small an error message is printed and a
      negative value of MODE is returned, -41 to -47. The printed error
      message tells how long the dimension should be. If LP is the
      processing pointer for IOPT(*),
 
         IOPT(LP)=2
         IOPT(LP+1)=Row dimension of W(*,*)
         IOPT(LP+2)=Col. dimension of W(*,*)
         IOPT(LP+3)=Dimensions of BL(*),BU(*),IND(*)
         IOPT(LP+4)=Dimension of X(*)
         IOPT(LP+5)=Dimension of RW(*)
         IOPT(LP+6)=Dimension of IW(*)
         IOPT(LP+7)=Dimension of IOPT(*)
          .
         CALL DBOCLS( )
 
      Use of this option adds 8 to the required length of IOPT(*).
 
    3
    -
      This option can change the type of scaling for the data matrix.
      Nominally each nonzero column of the matrix is scaled so that the
      magnitude of its largest entry is equal to the value ONE. If LP
      is the processing pointer for IOPT(*),
 
         IOPT(LP)=3
         IOPT(LP+1)=1,2 or 3
             1= Nominal scaling as noted;
             2= Each nonzero column scaled to have length ONE;
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             3= Identity scaling; scaling effectively suppressed.
          .
         CALL DBOCLS( )
 
      Use of this option adds 2 to the required length of IOPT(*).
 
    4
    -
      This options allows the user to provide arbitrary (positive)
      column scaling for the matrix. If LP is the processing pointer
      for IOPT(*),
 
         IOPT(LP)=4
         IOPT(LP+1)=IOFF
         X(NCOLS+IOFF),...,X(NCOLS+IOFF+NCOLS-1)
         = Positive scale factors for cols. of E.
          .
         CALL DBOCLS( )
 
      Use of this option adds 2 to the required length of IOPT(*)
      and NCOLS to the required length of X(*).
 
    5
    -
      This option allows the user to provide an option array to the
      low-level subprogram SBOLS( ). If LP is the processing pointer
      for IOPT(*),
 
         IOPT(LP)=5
         IOPT(LP+1)= Position in IOPT(*) where option array
                     data for SBOLS( ) begins.
          .
         CALL DBOCLS( )
 
      Use of this option adds 2 to the required length of IOPT(*).
 
    6
    -
      This option allows the user to provide an option array to the
      low-level subprogram SBOLSM( ). If LP is the processing pointer
      for IOPT(*),
 
         IOPT(LP)=6
         IOPT(LP+1)= Position in IOPT(*) where option array
                     data for SBOLSM( ) begins.
          .
         CALL DBOCLS( )
 
      Use of this option adds 2 to the required length of IOPT(*).
 
    7
    -
      Move the processing pointer (either forward or backward) to the
      location IOPT(LP+1). The processing pointer moves to locations
      LP+2 if option number 7 is used with the value -7.  For
      example to skip over locations 3,...,NCOLS+2,
 
        IOPT(1)=7
        IOPT(2)=NCOLS+3
        (IOPT(I), I=3,...,NCOLS+2 are not defined here.)
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        IOPT(NCOLS+3)=99
        CALL DBOCLS( )
 
      CAUTION: Misuse of this option can yield some very hard-to-find
      bugs. Use it with care. It is intended to be used for passing
      option arrays to other subprograms.
 
    8
    -
      This option allows the user to suppress the algorithmic feature
      of DBOCLS( ) that processes the constraint equations C*X = Y and
      resolves infeasibilities. The steps normally done are to solve
      C*X - Y = 0 in a least squares sense using the stated bounds on
      both X and Y. Then the "reachable" vector Y = C*X is computed
      using the solution X obtained. Finally the stated bounds for Y are
      enlarged to include C*X. To suppress the feature:
 
 
        IOPT(LP)=8
          .
        CALL DBOCLS( )
 
      Use of this option adds 1 to the required length of IOPT(*).
 
    9
    -
      This option allows the user to suppress the pretriangularizing
      step of the least squares matrix that is done within DBOCLS( ).
      This is primarily a means of enhancing the subprogram efficiency
      and has little effect on accuracy. To suppress the step, set:
 
        IOPT(LP)=9
          .
        CALL DBOCLS( )
 
      Use of this option adds 1 to the required length of IOPT(*).
 
    99
    --
      There are no more options to change.
 
      Only option numbers -99, -9,-8,...,-1, 1,2,...,9, and 99 are
      permitted. Other values are errors. Options -99,-1,...,-9 mean
      that the respective options 99,1,...,9 are left at their default
      values. An example is the option to suppress the preprocessing of
      constraints:
 
        IOPT(1)=-8 Option is recognized but not changed
        IOPT(2)=99
        CALL DBOCLS( )
 
     Error Messages for DBOCLS()
     ----- -------- --- --------
 
  WARNING in...
  DBOCLS(). THE ROW DIMENSION OF W(,)=(I1) MUST BE .GE. THE NUMBER
  OF EFFECTIVE ROWS=(I2).
            IN ABOVE MESSAGE, I1=         1
            IN ABOVE MESSAGE, I2=         2
  ERROR NUMBER =        41
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  WARNING IN...
  DBOCLS(). THE COLUMN DIMENSION OF W(,)=(I1) MUST BE .GE. NCOLS+
  MCON+1=(I2).
            IN ABOVE MESSAGE, I1=         2
            IN ABOVE MESSAGE, I2=         3
  ERROR NUMBER =        42
 
  WARNING IN...
  DBOCLS(). THE DIMENSIONS OF THE ARRAYS BL(),BU(), AND IND()=(I1)
  MUST BE .GE. NCOLS+MCON=(I2).
            IN ABOVE MESSAGE, I1=         1
            IN ABOVE MESSAGE, I2=         2
  ERROR NUMBER =        43
 
  WARNING IN...
  DBOCLS(). THE DIMENSION OF X()=(I1) MUST BE
  .GE. THE REQD.LENGTH=(I2).
            IN ABOVE MESSAGE, I1=         1
            IN ABOVE MESSAGE, I2=         2
  ERROR NUMBER =        44
 
  WARNING IN...
  DBOCLS(). THE .
  DBOCLS() THE DIMENSION OF IW()=(I1) MUST BE .GE. 2*NCOLS+2*MCON=(I2).
            IN ABOVE MESSAGE, I1=         1
            IN ABOVE MESSAGE, I2=         4
  ERROR NUMBER =        46
 
  WARNING IN...
  DBOCLS(). THE DIMENSION OF IOPT()=(I1) MUST BE .GE. THE REQD.
  LEN.=(I2).
            IN ABOVE MESSAGE, I1=        16
            IN ABOVE MESSAGE, I2=        18
  ERROR NUMBER =        47
 
  WARNING IN...
  DBOCLS(). ISCALE OPTION=(I1) MUST BE 1-3.
            IN ABOVE MESSAGE, I1=         0
  ERROR NUMBER =        48
 
  WARNING IN...
  DBOCLS(). OFFSET PAST X(NCOLS) (I1) FOR USER-PROVIDED COLUMN SCALING
  MUST BE POSITIVE.
            IN ABOVE MESSAGE, I1=         0
  ERROR NUMBER =        49
 
  WARNING IN...
  DBOCLS(). EACH PROVIDED COL. SCALE FACTOR MUST BE POSITIVE.
   COMPONENT (I1) NOW = (R1).
            IN ABOVE MESSAGE, I1=         1
            IN ABOVE MESSAGE, R1=    0.
  ERROR NUMBER =        50
 
  WARNING IN...
  DBOCLS(). THE OPTION NUMBER=(I1) IS NOT DEFINED.
            IN ABOVE MESSAGE, I1=      1001
  ERROR NUMBER =        51
 
  WARNING IN...
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  DBOCLS(). NO. OF ROWS=(I1) MUST BE .GE. 0 .AND. .LE. MDW-MCON=(I2).
            IN ABOVE MESSAGE, I1=         2
            IN ABOVE MESSAGE, I2=         1
  ERROR NUMBER =        52
 
  WARNING IN...
  DBOCLS(). MDW=(I1) MUST BE POSITIVE.
            IN ABOVE MESSAGE, I1=         0
  ERROR NUMBER =        53
 
  WARNING IN...
  DBOCLS(). MCON=(I1) MUST BE NONNEGATIVE.
            IN ABOVE MESSAGE, I1=        -1
  ERROR NUMBER =        54
 
  WARNING IN...
  DBOCLS(). NCOLS=(I1) THE NO. OF VARIABLES MUST BE POSITIVE.
            IN ABOVE MESSAGE, I1=         0
  ERROR NUMBER =        55
 
  WARNING IN...
  DBOCLS(). FOR J=(I1), IND(J)=(I2) MUST BE 1-4.
            IN ABOVE MESSAGE, I1=         1
            IN ABOVE MESSAGE, I2=         0
  ERROR NUMBER =        56
 
  WARNING IN...
  DBOCLS(). FOR J=(I1), BOUND BL(J)=(R1) IS .GT. BU(J)=(R2).
            IN ABOVE MESSAGE, I1=         1
            IN ABOVE MESSAGE, R1=     .1000000000E+01
            IN ABOVE MESSAGE, R2=    0.
  ERROR NUMBER =        57
            LINEAR CONSTRAINTS, SNLA REPT. SAND82-1517, AUG., (1982).
 
 ***REFERENCES  R. J. Hanson, Linear least squares with bounds and
                  linear constraints, Report SAND82-1517, Sandia
                  Laboratories, August 1982.
 ***ROUTINES CALLED  D1MACH, DASUM, DBOLS, DCOPY, DDOT, DNRM2, DSCAL,
                     XERMSG
 ***REVISION HISTORY  (YYMMDD)
    821220  DATE WRITTEN
    891006  Cosmetic changes to prologue.  (WRB)
    891006  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    900510  Convert XERRWV calls to XERMSG calls.  (RWC)
    910819  Added variable M for MOUT+MCON in reference to DBOLS.  (WRB)
    920501  Reformatted the REFERENCES section.  (WRB)
    END PROLOGUE
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DBOLS

      SUBROUTINE DBOLS (W, MDW, MROWS, NCOLS, BL, BU, IND, IOPT, X,
     +   RNORM, MODE, RW, IW)
 ***BEGIN PROLOGUE  DBOLS
 ***PURPOSE  Solve the problem
                  E*X = F (in the least  squares  sense)
             with bounds on selected X values.
 ***LIBRARY   SLATEC
 ***CATEGORY  K1A2A, G2E, G2H1, G2H2
 ***TYPE      DOUBLE PRECISION (SBOLS-S, DBOLS-D)
 ***KEYWORDS  BOUNDS, CONSTRAINTS, INEQUALITY, LEAST SQUARES, LINEAR
 ***AUTHOR  Hanson, R. J., (SNLA)
 ***DESCRIPTION
 
    **** All INPUT and OUTPUT real variables are DOUBLE PRECISION ****
 
      The user must have dimension statements of the form:
 
        DIMENSION W(MDW,NCOLS+1), BL(NCOLS), BU(NCOLS),
       * X(NCOLS+NX), RW(5*NCOLS)
        INTEGER IND(NCOLS), IOPT(1+NI), IW(2*NCOLS)
 
      (Here NX=number of extra locations required for option 4; NX=0
      for no options; NX=NCOLS if this option is in use. Here NI=number
      of extra locations required for options 1-6; NI=0 for no
      options.)
 
    INPUT
    -----
 
     --------------------
     W(MDW,*),MROWS,NCOLS
     --------------------
      The array W(*,*) contains the matrix [E:F] on entry. The matrix
      [E:F] has MROWS rows and NCOLS+1 columns. This data is placed in
      the array W(*,*) with E occupying the first NCOLS columns and the
      right side vector F in column NCOLS+1. The row dimension, MDW, of
      the array W(*,*) must satisfy the inequality MDW .ge. MROWS.
      Other values of MDW are errors. The values of MROWS and NCOLS
      must be positive. Other values are errors. There is an exception
      to this when using option 1 for accumulation of blocks of
      equations. In that case MROWS is an OUTPUT variable ONLY, and the
      matrix data for [E:F] is placed in W(*,*), one block of rows at a
      time.  MROWS contains the number of rows in the matrix after
      triangularizing several blocks of equations. This is an OUTPUT
      parameter ONLY when option 1 is used. See IOPT(*) CONTENTS
      for details about option 1.
 
     ------------------
     BL(*),BU(*),IND(*)
     ------------------
      These arrays contain the information about the bounds that the
      solution values are to satisfy. The value of IND(J) tells the
      type of bound and BL(J) and BU(J) give the explicit values for
      the respective upper and lower bounds.
 
     1.    For IND(J)=1, require X(J) .ge. BL(J).
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           (the value of BU(J) is not used.)
     2.    For IND(J)=2, require X(J) .le. BU(J).
           (the value of BL(J) is not used.)
     3.    For IND(J)=3, require X(J) .ge. BL(J) and
                                 X(J) .le. BU(J).
     4.    For IND(J)=4, no bounds on X(J) are required.
           (the values of BL(J) and BU(J) are not used.)
 
      Values other than 1,2,3 or 4 for IND(J) are errors. In the case
      IND(J)=3 (upper and lower bounds) the condition BL(J) .gt. BU(J)
      is an error.
 
     -------
     IOPT(*)
     -------
      This is the array where the user can specify nonstandard options
      for DBOLSM( ). Most of the time this feature can be ignored by
      setting the input value IOPT(1)=99. Occasionally users may have
      needs that require use of the following subprogram options. For
      details about how to use the options see below: IOPT(*) CONTENTS.
 
      Option Number   Brief Statement of Purpose
      ------ ------   ----- --------- -- -------
            1         Return to user for accumulation of blocks
                      of least squares equations.
            2         Check lengths of all arrays used in the
                      subprogram.
            3         Standard scaling of the data matrix, E.
            4         User provides column scaling for matrix E.
            5         Provide option array to the low-level
                      subprogram DBOLSM( ).
            6         Move the IOPT(*) processing pointer.
           99         No more options to change.
 
     ----
     X(*)
     ----
      This array is used to pass data associated with option 4. Ignore
      this parameter if this option is not used. Otherwise see below:
      IOPT(*) CONTENTS.
 
     OUTPUT
     ------
 
     ----------
     X(*),RNORM
     ----------
      The array X(*) contains a solution (if MODE .ge.0 or .eq.-22) for
      the constrained least squares problem. The value RNORM is the
      minimum residual vector length.
 
     ----
     MODE
     ----
      The sign of MODE determines whether the subprogram has completed
      normally, or encountered an error condition or abnormal status. A
      value of MODE .ge. 0 signifies that the subprogram has completed
      normally. The value of MODE (.GE. 0) is the number of variables
      in an active status: not at a bound nor at the value ZERO, for
      the case of free variables. A negative value of MODE will be one
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      of the cases -37,-36,...,-22, or -17,...,-2. Values .lt. -1
      correspond to an abnormal completion of the subprogram. To
      understand the abnormal completion codes see below: ERROR
      MESSAGES for DBOLS( ). AN approximate solution will be returned
      to the user only when max. iterations is reached, MODE=-22.
      Values for MODE=-37,...,-22 come from the low-level subprogram
      DBOLSM(). See the section ERROR MESSAGES for DBOLSM() in the
      documentation for DBOLSM().
 
     -----------
     RW(*),IW(*)
     -----------
      These are working arrays with 5*NCOLS and 2*NCOLS entries.
      (normally the user can ignore the contents of these arrays,
      but they must be dimensioned properly.)
 
     IOPT(*) CONTENTS
     ------- --------
      The option array allows a user to modify internal variables in
      the subprogram without recompiling the source code. A central
      goal of the initial software design was to do a good job for most
      people. Thus the use of options will be restricted to a select
      group of users. The processing of the option array proceeds as
      follows: a pointer, here called LP, is initially set to the value
      1. This value is updated as each option is processed. At the
      pointer position the option number is extracted and used for
      locating other information that allows for options to be changed.
      The portion of the array IOPT(*) that is used for each option is
      fixed; the user and the subprogram both know how many locations
      are needed for each option. A great deal of error checking is
      done by the subprogram on the contents of the option array.
      Nevertheless it is still possible to give the subprogram optional
      input that is meaningless. For example option 4 uses the
      locations X(NCOLS+IOFF),...,X(NCOLS+IOFF+NCOLS-1) for passing
      scaling data. The user must manage the allocation of these
      locations.
 
    1
    -
      This option allows the user to solve problems with a large number
      of rows compared to the number of variables. The idea is that the
      subprogram returns to the user (perhaps many times) and receives
      new least squares equations from the calling program unit.
      Eventually the user signals "that's all" and then computes the
      solution with one final call to subprogram DBOLS( ). The value of
      MROWS is an OUTPUT variable when this option is used. Its value
      is always in the range 0 .le. MROWS .le. NCOLS+1. It is equal to
      the number of rows after the triangularization of the entire set
      of equations. If LP is the processing pointer for IOPT(*), the
      usage for the sequential processing of blocks of equations is
 
         IOPT(LP)=1
         Move block of equations to W(*,*) starting at
         the first row of W(*,*).
         IOPT(LP+3)=# of rows in the block; user defined
 
      The user now calls DBOLS( ) in a loop. The value of IOPT(LP+1)
      directs the user's action. The value of IOPT(LP+2) points to
      where the subsequent rows are to be placed in W(*,*).
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       .<LOOP
       . CALL DBOLS()
       . IF(IOPT(LP+1) .EQ. 1) THEN
       .    IOPT(LP+3)=# OF ROWS IN THE NEW BLOCK; USER DEFINED
       .    PLACE NEW BLOCK OF IOPT(LP+3) ROWS IN
       .    W(*,*) STARTING AT ROW IOPT(LP+2).
       .
       .    IF( THIS IS THE LAST BLOCK OF EQUATIONS ) THEN
       .       IOPT(LP+1)=2
       .<------CYCLE LOOP
       .    ELSE IF (IOPT(LP+1) .EQ. 2) THEN
       <-------EXIT LOOP SOLUTION COMPUTED IF MODE .GE. 0
       . ELSE
       . ERROR CONDITION; SHOULD NOT HAPPEN.
       .<END LOOP
 
      Use of this option adds 4 to the required length of IOPT(*).
 
 
    2
    -
      This option is useful for checking the lengths of all arrays used
      by DBOLS() against their actual requirements for this problem.
      The idea is simple: the user's program unit passes the declared
      dimension information of the arrays. These values are compared
      against the problem-dependent needs within the subprogram. If any
      of the dimensions are too small an error message is printed and a
      negative value of MODE is returned, -11 to -17. The printed error
      message tells how long the dimension should be. If LP is the
      processing pointer for IOPT(*),
 
         IOPT(LP)=2
         IOPT(LP+1)=Row dimension of W(*,*)
         IOPT(LP+2)=Col. dimension of W(*,*)
         IOPT(LP+3)=Dimensions of BL(*),BU(*),IND(*)
         IOPT(LP+4)=Dimension of X(*)
         IOPT(LP+5)=Dimension of RW(*)
         IOPT(LP+6)=Dimension of IW(*)
         IOPT(LP+7)=Dimension of IOPT(*)
          .
         CALL DBOLS()
 
      Use of this option adds 8 to the required length of IOPT(*).
 
    3
    -
      This option changes the type of scaling for the data matrix E.
      Nominally each nonzero column of E is scaled so that the
      magnitude of its largest entry is equal to the value ONE. If LP
      is the processing pointer for IOPT(*),
 
         IOPT(LP)=3
         IOPT(LP+1)=1,2 or 3
             1= Nominal scaling as noted;
             2= Each nonzero column scaled to have length ONE;
             3= Identity scaling; scaling effectively suppressed.
          .
         CALL DBOLS()
 
      Use of this option adds 2 to the required length of IOPT(*).
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    4
    -
      This option allows the user to provide arbitrary (positive)
      column scaling for the matrix E. If LP is the processing pointer
      for IOPT(*),
 
         IOPT(LP)=4
         IOPT(LP+1)=IOFF
         X(NCOLS+IOFF),...,X(NCOLS+IOFF+NCOLS-1)
         = Positive scale factors for cols. of E.
          .
         CALL DBOLS()
 
      Use of this option adds 2 to the required length of IOPT(*) and
      NCOLS to the required length of X(*).
 
    5
    -
      This option allows the user to provide an option array to the
      low-level subprogram DBOLSM(). If LP is the processing pointer
      for IOPT(*),
 
         IOPT(LP)=5
         IOPT(LP+1)= Position in IOPT(*) where option array
                     data for DBOLSM() begins.
          .
         CALL DBOLS()
 
      Use of this option adds 2 to the required length of IOPT(*).
 
    6
    -
      Move the processing pointer (either forward or backward) to the
      location IOPT(LP+1). The processing point is moved to entry
      LP+2 of IOPT(*) if the option is left with -6 in IOPT(LP).  For
      example to skip over locations 3,...,NCOLS+2 of IOPT(*),
 
        IOPT(1)=6
        IOPT(2)=NCOLS+3
        (IOPT(I), I=3,...,NCOLS+2 are not defined here.)
        IOPT(NCOLS+3)=99
        CALL DBOLS()
 
      CAUTION: Misuse of this option can yield some very hard
      -to-find bugs.  Use it with care.
 
    99
    --
      There are no more options to change.
 
      Only option numbers -99, -6,-5,...,-1, 1,2,...,6, and 99 are
      permitted. Other values are errors. Options -99,-1,...,-6 mean
      that the respective options 99,1,...,6 are left at their default
      values. An example is the option to modify the (rank) tolerance:
 
        IOPT(1)=-3 Option is recognized but not changed
        IOPT(2)=2  Scale nonzero cols. to have length ONE
        IOPT(3)=99
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     ERROR MESSAGES for DBOLS()
     ----- -------- --- -------
 
  WARNING IN...
  DBOLS(). MDW=(I1) MUST BE POSITIVE.
            IN ABOVE MESSAGE, I1=         0
  ERROR NUMBER =         2
  (NORMALLY A RETURN TO THE USER TAKES PLACE FOLLOWING THIS MESSAGE.)
 
  WARNING IN...
  DBOLS(). NCOLS=(I1) THE NO. OF VARIABLES MUST BE POSITIVE.
            IN ABOVE MESSAGE, I1=         0
  ERROR NUMBER =         3
  (NORMALLY A RETURN TO THE USER TAKES PLACE FOLLOWING THIS MESSAGE.)
 
  WARNING IN...
  DBOLS(). FOR J=(I1), IND(J)=(I2) MUST BE 1-4.
            IN ABOVE MESSAGE, I1=         1
            IN ABOVE MESSAGE, I2=         0
  ERROR NUMBER =         4
  (NORMALLY A RETURN TO THE USER TAKES PLACE FOLLOWING THIS MESSAGE.)
 
  WARNING IN...
  DBOLS(). FOR J=(I1), BOUND BL(J)=(R1) IS .GT. BU(J)=(R2).
            IN ABOVE MESSAGE, I1=         1
            IN ABOVE MESSAGE, R1=    0.
            IN ABOVE MESSAGE, R2=    ABOVE MESSAGE, I1=         0
  ERROR NUMBER =         6
  (NORMALLY A RETURN TO THE USER TAKES PLACE FOLLOWING THIS MESSAGE.)
 
  WARNING IN...
  DBOLS(). ISCALE OPTION=(I1) MUST BE 1-3.
            IN ABOVE MESSAGE, I1=         0
  ERROR NUMBER =         7
  (NORMALLY A RETURN TO THE USER TAKES PLACE FOLLOWING THIS MESSAGE.)
 
  WARNING IN...
  DBOLS(). OFFSET PAST X(NCOLS) (I1) FOR USER-PROVIDED  COLUMN SCALING
  MUST BE POSITIVE.
            IN ABOVE MESSAGE, I1=         0
  ERROR NUMBER =         8
  (NORMALLY A RETURN TO THE USER TAKES PLACE FOLLOWING THIS MESSAGE.)
 
  WARNING IN...
  DBOLS(). EACH PROVIDED COL. SCALE FACTOR MUST BE POSITIVE.
  COMPONENT (I1) NOW = (R1).
            IN ABOVE MESSAGE, I1=        ND. .LE. MDW=(I2).
            IN ABOVE MESSAGE, I1=         1
            IN ABOVE MESSAGE, I2=         0
  ERROR NUMBER =        10
  (NORMALLY A RETURN TO THE USER TAKES PLACE FOLLOWING THIS MESSAGE.)
 
  WARNING IN...
  DBOLS().THE ROW DIMENSION OF W(,)=(I1) MUST BE .GE.THE NUMBER OF ROWS=
  (I2).
            IN ABOVE MESSAGE, I1=         0
            IN ABOVE MESSAGE, I2=         1
  ERROR NUMBER =        11
  (NORMALLY A RETURN TO THE USER TAKES PLACE FOLLOWING THIS MESSAGE.)
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  WARNING IN...
  DBOLS(). THE COLUMN DIMENSION OF W(,)=(I1) MUST BE .GE. NCOLS+1=(I2).
            IN ABOVE MESSAGE, I1=         0
            IN ABOVE MESSAGE, I2=         2
  ERROR NUMBER =        12
  (NORMALLY A RETURN TO THE USER TAKES PLACE FOLLOWING THIS MESSAGE.)
 
  WARNING IN...
  DBOLS().THE DIMENSIONS OF THE ARRAYS BL(),BU(), AND IND()=(I1) MUST BE
  .GE. NCOLS=(I2).
            IN ABOVE MESSAGE, I1=         0
            IN ABOVE MESSAGE, I2=         1
  ERROR NUMBER =        13
  (NORMALLY A RETURN TO THE USER TAKES PLACE FOLLOWING THIS MESSAGE.)
 
  WARNING IN...
  DBOLS(). THE DIMENSION OF X()=(I1) MUST BE .GE. THE REQD. LENGTH=(I2).
            IN ABOVE MESSAGE, I1=         0
            IN ABOVE MESSAGE, I2=         2
  ERROR NUMBER =        14
  (NORMALLY A RETURN TO THE USER TAKES PLACE FOLLOWING THIS MESSAGE.)
 
  WARNING IN...
  DBOLS(). THE DIMENSION OF RW()=(I1) MUST BE .GE. 5*NCOLS=(I2).
            IN ABOVE MESSAGE, I1=         0
            IN ABOVE MESSAGE, I2=         3
  ERROR NUMBER =        15
  (NORMALLY A RETURN TO THE USER TAKES PLACE FOLLOWING THIS MESSAGE.)
 
  WARNING IN...
  DBOLS() THE DIMENSION OF IW()=(I1) MUST BE .GE. 2*NCOLS=(I2).
            IN ABOVE MESSAGE, I1=         0
            IN ABOVE MESSAGE, I2=         2
  ERROR NUMBER =        16
  (NORMALLY A RETURN TO THE USER TAKES PLACE FOLLOWING THIS MESSAGE.)
 
  WARNING IN...
  DBOLS() THE DIMENSION OF IOPT()=(I1) MUST BE .GE. THE REQD. LEN.=(I2).
            IN ABOVE MESSAGE, I1=         0
            IN ABOVE MESSAGE, I2=         1
  ERROR NUMBER =        17
  (NORMALLY A RETURN TO THE USER TAKES PLACE FOLLOWING THIS MESSAGE.)
 
 ***REFERENCES  R. J. Hanson, Linear least squares with bounds and
                  linear constraints, Report SAND82-1517, Sandia
                  Laboratories, August 1982.
 ***ROUTINES CALLED  DBOLSM, DCOPY, DNRM2, DROT, DROTG, IDAMAX, XERMSG
 ***REVISION HISTORY  (YYMMDD)
    821220  DATE WRITTEN
    891006  Cosmetic changes to prologue.  (WRB)
    891006  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    900510  Convert XERRWV calls to XERMSG calls.  (RWC)
    920501  Reformatted the REFERENCES section.  (WRB)
    END PROLOGUE
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DBSI0E

      DOUBLE PRECISION FUNCTION DBSI0E (X)
 ***BEGIN PROLOGUE  DBSI0E
 ***PURPOSE  Compute the exponentially scaled modified (hyperbolic)
             Bessel function of the first kind of order zero.
 ***LIBRARY   SLATEC (FNLIB)
 ***CATEGORY  C10B1
 ***TYPE      DOUBLE PRECISION (BESI0E-S, DBSI0E-D)
 ***KEYWORDS  EXPONENTIALLY SCALED, FIRST KIND, FNLIB,
              HYPERBOLIC BESSEL FUNCTION, MODIFIED BESSEL FUNCTION,
              ORDER ZERO, SPECIAL FUNCTIONS
 ***AUTHOR  Fullerton, W., (LANL)
 ***DESCRIPTION
 
  DBSI0E(X) calculates the double precision exponentially scaled
  modified (hyperbolic) Bessel function of the first kind of order
  zero for double precision argument X.  The result is the Bessel
  function I0(X) multiplied by EXP(-ABS(X)).
 
  Series for BI0        on the interval  0.          to  9.00000E+00
                                         with weighted error   9.51E-34
                                          log weighted error  33.02
                                significant figures required  33.31
                                     decimal places required  33.65
 
  Series for AI0        on the interval  1.25000E-01 to  3.33333E-01
                                         with weighted error   2.74E-32
                                          log weighted error  31.56
                                significant figures required  30.15
                                     decimal places required  32.39
 
  Series for AI02       on the interval  0.          to  1.25000E-01
                                         with weighted error   1.97E-32
                                          log weighted error  31.71
                                significant figures required  30.15
                                     decimal places required  32.63
 
 ***REFERENCES  (NONE)
 ***ROUTINES CALLED  D1MACH, DCSEVL, INITDS
 ***REVISION HISTORY  (YYMMDD)
    770701  DATE WRITTEN
    890531  Changed all specific intrinsics to generic.  (WRB)
    890531  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    END PROLOGUE
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DBSI1E

      DOUBLE PRECISION FUNCTION DBSI1E (X)
 ***BEGIN PROLOGUE  DBSI1E
 ***PURPOSE  Compute the exponentially scaled modified (hyperbolic)
             Bessel function of the first kind of order one.
 ***LIBRARY   SLATEC (FNLIB)
 ***CATEGORY  C10B1
 ***TYPE      DOUBLE PRECISION (BESI1E-S, DBSI1E-D)
 ***KEYWORDS  EXPONENTIALLY SCALED, FIRST KIND, FNLIB,
              HYPERBOLIC BESSEL FUNCTION, MODIFIED BESSEL FUNCTION,
              ORDER ONE, SPECIAL FUNCTIONS
 ***AUTHOR  Fullerton, W., (LANL)
 ***DESCRIPTION
 
  DBSI1E(X) calculates the double precision exponentially scaled
  modified (hyperbolic) Bessel function of the first kind of order
  one for double precision argument X.  The result is I1(X)
  multiplied by EXP(-ABS(X)).
 
  Series for BI1        on the interval  0.          to  9.00000E+00
                                         with weighted error   1.44E-32
                                          log weighted error  31.84
                                significant figures required  31.45
                                     decimal places required  32.46
 
  Series for AI1        on the interval  1.25000E-01 to  3.33333E-01
                                         with weighted error   2.81E-32
                                          log weighted error  31.55
                                significant figures required  29.93
                                     decimal places required  32.38
 
  Series for AI12       on the interval  0.          to  1.25000E-01
                                         with weighted error   1.83E-32
                                          log weighted error  31.74
                                significant figures required  29.97
                                     decimal places required  32.66
 
 ***REFERENCES  (NONE)
 ***ROUTINES CALLED  D1MACH, DCSEVL, INITDS, XERMSG
 ***REVISION HISTORY  (YYMMDD)
    770701  DATE WRITTEN
    890531  Changed all specific intrinsics to generic.  (WRB)
    890531  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    900315  CALLs to XERROR changed to CALLs to XERMSG.  (THJ)
    END PROLOGUE
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DBSK0E

      DOUBLE PRECISION FUNCTION DBSK0E (X)
 ***BEGIN PROLOGUE  DBSK0E
 ***PURPOSE  Compute the exponentially scaled modified (hyperbolic)
             Bessel function of the third kind of order zero.
 ***LIBRARY   SLATEC (FNLIB)
 ***CATEGORY  C10B1
 ***TYPE      DOUBLE PRECISION (BESK0E-S, DBSK0E-D)
 ***KEYWORDS  EXPONENTIALLY SCALED, FNLIB, HYPERBOLIC BESSEL FUNCTION,
              MODIFIED BESSEL FUNCTION, ORDER ZERO, SPECIAL FUNCTIONS,
              THIRD KIND
 ***AUTHOR  Fullerton, W., (LANL)
 ***DESCRIPTION
 
  DBSK0E(X) computes the double precision exponentially scaled
  modified (hyperbolic) Bessel function of the third kind of
  order zero for positive double precision argument X.
 
  Series for BK0        on the interval  0.          to  4.00000E+00
                                         with weighted error   3.08E-33
                                          log weighted error  32.51
                                significant figures required  32.05
                                     decimal places required  33.11
 
  Series for AK0        on the interval  1.25000E-01 to  5.00000E-01
                                         with weighted error   2.85E-32
                                          log weighted error  31.54
                                significant figures required  30.19
                                     decimal places required  32.33
 
  Series for AK02       on the interval  0.          to  1.25000E-01
                                         with weighted error   2.30E-32
                                          log weighted error  31.64
                                significant figures required  29.68
                                     decimal places required  32.40
 
 ***REFERENCES  (NONE)
 ***ROUTINES CALLED  D1MACH, DBESI0, DCSEVL, INITDS, XERMSG
 ***REVISION HISTORY  (YYMMDD)
    770701  DATE WRITTEN
    890531  Changed all specific intrinsics to generic.  (WRB)
    890531  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    900315  CALLs to XERROR changed to CALLs to XERMSG.  (THJ)
    END PROLOGUE
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DBSK1E

      DOUBLE PRECISION FUNCTION DBSK1E (X)
 ***BEGIN PROLOGUE  DBSK1E
 ***PURPOSE  Compute the exponentially scaled modified (hyperbolic)
             Bessel function of the third kind of order one.
 ***LIBRARY   SLATEC (FNLIB)
 ***CATEGORY  C10B1
 ***TYPE      DOUBLE PRECISION (BESK1E-S, DBSK1E-D)
 ***KEYWORDS  EXPONENTIALLY SCALED, FNLIB, HYPERBOLIC BESSEL FUNCTION,
              MODIFIED BESSEL FUNCTION, ORDER ONE, SPECIAL FUNCTIONS,
              THIRD KIND
 ***AUTHOR  Fullerton, W., (LANL)
 ***DESCRIPTION
 
  DBSK1E(S) computes the double precision exponentially scaled
  modified (hyperbolic) Bessel function of the third kind of order
  one for positive double precision argument X.
 
  Series for BK1        on the interval  0.          to  4.00000E+00
                                         with weighted error   9.16E-32
                                          log weighted error  31.04
                                significant figures required  30.61
                                     decimal places required  31.64
 
  Series for AK1        on the interval  1.25000E-01 to  5.00000E-01
                                         with weighted error   3.07E-32
                                          log weighted error  31.51
                                significant figures required  30.71
                                     decimal places required  32.30
 
  Series for AK12       on the interval  0.          to  1.25000E-01
                                         with weighted error   2.41E-32
                                          log weighted error  31.62
                                significant figures required  30.25
                                     decimal places required  32.38
 
 ***REFERENCES  (NONE)
 ***ROUTINES CALLED  D1MACH, DBESI1, DCSEVL, INITDS, XERMSG
 ***REVISION HISTORY  (YYMMDD)
    770701  DATE WRITTEN
    890531  Changed all specific intrinsics to generic.  (WRB)
    890531  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    900315  CALLs to XERROR changed to CALLs to XERMSG.  (THJ)
    END PROLOGUE
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DBSKES

      SUBROUTINE DBSKES (XNU, X, NIN, BKE)
 ***BEGIN PROLOGUE  DBSKES
 ***PURPOSE  Compute a sequence of exponentially scaled modified Bessel
             functions of the third kind of fractional order.
 ***LIBRARY   SLATEC (FNLIB)
 ***CATEGORY  C10B3
 ***TYPE      DOUBLE PRECISION (BESKES-S, DBSKES-D)
 ***KEYWORDS  EXPONENTIALLY SCALED, FNLIB, FRACTIONAL ORDER,
              MODIFIED BESSEL FUNCTION, SEQUENCE OF BESSEL FUNCTIONS,
              SPECIAL FUNCTIONS, THIRD KIND
 ***AUTHOR  Fullerton, W., (LANL)
 ***DESCRIPTION
 
  DBSKES(XNU,X,NIN,BKE) computes a double precision sequence
  of exponentially scaled modified Bessel functions
  of the third kind of order XNU + I at X, where X .GT. 0,
  XNU lies in (-1,1), and I = 0, 1, ... , NIN - 1, if NIN is positive
  and I = 0, -1, ... , NIN + 1, if NIN is negative.  On return, the
  vector BKE(.) contains the results at X for order starting at XNU.
  XNU, X, and BKE are double precision.  NIN is integer.
 
 ***REFERENCES  (NONE)
 ***ROUTINES CALLED  D1MACH, D9KNUS, XERMSG
 ***REVISION HISTORY  (YYMMDD)
    770601  DATE WRITTEN
    890531  Changed all specific intrinsics to generic.  (WRB)
    890911  Removed unnecessary intrinsics.  (WRB)
    890911  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    900315  CALLs to XERROR changed to CALLs to XERMSG.  (THJ)
    END PROLOGUE
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DBSKIN

      SUBROUTINE DBSKIN (X, N, KODE, M, Y, NZ, IERR)
 ***BEGIN PROLOGUE  DBSKIN
 ***PURPOSE  Compute repeated integrals of the K-zero Bessel function.
 ***LIBRARY   SLATEC
 ***CATEGORY  C10F
 ***TYPE      DOUBLE PRECISION (BSKIN-S, DBSKIN-D)
 ***KEYWORDS  BICKLEY FUNCTIONS, EXPONENTIAL INTEGRAL,
              INTEGRALS OF BESSEL FUNCTIONS, K-ZERO BESSEL FUNCTION
 ***AUTHOR  Amos, D. E., (SNLA)
 ***DESCRIPTION
 
          The following definitions are used in DBSKIN:
 
      Definition 1
          KI(0,X) = K-zero Bessel function.
 
      Definition 2
          KI(N,X) = Bickley Function
                  =  integral from X to infinity of KI(N-1,t)dt
                      for X .ge. 0 and N = 1,2,...
   _____________________________________________________________________
     DBSKIN computes a sequence of Bickley functions (repeated integrals
     of the K0 Bessel function); i.e. for fixed X and N and for K=1,...,
     DBSKIN computes the sequence
 
                      Y(K) =         KI(N+K-1,X) for KODE=1
           or
                      Y(K) = EXP(X)*KI(N+K-1,X) for KODE=2,
 
          for N.ge.0 and X.ge.0 (N and X cannot be zero simultaneously).
 
       INPUT      X is DOUBLE PRECISION
         X      - Argument, X .ge. 0.0D0
         N      - Order of first member of the sequence N .ge. 0
         KODE   - Selection parameter
              KODE = 1 returns Y(K)=        KI(N+K-1,X), K=1,M
                   = 2 returns Y(K)=EXP(X)*KI(N+K-1,X), K=1,M
         M      - Number of members in the sequence, M.ge.1
 
        OUTPUT     Y is a DOUBLE PRECISION VECTOR
          Y      - A vector of dimension at least M containing the
                   sequence selected by KODE.
          NZ     - Underflow flag
                   NZ = 0 means computation completed
                      = 1 means an exponential underflow occurred on
                          KODE=1.  Y(K)=0.0D0, K=1,...,M is returned
                          KODE=1 AND Y(K)=0.0E0, K=1,...,M IS RETURNED
          IERR   - Error flag
                     IERR=0, Normal return, computation completed
                     IERR=1, Input error,   no computation
                     IERR=2, Error,         no computation
                             Algorithm termination condition not met
 
          The nominal computational accuracy is the maximum of unit
          roundoff (=D1MACH(4)) and 1.0D-18 since critical constants
          are given to only 18 digits.
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          BSKIN is the single precision version of DBSKIN.
 
  *Long Description:
 
          Numerical recurrence on
 
       (L-1)*KI(L,X) = X(KI(L-3,X) - KI(L-1,X)) + (L-2)*KI(L-2,X)
 
          is stable where recurrence is carried forward or backward
          away from INT(X+0.5).  The power series for indices 0,1 and 2
          on 0.le.X.le.2 starts a stable recurrence for indices
          greater than 2.  If N is sufficiently large (N.gt.NLIM), the
          uniform asymptotic expansion for N to INFINITY is more
          economical.  On X.gt.2 the recursion is started by evaluating
          the uniform expansion for the three members whose indices are
          closest to INT(X+0.5) within the set N,...,N+M-1.  Forward
          recurrence, backward recurrence or both complete the
          sequence depending on the relation of INT(X+0.5) to the
          indices N,...,N+M-1.
 
 ***REFERENCES  D. E. Amos, Uniform asymptotic expansions for
                  exponential integrals E(N,X) and Bickley functions
                  KI(N,X), ACM Transactions on Mathematical Software,
                  1983.
                D. E. Amos, A portable Fortran subroutine for the
                  Bickley functions KI(N,X), Algorithm 609, ACM
                  Transactions on Mathematical Software, 1983.
 ***ROUTINES CALLED  D1MACH, DBKIAS, DBKISR, DEXINT, DGAMRN, I1MACH
 ***REVISION HISTORY  (YYMMDD)
    820601  DATE WRITTEN
    890531  Changed all specific intrinsics to generic.  (WRB)
    890911  Removed unnecessary intrinsics.  (WRB)
    891006  Cosmetic changes to prologue.  (WRB)
    891009  Removed unreferenced statement label.  (WRB)
    891009  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    920501  Reformatted the REFERENCES section.  (WRB)
    END PROLOGUE
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DBSPDR

      SUBROUTINE DBSPDR (T, A, N, K, NDERIV, AD)
 ***BEGIN PROLOGUE  DBSPDR
 ***PURPOSE  Use the B-representation to construct a divided difference
             table preparatory to a (right) derivative calculation.
 ***LIBRARY   SLATEC
 ***CATEGORY  E3, K6
 ***TYPE      DOUBLE PRECISION (BSPDR-S, DBSPDR-D)
 ***KEYWORDS  B-SPLINE, DATA FITTING, DIFFERENTIATION OF SPLINES,
              INTERPOLATION
 ***AUTHOR  Amos, D. E., (SNLA)
 ***DESCRIPTION
 
      Written by Carl de Boor and modified by D. E. Amos
 
      Abstract     **** a double precision routine ****
          DBSPDR is the BSPLDR routine of the reference.
 
          DBSPDR uses the B-representation (T,A,N,K) to construct a
          divided difference table ADIF preparatory to a (right)
          derivative calculation in DBSPEV.  The lower triangular matrix
          ADIF is stored in vector AD by columns.  The arrays are
          related by
 
            ADIF(I,J) = AD(I-J+1 + (2*N-J+2)*(J-1)/2)
 
          I = J,N   ,   J=1,NDERIV.
 
      Description of Arguments
 
          Input      T,A are double precision
           T       - knot vector of length N+K
           A       - B-spline coefficient vector of length N
           N       - number of B-spline coefficients
                     N = sum of knot multiplicities-K
           K       - order of the spline, K .GE. 1
           NDERIV  - number of derivatives, 1 .LE. NDERIV .LE. K.
                     NDERIV=1 gives the zero-th derivative =
                     function value
 
          Output     AD is double precision
           AD      - table of differences in a vector of length
                     (2*N-NDERIV+1)*NDERIV/2 for input to DBSPEV
 
      Error Conditions
          Improper input is a fatal error
 
 ***REFERENCES  Carl de Boor, Package for calculating with B-splines,
                  SIAM Journal on Numerical Analysis 14, 3 (June 1977),
                  pp. 441-472.
 ***ROUTINES CALLED  XERMSG
 ***REVISION HISTORY  (YYMMDD)
    800901  DATE WRITTEN
    890831  Modified array declarations.  (WRB)
    890911  Removed unnecessary intrinsics.  (WRB)
    890911  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
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    900315  CALLs to XERROR changed to CALLs to XERMSG.  (THJ)
    920501  Reformatted the REFERENCES section.  (WRB)
    END PROLOGUE
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DBSPEV

      SUBROUTINE DBSPEV (T, AD, N, K, NDERIV, X, INEV, SVALUE, WORK)
 ***BEGIN PROLOGUE  DBSPEV
 ***PURPOSE  Calculate the value of the spline and its derivatives from
             the B-representation.
 ***LIBRARY   SLATEC
 ***CATEGORY  E3, K6
 ***TYPE      DOUBLE PRECISION (BSPEV-S, DBSPEV-D)
 ***KEYWORDS  B-SPLINE, DATA FITTING, INTERPOLATION, SPLINES
 ***AUTHOR  Amos, D. E., (SNLA)
 ***DESCRIPTION
 
      Written by Carl de Boor and modified by D. E. Amos
 
      Abstract    **** a double precision routine ****
          DBSPEV is the BSPLEV routine of the reference.
 
          DBSPEV calculates the value of the spline and its derivatives
          at X from the B-representation (T,A,N,K) and returns them in
          SVALUE(I),I=1,NDERIV, T(K) .LE. X .LE. T(N+1).  AD(I) can be
          the B-spline coefficients A(I), I=1,N) if NDERIV=1.  Otherwise
          AD must be computed before hand by a call to DBSPDR (T,A,N,K,
          NDERIV,AD).  If X=T(I),I=K,N), right limiting values are
          obtained.
 
          To compute left derivatives or left limiting values at a
          knot T(I), replace N by I-1 and set X=T(I), I=K+1,N+1.
 
          DBSPEV calls DINTRV, DBSPVN
 
      Description of Arguments
 
          Input      T,AD,X, are double precision
           T       - knot vector of length N+K
           AD      - vector of length (2*N-NDERIV+1)*NDERIV/2 containing
                     the difference table from DBSPDR.
           N       - number of B-spline coefficients
                     N = sum of knot multiplicities-K
           K       - order of the B-spline, K .GE. 1
           NDERIV  - number of derivatives, 1 .LE. NDERIV .LE. K.
                     NDERIV=1 gives the zero-th derivative =
                     function value
           X       - argument, T(K) .LE. X .LE. T(N+1)
           INEV    - an initialization parameter which must be set
                     to 1 the first time DBSPEV is called.
 
          Output     SVALUE,WORK are double precision
           INEV    - INEV contains information for efficient process-
                     ing after the initial call and INEV must not
                     be changed by the user.  Distinct splines require
                     distinct INEV parameters.
           SVALUE  - vector of length NDERIV containing the spline
                     value in SVALUE(1) and the NDERIV-1 derivatives
                     in the remaining components.
           WORK    - work vector of length 3*K
 
      Error Conditions
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          Improper input is a fatal error.
 
 ***REFERENCES  Carl de Boor, Package for calculating with B-splines,
                  SIAM Journal on Numerical Analysis 14, 3 (June 1977),
                  pp. 441-472.
 ***ROUTINES CALLED  DBSPVN, DINTRV, XERMSG
 ***REVISION HISTORY  (YYMMDD)
    800901  DATE WRITTEN
    890831  Modified array declarations.  (WRB)
    890831  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    900315  CALLs to XERROR changed to CALLs to XERMSG.  (THJ)
    920501  Reformatted the REFERENCES section.  (WRB)
    END PROLOGUE
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DBSPPP

      SUBROUTINE DBSPPP (T, A, N, K, LDC, C, XI, LXI, WORK)
 ***BEGIN PROLOGUE  DBSPPP
 ***PURPOSE  Convert the B-representation of a B-spline to the piecewise
             polynomial (PP) form.
 ***LIBRARY   SLATEC
 ***CATEGORY  E3, K6
 ***TYPE      DOUBLE PRECISION (BSPPP-S, DBSPPP-D)
 ***KEYWORDS  B-SPLINE, PIECEWISE POLYNOMIAL
 ***AUTHOR  Amos, D. E., (SNLA)
 ***DESCRIPTION
 
      Written by Carl de Boor and modified by D. E. Amos
 
      Abstract    **** a double precision routine ****
          DBSPPP is the BSPLPP routine of the reference.
 
          DBSPPP converts the B-representation (T,A,N,K) to the
          piecewise polynomial (PP) form (C,XI,LXI,K) for use with
          DPPVAL.  Here XI(*), the break point array of length LXI, is
          the knot array T(*) with multiplicities removed.  The columns
          of the matrix C(I,J) contain the right Taylor derivatives
          for the polynomial expansion about XI(J) for the intervals
          XI(J) .LE. X .LE. XI(J+1), I=1,K, J=1,LXI.  Function DPPVAL
          makes this evaluation at a specified point X in
          XI(1) .LE. X .LE. XI(LXI+1)
 
      Description of Arguments
 
          Input      T,A are double precision
           T       - knot vector of length N+K
           A       - B-spline coefficient vector of length N
           N       - number of B-spline coefficients
                     N = sum of knot multiplicities-K
           K       - order of the B-spline, K .GE. 1
           LDC     - leading dimension of C, LDC .GE. K
 
          Output     C,XI,WORK are double precision
           C       - matrix of dimension at least (K,LXI) containing
                     right derivatives at break points
           XI      - XI break point vector of length LXI+1
           LXI     - number of break points, LXI .LE. N-K+1
           WORK    - work vector of length K*(N+3)
 
      Error Conditions
          Improper input is a fatal error
 
 ***REFERENCES  Carl de Boor, Package for calculating with B-splines,
                  SIAM Journal on Numerical Analysis 14, 3 (June 1977),
                  pp. 441-472.
 ***ROUTINES CALLED  DBSPDR, DBSPEV, XERMSG
 ***REVISION HISTORY  (YYMMDD)
    800901  DATE WRITTEN
    890831  Modified array declarations.  (WRB)
    890831  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    900315  CALLs to XERROR changed to CALLs to XERMSG.  (THJ)
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    920501  Reformatted the REFERENCES section.  (WRB)
    END PROLOGUE
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DBSPVD

      SUBROUTINE DBSPVD (T, K, NDERIV, X, ILEFT, LDVNIK, VNIKX, WORK)
 ***BEGIN PROLOGUE  DBSPVD
 ***PURPOSE  Calculate the value and all derivatives of order less than
             NDERIV of all basis functions which do not vanish at X.
 ***LIBRARY   SLATEC
 ***CATEGORY  E3, K6
 ***TYPE      DOUBLE PRECISION (BSPVD-S, DBSPVD-D)
 ***KEYWORDS  DIFFERENTIATION OF B-SPLINE, EVALUATION OF B-SPLINE
 ***AUTHOR  Amos, D. E., (SNLA)
 ***DESCRIPTION
 
      Written by Carl de Boor and modified by D. E. Amos
 
      Abstract    **** a double precision routine ****
 
          DBSPVD is the BSPLVD routine of the reference.
 
          DBSPVD calculates the value and all derivatives of order
          less than NDERIV of all basis functions which do not
          (possibly) vanish at X.  ILEFT is input such that
          T(ILEFT) .LE. X .LT. T(ILEFT+1).  A call to INTRV(T,N+1,X,
          ILO,ILEFT,MFLAG) will produce the proper ILEFT.  The output of
          DBSPVD is a matrix VNIKX(I,J) of dimension at least (K,NDERIV)
          whose columns contain the K nonzero basis functions and
          their NDERIV-1 right derivatives at X, I=1,K, J=1,NDERIV.
          These basis functions have indices ILEFT-K+I, I=1,K,
          K .LE. ILEFT .LE. N.  The nonzero part of the I-th basis
          function lies in (T(I),T(I+K)), I=1,N).
 
          If X=T(ILEFT+1) then VNIKX contains left limiting values
          (left derivatives) at T(ILEFT+1).  In particular, ILEFT = N
          produces left limiting values at the right end point
          X=T(N+1).  To obtain left limiting values at T(I), I=K+1,N+1,
          set X= next lower distinct knot, call INTRV to get ILEFT,
          set X=T(I), and then call DBSPVD.
 
      Description of Arguments
          Input      T,X are double precision
           T       - knot vector of length N+K, where
                     N = number of B-spline basis functions
                     N = sum of knot multiplicities-K
           K       - order of the B-spline, K .GE. 1
           NDERIV  - number of derivatives = NDERIV-1,
                     1 .LE. NDERIV .LE. K
           X       - argument of basis functions,
                     T(K) .LE. X .LE. T(N+1)
           ILEFT   - largest integer such that
                     T(ILEFT) .LE. X .LT.  T(ILEFT+1)
           LDVNIK  - leading dimension of matrix VNIKX
 
          Output     VNIKX,WORK are double precision
           VNIKX   - matrix of dimension at least (K,NDERIV) contain-
                     ing the nonzero basis functions at X and their
                     derivatives columnwise.
           WORK    - a work vector of length (K+1)*(K+2)/2
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      Error Conditions
          Improper input is a fatal error
 
 ***REFERENCES  Carl de Boor, Package for calculating with B-splines,
                  SIAM Journal on Numerical Analysis 14, 3 (June 1977),
                  pp. 441-472.
 ***ROUTINES CALLED  DBSPVN, XERMSG
 ***REVISION HISTORY  (YYMMDD)
    800901  DATE WRITTEN
    890531  Changed all specific intrinsics to generic.  (WRB)
    890831  Modified array declarations.  (WRB)
    890831  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    900315  CALLs to XERROR changed to CALLs to XERMSG.  (THJ)
    920501  Reformatted the REFERENCES section.  (WRB)
    END PROLOGUE
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DBSPVN

      SUBROUTINE DBSPVN (T, JHIGH, K, INDEX, X, ILEFT, VNIKX, WORK,
     +   IWORK)
 ***BEGIN PROLOGUE  DBSPVN
 ***PURPOSE  Calculate the value of all (possibly) nonzero basis
             functions at X.
 ***LIBRARY   SLATEC
 ***CATEGORY  E3, K6
 ***TYPE      DOUBLE PRECISION (BSPVN-S, DBSPVN-D)
 ***KEYWORDS  EVALUATION OF B-SPLINE
 ***AUTHOR  Amos, D. E., (SNLA)
 ***DESCRIPTION
 
      Written by Carl de Boor and modified by D. E. Amos
 
      Abstract    **** a double precision routine ****
          DBSPVN is the BSPLVN routine of the reference.
 
          DBSPVN calculates the value of all (possibly) nonzero basis
          functions at X of order MAX(JHIGH,(J+1)*(INDEX-1)), where T(K)
          .LE. X .LE. T(N+1) and J=IWORK is set inside the routine on
          the first call when INDEX=1.  ILEFT is such that T(ILEFT) .LE.
          X .LT. T(ILEFT+1).  A call to DINTRV(T,N+1,X,ILO,ILEFT,MFLAG)
          produces the proper ILEFT.  DBSPVN calculates using the basic
          algorithm needed in DBSPVD.  If only basis functions are
          desired, setting JHIGH=K and INDEX=1 can be faster than
          calling DBSPVD, but extra coding is required for derivatives
          (INDEX=2) and DBSPVD is set up for this purpose.
 
          Left limiting values are set up as described in DBSPVD.
 
      Description of Arguments
 
          Input      T,X are double precision
           T       - knot vector of length N+K, where
                     N = number of B-spline basis functions
                     N = sum of knot multiplicities-K
           JHIGH   - order of B-spline, 1 .LE. JHIGH .LE. K
           K       - highest possible order
           INDEX   - INDEX = 1 gives basis functions of order JHIGH
                           = 2 denotes previous entry with work, IWORK
                               values saved for subsequent calls to
                               DBSPVN.
           X       - argument of basis functions,
                     T(K) .LE. X .LE. T(N+1)
           ILEFT   - largest integer such that
                     T(ILEFT) .LE. X .LT.  T(ILEFT+1)
 
          Output     VNIKX, WORK are double precision
           VNIKX   - vector of length K for spline values.
           WORK    - a work vector of length 2*K
           IWORK   - a work parameter.  Both WORK and IWORK contain
                     information necessary to continue for INDEX = 2.
                     When INDEX = 1 exclusively, these are scratch
                     variables and can be used for other purposes.
 
      Error Conditions
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          Improper input is a fatal error.
 
 ***REFERENCES  Carl de Boor, Package for calculating with B-splines,
                  SIAM Journal on Numerical Analysis 14, 3 (June 1977),
                  pp. 441-472.
 ***ROUTINES CALLED  XERMSG
 ***REVISION HISTORY  (YYMMDD)
    800901  DATE WRITTEN
    890831  Modified array declarations.  (WRB)
    890831  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    900315  CALLs to XERROR changed to CALLs to XERMSG.  (THJ)
    920501  Reformatted the REFERENCES section.  (WRB)
    END PROLOGUE
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DBSQAD

      SUBROUTINE DBSQAD (T, BCOEF, N, K, X1, X2, BQUAD, WORK)
 ***BEGIN PROLOGUE  DBSQAD
 ***PURPOSE  Compute the integral of a K-th order B-spline using the
             B-representation.
 ***LIBRARY   SLATEC
 ***CATEGORY  H2A2A1, E3, K6
 ***TYPE      DOUBLE PRECISION (BSQAD-S, DBSQAD-D)
 ***KEYWORDS  INTEGRAL OF B-SPLINES, QUADRATURE
 ***AUTHOR  Amos, D. E., (SNLA)
 ***DESCRIPTION
 
      Abstract    **** a double precision routine ****
 
          DBSQAD computes the integral on (X1,X2) of a K-th order
          B-spline using the B-representation (T,BCOEF,N,K).  Orders
          K as high as 20 are permitted by applying a 2, 6, or 10
          point Gauss formula on subintervals of (X1,X2) which are
          formed by included (distinct) knots.
 
          If orders K greater than 20 are needed, use DBFQAD with
          F(X) = 1.
 
          The maximum number of significant digits obtainable in
          DBSQAD is the smaller of 18 and the number of digits
          carried in double precision arithmetic.
 
      Description of Arguments
          Input      T,BCOEF,X1,X2 are double precision
            T      - knot array of length N+K
            BCOEF  - B-spline coefficient array of length N
            N      - length of coefficient array
            K      - order of B-spline, 1 .LE. K .LE. 20
            X1,X2  - end points of quadrature interval in
                     T(K) .LE. X .LE. T(N+1)
 
          Output     BQUAD,WORK are double precision
            BQUAD  - integral of the B-spline over (X1,X2)
            WORK   - work vector of length 3*K
 
      Error Conditions
          Improper input is a fatal error
 
 ***REFERENCES  D. E. Amos, Quadrature subroutines for splines and
                  B-splines, Report SAND79-1825, Sandia Laboratories,
                  December 1979.
 ***ROUTINES CALLED  DBVALU, DINTRV, XERMSG
 ***REVISION HISTORY  (YYMMDD)
    800901  DATE WRITTEN
    890531  Changed all specific intrinsics to generic.  (WRB)
    890531  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    900315  CALLs to XERROR changed to CALLs to XERMSG.  (THJ)
    900326  Removed duplicate information from DESCRIPTION section.
            (WRB)
    920501  Reformatted the REFERENCES section.  (WRB)
    END PROLOGUE
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DBVALU

      DOUBLE PRECISION FUNCTION DBVALU (T, A, N, K, IDERIV, X, INBV,
     +   WORK)
 ***BEGIN PROLOGUE  DBVALU
 ***PURPOSE  Evaluate the B-representation of a B-spline at X for the
             function value or any of its derivatives.
 ***LIBRARY   SLATEC
 ***CATEGORY  E3, K6
 ***TYPE      DOUBLE PRECISION (BVALU-S, DBVALU-D)
 ***KEYWORDS  DIFFERENTIATION OF B-SPLINE, EVALUATION OF B-SPLINE
 ***AUTHOR  Amos, D. E., (SNLA)
 ***DESCRIPTION
 
      Written by Carl de Boor and modified by D. E. Amos
 
      Abstract   **** a double precision routine ****
          DBVALU is the BVALUE function of the reference.
 
          DBVALU evaluates the B-representation (T,A,N,K) of a B-spline
          at X for the function value on IDERIV=0 or any of its
          derivatives on IDERIV=1,2,...,K-1.  Right limiting values
          (right derivatives) are returned except at the right end
          point X=T(N+1) where left limiting values are computed.  The
          spline is defined on T(K) .LE. X .LE. T(N+1).  DBVALU returns
          a fatal error message when X is outside of this interval.
 
          To compute left derivatives or left limiting values at a
          knot T(I), replace N by I-1 and set X=T(I), I=K+1,N+1.
 
          DBVALU calls DINTRV
 
      Description of Arguments
 
          Input      T,A,X are double precision
           T       - knot vector of length N+K
           A       - B-spline coefficient vector of length N
           N       - number of B-spline coefficients
                     N = sum of knot multiplicities-K
           K       - order of the B-spline, K .GE. 1
           IDERIV  - order of the derivative, 0 .LE. IDERIV .LE. K-1
                     IDERIV = 0 returns the B-spline value
           X       - argument, T(K) .LE. X .LE. T(N+1)
           INBV    - an initialization parameter which must be set
                     to 1 the first time DBVALU is called.
 
          Output     WORK,DBVALU are double precision
           INBV    - INBV contains information for efficient process-
                     ing after the initial call and INBV must not
                     be changed by the user.  Distinct splines require
                     distinct INBV parameters.
           WORK    - work vector of length 3*K.
           DBVALU  - value of the IDERIV-th derivative at X
 
      Error Conditions
          An improper input is a fatal error
 
 ***REFERENCES  Carl de Boor, Package for calculating with B-splines,
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                  SIAM Journal on Numerical Analysis 14, 3 (June 1977),
                  pp. 441-472.
 ***ROUTINES CALLED  DINTRV, XERMSG
 ***REVISION HISTORY  (YYMMDD)
    800901  DATE WRITTEN
    890831  Modified array declarations.  (WRB)
    890911  Removed unnecessary intrinsics.  (WRB)
    890911  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    900315  CALLs to XERROR changed to CALLs to XERMSG.  (THJ)
    920501  Reformatted the REFERENCES section.  (WRB)
    END PROLOGUE
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DBVSUP

      SUBROUTINE DBVSUP (Y, NROWY, NCOMP, XPTS, NXPTS, A, NROWA, ALPHA,
         NIC, B, NROWB, BETA, NFC, IGOFX, RE, AE, IFLAG, WORK, NDW,
     +   IWORK, NDIW, NEQIVP)
 ***BEGIN PROLOGUE  DBVSUP
 ***PURPOSE  Solve a linear two-point boundary value problem using
             superposition coupled with an orthonormalization procedure
             and a variable-step integration scheme.
 ***LIBRARY   SLATEC
 ***CATEGORY  I1B1
 ***TYPE      DOUBLE PRECISION (BVSUP-S, DBVSUP-D)
 ***KEYWORDS  ORTHONORMALIZATION, SHOOTING,
              TWO-POINT BOUNDARY VALUE PROBLEM
 ***AUTHOR  Scott, M. R., (SNLA)
            Watts, H. A., (SNLA)
 ***DESCRIPTION
 
  **********************************************************************
 
      Subroutine DBVSUP solves a linear two-point boundary-value problem
      of the form
                         DY/DX = MATRIX(X,U)*Y(X) + G(X,U)
                 A*Y(XINITIAL) = ALPHA ,  B*Y(XFINAL) = BETA
 
      coupled with the solution of the initial value problem
 
                         DU/DX = F(X,U)
                       U(XINITIAL) = ETA
 
  **********************************************************************
      ABSTRACT
         The method of solution uses superposition coupled with an
      orthonormalization procedure and a variable-step integration
      scheme.  Each time the superposition solutions start to
      lose their numerical linear independence, the vectors are
      reorthonormalized before integration proceeds.  The underlying
      principle of the algorithm is then to piece together the
      intermediate (orthogonalized) solutions, defined on the various
      subintervals, to obtain the desired solutions.
 
  **********************************************************************
      INPUT to DBVSUP
  **********************************************************************
 
      NROWY = actual row dimension of Y in calling program.
              NROWY must be .GE. NCOMP
 
      NCOMP = number of components per solution vector.
              NCOMP is equal to number of original differential
              equations.  NCOMP = NIC + NFC.
 
      XPTS = desired output points for solution. They must be monotonic.
             XINITIAL = XPTS(1)
             XFINAL = XPTS(NXPTS)
 
      NXPTS = number of output points.
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      A(NROWA,NCOMP) = boundary condition matrix at XINITIAL
                       must be contained in (NIC,NCOMP) sub-matrix.
 
      NROWA = actual row dimension of A in calling program,
              NROWA must be .GE. NIC.
 
      ALPHA(NIC+NEQIVP) = boundary conditions at XINITIAL.
                          If NEQIVP .GT. 0 (see below), the boundary
                          conditions at XINITIAL for the initial value
                          equations must be stored starting in
                          position (NIC + 1) of ALPHA.
                          Thus,  ALPHA(NIC+K) = ETA(K).
 
      NIC = number of boundary conditions at XINITIAL.
 
      B(NROWB,NCOMP) = boundary condition matrix at XFINAL.
                       Must be contained in (NFC,NCOMP) sub-matrix.
 
      NROWB = actual row dimension of B in calling program,
              NROWB must be .GE. NFC.
 
      BETA(NFC) = boundary conditions at XFINAL.
 
      NFC = number of boundary conditions at XFINAL.
 
      IGOFX =0 -- The inhomogeneous term G(X) is identically zero.
            =1 -- The inhomogeneous term G(X) is not identically zero.
                  (if IGOFX=1, then Subroutine DGVEC (or DUVEC) must be
                   supplied).
 
      RE = relative error tolerance used by the integrator.
           (see one of the integrators)
 
      AE = absolute error tolerance used by the integrator.
           (see one of the integrators)
  **NOTE-  RE and AE should not both be zero.
 
      IFLAG = a status parameter used principally for output.
              However, for efficient solution of problems which
              are originally defined as COMPLEX*16 valued (but
              converted to double precision systems to use this code),
              the user must set IFLAG=13 on input. See the comment
              below for more information on solving such problems.
 
      WORK(NDW) = floating point array used for internal storage.
 
      NDW = actual dimension of work array allocated by user.
            An estimate for NDW can be computed from the following
             NDW = 130 + NCOMP**2 * (6 + NXPTS/2 + expected number of
                                            orthonormalizations/8)
            For the disk or tape storage mode,
             NDW = 6 * NCOMP**2 + 10 * NCOMP + 130
   However, when the ADAMS integrator is to be used, the estimates are
             NDW = 130 + NCOMP**2 * (13 + NXPTS/2 + expected number of
                                            orthonormalizations/8)
     and     NDW = 13 * NCOMP**2 + 22 * NCOMP + 130   , respectively.
 
      IWORK(NDIW) = integer array used for internal storage.
 
      NDIW = actual dimension of IWORK array allocated by user.
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             An estimate for NDIW can be computed from the following
             NDIW = 68 + NCOMP * (1 + expected number of
                                             orthonormalizations)
  **NOTE --  the amount of storage required is problem dependent and may
             be difficult to predict in advance.  Experience has shown
             that for most problems 20 or fewer orthonormalizations
             should suffice. If the problem cannot be completed with the
             allotted storage, then a message will be printed which
             estimates the amount of storage necessary. In any case, the
             user can examine the IWORK array for the actual storage
             requirements, as described in the output information below.
 
      NEQIVP = number of auxiliary initial value equations being added
               to the boundary value problem.
  **NOTE -- Occasionally the coefficients  matrix  and/or  G  may be
            functions which depend on the independent variable  X  and
            on  U, the solution of an auxiliary initial value problem.
            In order to avoid the difficulties associated with
            interpolation, the auxiliary equations may be solved
            simultaneously with the given boundary value problem.
            This initial value problem may be linear or nonlinear.
                  See SAND77-1328 for an example.
 
 
      The user must supply subroutines DFMAT, DGVEC, DUIVP and DUVEC,
      when needed (they must be so named), to evaluate the derivatives
      as follows
 
         A. DFMAT must be supplied.
 
               SUBROUTINE DFMAT(X,Y,YP)
               X = independent variable (input to DFMAT)
               Y = dependent variable vector (input to DFMAT)
               YP = DY/DX = derivative vector (output from DFMAT)
 
             Compute the derivatives for the homogeneous problem
               YP(I) = DY(I)/DX = MATRIX(X) * Y(I)  , I = 1,...,NCOMP
 
             When (NEQIVP .GT. 0) and  matrix  is dependent on  U  as
             well as on  X, the following common statement must be
             included in DFMAT
                     COMMON /DMLIVP/ NOFST
             for convenience, the  U  vector is stored at the bottom
             of the  Y  array.  Thus, during any call to DFMAT,
             U(I) is referenced by  Y(NOFST + I).
 
 
             Subroutine DBVDER calls DFMAT NFC times to evaluate the
             homogeneous equations and, if necessary, it calls DFMAT
             once in evaluating the particular solution. since X remains
             unchanged in this sequence of calls it is possible to
             realize considerable computational savings for complicated
             and expensive evaluations of the matrix entries. To do this
             the user merely passes a variable, say XS, via common where
             XS is defined in the main program to be any value except
             the initial X. Then the non-constant elements of matrix(x)
             appearing in the differential equations need only be
             computed if X is unequal to XS, whereupon XS is reset to X.
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         B. If  NEQIVP .GT. 0 ,  DUIVP must also be supplied.
 
               SUBROUTINE DUIVP(X,U,UP)
               X = independent variable (input to DUIVP)
               U = dependent variable vector (input to DUIVP)
               UP = DU/DX = derivative vector (output from DUIVP)
 
             Compute the derivatives for the auxiliary initial value eqs
               UP(I) = DU(I)/DX, I = 1,...,NEQIVP.
 
             Subroutine DBVDER calls DUIVP once to evaluate the
             derivatives for the auxiliary initial value equations.
 
 
         C. If  NEQIVP = 0  and  IGOFX = 1 ,  DGVEC must be supplied.
 
               SUBROUTINE DGVEC(X,G)
               X = independent variable (input to DGVEC)
               G = vector of inhomogeneous terms G(X) (output from
               DGVEC)
 
             Compute the inhomogeneous terms G(X)
                 G(I) = G(X) values for I = 1,...,NCOMP.
 
             Subroutine DBVDER calls DGVEC in evaluating the particular
             solution provided G(X) is not identically zero. Thus, when
             IGOFX=0, the user need not write a DGVEC subroutine. Also,
             the user does not have to bother with the computational
             savings scheme for DGVEC as this is automatically achieved
             via the DBVDER subroutine.
 
 
         D. If  NEQIVP .GT. 0  and  IGOFX = 1 ,  DUVEC must be supplied.
 
              SUBROUTINE DUVEC(X,U,G)
              X = independent variable (input to DUVEC)
              U = dependent variable vector from the auxiliary initial
                  value problem    (input to DUVEC)
              G = array of inhomogeneous terms G(X,U)(output from DUVEC)
 
             Compute the inhomogeneous terms G(X,U)
                 G(I) = G(X,U) values for I = 1,...,NCOMP.
 
             Subroutine DBVDER calls DUVEC in evaluating the particular
             solution provided G(X,U) is not identically zero.  Thus,
             when IGOFX=0, the user need not write a DUVEC subroutine.
 
 
 
      The following is optional input to DBVSUP to give user more
      flexibility in use of code.  See SAND75-0198, SAND77-1328,
      SAND77-1690, SAND78-0522, and SAND78-1501 for more information.
 
  ****CAUTION -- The user must zero out IWORK(1),...,IWORK(15)
                 prior to calling DBVSUP. These locations define
                 optional input and must be zero unless set to special
                 values by the user as described below.
 
      IWORK(1) -- number of orthonormalization points.
                  A value need be set only if IWORK(11) = 1
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      IWORK(9) -- integrator and orthonormalization parameter
                  (default value is 1)
                  1 = RUNGE-KUTTA-FEHLBERG code using GRAM-SCHMIDT test.
                  2 = ADAMS code using GRAM-SCHMIDT test.
 
      IWORK(11) -- orthonormalization points parameter
                   (default value is 0)
                   0 - orthonormalization points not pre-assigned.
                   1 - orthonormalization points pre-assigned in
                       the first IWORK(1) positions of work.
 
      IWORK(12) -- storage parameter
                   (default value is 0)
                   0 - all storage in core.
                   LUN - homogeneous and inhomogeneous solutions at
                       output points and orthonormalization information
                       are stored on disk.  The logical unit number to
                       be used for disk I/O (NTAPE) is set to IWORK(12).
 
      WORK(1),... -- pre-assigned orthonormalization points, stored
                     monotonically, corresponding to the direction
                     of integration.
 
 
 
                  ******************************************************
                  *** COMPLEX*16 VALUED PROBLEM ***
                  ******************************************************
  **NOTE***
        Suppose the original boundary value problem is NC equations
      of the form
                    DW/DX = MAT(X,U)*W(X) + H(X,U)
                  R*W(XINITIAL)=GAMMA , S*W(XFINAL)=DELTA
      where all variables are COMPLEX*16 valued. The DBVSUP code can be
      used by converting to a double precision system of size 2*NC. To
      solve the larger dimensioned problem efficiently, the user must
      initialize IFLAG=13 on input and order the vector components
      according to Y(1)=DOUBLE PRECISION(W(1)),...,Y(NC)=DOUBLE
      PRECISION(W(NC)),Y(NC+1)=IMAG(W(1)),...., Y(2*NC)=IMAG(W(NC)).
      Then define
                         ...............................................
                         . DOUBLE PRECISION(MAT)    -IMAG(MAT) .
             MATRIX  =   .                         .
                         . IMAG(MAT)     DOUBLE PRECISION(MAT) .
                         ...............................................
 
      The matrices A,B and vectors G,ALPHA,BETA must be defined
      similarly. Further details can be found in SAND78-1501.
 
 
  **********************************************************************
      OUTPUT from DBVSUP
  **********************************************************************
 
      Y(NROWY,NXPTS) = solution at specified output points.
 
      IFLAG Output Values
             =-5 algorithm ,for obtaining starting vectors for the
                 special COMPLEX*16 problem structure, was unable to
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                 obtain the initial vectors satisfying the necessary
                 independence criteria.
             =-4 rank of boundary condition matrix A is less than NIC,
                 as determined by DLSSUD.
             =-2 invalid input parameters.
             =-1 insufficient number of storage locations allocated for
                 WORK or IWORK.
 
             =0 indicates successful solution.
 
             =1 a computed solution is returned but uniqueness of the
                solution of the boundary-value problem is questionable.
                For an eigenvalue problem, this should be treated as a
                successful execution since this is the expected mode
                of return.
             =2 a computed solution is returned but the existence of the
                solution to the boundary-value problem is questionable.
             =3 a nontrivial solution approximation is returned although
                the boundary condition matrix B*Y(XFINAL) is found to be
                nonsingular (to the desired accuracy level) while the
                right hand side vector is zero. To eliminate this type
                of return, the accuracy of the eigenvalue parameter
                must be improved.
             ***NOTE-We attempt to diagnose the correct problem behavior
                and report possible difficulties by the appropriate
                error flag.  However, the user should probably resolve
                the problem using smaller error tolerances and/or
                perturbations in the boundary conditions or other
                parameters. This will often reveal the correct
                interpretation for the problem posed.
 
             =13 maximum number of orthonormalizations attained before
                 reaching XFINAL.
             =20-flag from integrator (DDERKF or DDEABM) values can
                 range from 21 to 25.
             =30 solution vectors form a dependent set.
 
      WORK(1),...,WORK(IWORK(1)) = orthonormalization points
                                   determined by DBVPOR.
 
      IWORK(1) = number of orthonormalizations performed by DBVPOR.
 
      IWORK(2) = maximum number of orthonormalizations allowed as
                 calculated from storage allocated by user.
 
      IWORK(3),IWORK(4),IWORK(5),IWORK(6)   give information about
                 actual storage requirements for WORK and IWORK
                 arrays.  In particular,
                        required storage for  work array is
         IWORK(3) + IWORK(4)*(expected number of orthonormalizations)
 
                        required storage for IWORK array is
         IWORK(5) + IWORK(6)*(expected number of orthonormalizations)
 
      IWORK(8) = final value of exponent parameter used in tolerance
                 test for orthonormalization.
 
      IWORK(16) = number of independent vectors returned from DMGSBV.
                 It is only of interest when IFLAG=30 is obtained.
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      IWORK(17) = numerically estimated rank of the boundary
                  condition matrix defined from B*Y(XFINAL)
 
  **********************************************************************
 
      Necessary machine constants are defined in the Function
      Routine D1MACH. The user must make sure that the values
      set in D1MACH are relevant to the computer being used.
 
  **********************************************************************
  **********************************************************************
 
 ***REFERENCES  M. R. Scott and H. A. Watts, SUPORT - a computer code
                  for two-point boundary-value problems via
                  orthonormalization, SIAM Journal of Numerical
                  Analysis 14, (1977), pp. 40-70.
                B. L. Darlow, M. R. Scott and H. A. Watts, Modifications
                  of SUPORT, a linear boundary value problem solver
                  Part I - pre-assigning orthonormalization points,
                  auxiliary initial value problem, disk or tape storage,
                  Report SAND77-1328, Sandia Laboratories, Albuquerque,
                  New Mexico, 1977.
                B. L. Darlow, M. R. Scott and H. A. Watts, Modifications
                  of SUPORT, a linear boundary value problem solver
                  Part II - inclusion of an Adams integrator, Report
                  SAND77-1690, Sandia Laboratories, Albuquerque,
                  New Mexico, 1977.
                M. E. Lord and H. A. Watts, Modifications of SUPORT,
                  a linear boundary value problem solver Part III -
                  orthonormalization improvements, Report SAND78-0522,
                  Sandia Laboratories, Albuquerque, New Mexico, 1978.
                H. A. Watts, M. R. Scott and M. E. Lord, Computational
                  solution of complex*16 valued boundary problems,
                  Report SAND78-1501, Sandia Laboratories,
                  Albuquerque, New Mexico, 1978.
 ***ROUTINES CALLED  DEXBVP, DMACON, XERMSG
 ***COMMON BLOCKS    DML15T, DML17B, DML18J, DML5MC, DML8SZ
 ***REVISION HISTORY  (YYMMDD)
    750601  DATE WRITTEN
    890531  Changed all specific intrinsics to generic.  (WRB)
    890831  Modified array declarations.  (WRB)
    890921  Realigned order of variables in certain COMMON blocks.
            (WRB)
    890921  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    900510  Convert XERRWV calls to XERMSG calls, remove some extraneous
            comments.  (RWC)
    920501  Reformatted the REFERENCES section.  (WRB)
    END PROLOGUE
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DCBRT

      DOUBLE PRECISION FUNCTION DCBRT (X)
 ***BEGIN PROLOGUE  DCBRT
 ***PURPOSE  Compute the cube root.
 ***LIBRARY   SLATEC (FNLIB)
 ***CATEGORY  C2
 ***TYPE      DOUBLE PRECISION (CBRT-S, DCBRT-D, CCBRT-C)
 ***KEYWORDS  CUBE ROOT, ELEMENTARY FUNCTIONS, FNLIB, ROOTS
 ***AUTHOR  Fullerton, W., (LANL)
 ***DESCRIPTION
 
  DCBRT(X) calculates the double precision cube root for
  double precision argument X.
 
 ***REFERENCES  (NONE)
 ***ROUTINES CALLED  D1MACH, D9PAK, D9UPAK
 ***REVISION HISTORY  (YYMMDD)
    770601  DATE WRITTEN
    890531  Changed all specific intrinsics to generic.  (WRB)
    890531  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    END PROLOGUE
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DCDOT

      SUBROUTINE DCDOT (N, FM, CX, INCX, CY, INCY, DCR, DCI)
 ***BEGIN PROLOGUE  DCDOT
 ***PURPOSE  Compute the inner product of two vectors with extended
             precision accumulation and result.
 ***LIBRARY   SLATEC (BLAS)
 ***CATEGORY  D1A4
 ***TYPE      COMPLEX (DSDOT-D, DCDOT-C)
 ***KEYWORDS  BLAS, COMPLEX VECTORS, DOT PRODUCT, INNER PRODUCT,
              LINEAR ALGEBRA, VECTOR
 ***AUTHOR  (UNKNOWN)
 ***DESCRIPTION
 
     Compute the dot product of 2 complex vectors, CX and CY, e.g.
     CX DOT CY, or, CXconjugate DOT CY.  The real and imaginary
     parts of CX and CY are converted to double precision, the dot
     product accumulation is done in double precision and the output
     is given as 2 double precision numbers, corresponding to the real
     and imaginary part of the result.
      Input
       N:  Number of complex components of CX and CY.
       FM: =+1.0   compute CX DOT CY.
           =-1.0   compute CXconjugate DOT CY.
       CX(N):
       CY(N):  Complex arrays of length N.
       INCX:(Integer)   Spacing of elements of CX to use
       INCY:(Integer)   Spacing of elements of CY to use.
      Output
       DCR:(Double Precision) Real part of dot product.
       DCI:(Double Precision) Imaginary part of dot product.
 
 ***REFERENCES  (NONE)
 ***ROUTINES CALLED  (NONE)
 ***REVISION HISTORY  (YYMMDD)
    790101  DATE WRITTEN
    890831  Modified array declarations.  (WRB)
    890831  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    END PROLOGUE
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DCG

      SUBROUTINE DCG(N, B, X, NELT, IA, JA, A, ISYM, MATVEC, MSOLVE,
     $     ITOL, TOL, ITMAX, ITER, ERR, IERR, IUNIT, R, Z, P, DZ,
     $     RWORK, IWORK )
 ***BEGIN PROLOGUE  DCG
 ***PURPOSE  Preconditioned Conjugate Gradient Sparse Ax=b Solver.
             Routine to solve a symmetric positive definite linear
             system  Ax = b  using the Preconditioned Conjugate
             Gradient method.
 ***LIBRARY   SLATEC (SLAP)
 ***CATEGORY  D2B4
 ***TYPE      DOUBLE PRECISION (SCG-S, DCG-D)
 ***KEYWORDS  ITERATIVE PRECONDITION, SLAP, SPARSE,
              SYMMETRIC LINEAR SYSTEM
 ***AUTHOR  Greenbaum, Anne, (Courant Institute)
            Seager, Mark K., (LLNL)
              Lawrence Livermore National Laboratory
              PO BOX 808, L-60
              Livermore, CA 94550 (510) 423-3141
              seager@llnl.gov
 ***DESCRIPTION
 
  *Usage:
      INTEGER  N, NELT, IA(NELT), JA(NELT), ISYM, ITOL, ITMAX
      INTEGER  ITER, IERR, IUNIT, IWORK(USER DEFINED)
      DOUBLE PRECISION B(N), X(N), A(NELT), TOL, ERR, R(N), Z(N)
      DOUBLE PRECISION P(N), DZ(N), RWORK(USER DEFINED)
      EXTERNAL MATVEC, MSOLVE
 
      CALL DCG(N, B, X, NELT, IA, JA, A, ISYM, MATVEC, MSOLVE,
     $     ITOL, TOL, ITMAX, ITER, ERR, IERR, IUNIT, R, Z, P, DZ,
     $     RWORK, IWORK )
 
  *Arguments:
  N      :IN       Integer.
          Order of the Matrix.
  B      :IN       Double Precision B(N).
          Right-hand side vector.
  X      :INOUT    Double Precision X(N).
          On input X is your initial guess for solution vector.
          On output X is the final approximate solution.
  NELT   :IN       Integer.
          Number of Non-Zeros stored in A.
  IA     :IN       Integer IA(NELT).
  JA     :IN       Integer JA(NELT).
  A      :IN       Double Precision A(NELT).
          These arrays contain the matrix data structure for A.
          It could take any form.  See "Description", below,
          for more details.
  ISYM   :IN       Integer.
          Flag to indicate symmetric storage format.
          If ISYM=0, all non-zero entries of the matrix are stored.
          If ISYM=1, the matrix is symmetric, and only the upper
          or lower triangle of the matrix is stored.
  MATVEC :EXT      External.
          Name of a routine which performs the matrix vector multiply
          Y = A*X given A and X.  The name of the MATVEC routine must
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          be declared external in the calling program.  The calling
          sequence to MATVEC is:
 
              CALL MATVEC( N, X, Y, NELT, IA, JA, A, ISYM )
 
          Where N is the number of unknowns, Y is the product A*X
          upon return X is an input vector, NELT is the number of
          non-zeros in the SLAP IA, JA, A storage for the matrix A.
          ISYM is a flag which, if non-zero, denotest that A is
          symmetric and only the lower or upper triangle is stored.
  MSOLVE :EXT      External.
          Name of a routine which solves a linear system MZ = R for
          Z given R with the preconditioning matrix M (M is supplied via
          RWORK and IWORK arrays).  The name of the MSOLVE routine must
          be declared external in the calling program.  The calling
          sequence to MSOLVE is:
 
              CALL MSOLVE(N, R, Z, NELT, IA, JA, A, ISYM, RWORK, IWORK)
 
          Where N is the number of unknowns, R is the right-hand side
          vector and Z is the solution upon return.  NELT, IA, JA, A and
          ISYM are defined as above.  RWORK is a double precision array
          that can be used to pass necessary preconditioning information
          and/or workspace to MSOLVE.  IWORK is an integer work array
          for the same purpose as RWORK.
  ITOL   :IN       Integer.
          Flag to indicate type of convergence criterion.
          If ITOL=1, iteration stops when the 2-norm of the residual
          divided by the 2-norm of the right-hand side is less than TOL.
          If ITOL=2, iteration stops when the 2-norm of M-inv times the
          residual divided by the 2-norm of M-inv times the right hand
          side is less than TOL, where M-inv is the inverse of the
          diagonal of A.
          ITOL=11 is often useful for checking and comparing different
          routines.  For this case, the user must supply the "exact"
          solution or a very accurate approximation (one with an error
          much less than TOL) through a common block,
              COMMON /DSLBLK/ SOLN( )
          If ITOL=11, iteration stops when the 2-norm of the difference
          between the iterative approximation and the user-supplied
          solution divided by the 2-norm of the user-supplied solution
          is less than TOL.  Note that this requires the user to set up
          the "COMMON /DSLBLK/ SOLN(LENGTH)" in the calling routine.
          The routine with this declaration should be loaded before the
          stop test so that the correct length is used by the loader.
          This procedure is not standard Fortran and may not work
          correctly on your system (although it has worked on every
          system the authors have tried).  If ITOL is not 11 then this
          common block is indeed standard Fortran.
  TOL    :INOUT    Double Precision.
          Convergence criterion, as described above.  (Reset if IERR=4.)
  ITMAX  :IN       Integer.
          Maximum number of iterations.
  ITER   :OUT      Integer.
          Number of iterations required to reach convergence, or
          ITMAX+1 if convergence criterion could not be achieved in
          ITMAX iterations.
  ERR    :OUT      Double Precision.
          Error estimate of error in final approximate solution, as
          defined by ITOL.

SLATEC3 (DACOSH through DS2Y) - 112



  IERR   :OUT      Integer.
          Return error flag.
            IERR = 0 => All went well.
            IERR = 1 => Insufficient space allocated for WORK or IWORK.
            IERR = 2 => Method failed to converge in ITMAX steps.
            IERR = 3 => Error in user input.
                        Check input values of N, ITOL.
            IERR = 4 => User error tolerance set too tight.
                        Reset to 500*D1MACH(3).  Iteration proceeded.
            IERR = 5 => Preconditioning matrix, M, is not positive
                        definite.  (r,z) < 0.
            IERR = 6 => Matrix A is not positive definite.  (p,Ap) < 0.
  IUNIT  :IN       Integer.
          Unit number on which to write the error at each iteration,
          if this is desired for monitoring convergence.  If unit
          number is 0, no writing will occur.
  R      :WORK     Double Precision R(N).
  Z      :WORK     Double Precision Z(N).
  P      :WORK     Double Precision P(N).
  DZ     :WORK     Double Precision DZ(N).
          Double Precision arrays used for workspace.
  RWORK  :WORK     Double Precision RWORK(USER DEFINED).
          Double Precision array that can be used by  MSOLVE.
  IWORK  :WORK     Integer IWORK(USER DEFINED).
          Integer array that can be used by  MSOLVE.
 
  *Description
        This routine does  not care  what matrix data   structure is
        used for  A and M.  It simply   calls  the MATVEC and MSOLVE
        routines, with  the arguments as  described above.  The user
        could write any type of structure and the appropriate MATVEC
        and MSOLVE routines.  It is assumed  that A is stored in the
        IA, JA, A  arrays in some fashion and  that M (or INV(M)) is
        stored  in  IWORK  and  RWORK   in  some fashion.   The SLAP
        routines DSDCG and DSICCG are examples of this procedure.
 
        Two  examples  of  matrix  data structures  are the: 1) SLAP
        Triad  format and 2) SLAP Column format.
 
        =================== S L A P Triad format ===================
 
        In  this   format only the  non-zeros are  stored.  They may
        appear  in *ANY* order.   The user  supplies three arrays of
        length NELT, where  NELT  is the number  of non-zeros in the
        matrix:  (IA(NELT), JA(NELT),  A(NELT)).  For each  non-zero
        the  user puts   the row  and  column index   of that matrix
        element in the IA and JA arrays.  The  value of the non-zero
        matrix  element is  placed in  the corresponding location of
        the A  array.  This is  an extremely easy data  structure to
        generate.  On  the other hand it  is  not too  efficient  on
        vector  computers   for the  iterative  solution  of  linear
        systems.  Hence, SLAP  changes this input  data structure to
        the SLAP   Column  format for the  iteration (but   does not
        change it back).
 
        Here is an example of the  SLAP Triad   storage format for a
        5x5 Matrix.  Recall that the entries may appear in any order.
 
            5x5 Matrix      SLAP Triad format for 5x5 matrix on left.
                               1  2  3  4  5  6  7  8  9 10 11
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        |11 12  0  0 15|   A: 51 12 11 33 15 53 55 22 35 44 21
        |21 22  0  0  0|  IA:  5  1  1  3  1  5  5  2  3  4  2
        | 0  0 33  0 35|  JA:  1  2  1  3  5  3  5  2  5  4  1
        | 0  0  0 44  0|
        |51  0 53  0 55|
 
        =================== S L A P Column format ==================
 
        In  this format   the non-zeros are    stored counting  down
        columns (except  for the diagonal  entry, which must  appear
        first  in each "column") and are  stored in the  double pre-
        cision array  A. In  other  words,  for each  column  in the
        matrix  first put  the diagonal entry in A.  Then put in the
        other non-zero  elements going  down the column  (except the
        diagonal)  in order.  The IA array  holds the  row index for
        each non-zero.  The JA array  holds the offsets into the IA,
        A  arrays  for  the  beginning  of  each  column.  That  is,
        IA(JA(ICOL)),A(JA(ICOL)) are the first elements of the ICOL-
        th column in IA and A, and IA(JA(ICOL+1)-1), A(JA(ICOL+1)-1)
        are  the last elements of the ICOL-th column.   Note that we
        always have JA(N+1)=NELT+1, where N is the number of columns
        in the matrix  and NELT  is the number  of non-zeros  in the
        matrix.
 
        Here is an example of the  SLAP Column  storage format for a
        5x5 Matrix (in the A and IA arrays '|'  denotes the end of a
        column):
 
            5x5 Matrix      SLAP Column format for 5x5 matrix on left.
                               1  2  3    4  5    6  7    8    9 10 11
        |11 12  0  0 15|   A: 11 21 51 | 22 12 | 33 53 | 44 | 55 15 35
        |21 22  0  0  0|  IA:  1  2  5 |  2  1 |  3  5 |  4 |  5  1  3
        | 0  0 33  0 35|  JA:  1  4  6    8  9   12
        | 0  0  0 44  0|
        |51  0 53  0 55|
 
  *Cautions:
      This routine will attempt to write to the Fortran logical output
      unit IUNIT, if IUNIT .ne. 0.  Thus, the user must make sure that
      this logical unit is attached to a file or terminal before calling
      this routine with a non-zero value for IUNIT.  This routine does
      not check for the validity of a non-zero IUNIT unit number.
 
 ***SEE ALSO  DSDCG, DSICCG
 ***REFERENCES  1. Louis Hageman and David Young, Applied Iterative
                   Methods, Academic Press, New York, 1981.
                2. Concus, Golub and O'Leary, A Generalized Conjugate
                   Gradient Method for the Numerical Solution of
                   Elliptic Partial Differential Equations, in Sparse
                   Matrix Computations, Bunch and Rose, Eds., Academic
                   Press, New York, 1979.
                3. Mark K. Seager, A SLAP for the Masses, in
                   G. F. Carey, Ed., Parallel Supercomputing: Methods,
                   Algorithms and Applications, Wiley, 1989, pp.135-155.
 ***ROUTINES CALLED  D1MACH, DAXPY, DCOPY, DDOT, ISDCG
 ***REVISION HISTORY  (YYMMDD)
    890404  DATE WRITTEN
    890404  Previous REVISION DATE
    890915  Made changes requested at July 1989 CML Meeting.  (MKS)
    890921  Removed TeX from comments.  (FNF)
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    890922  Numerous changes to prologue to make closer to SLATEC
            standard.  (FNF)
    890929  Numerous changes to reduce SP/DP differences.  (FNF)
    891004  Added new reference.
    910411  Prologue converted to Version 4.0 format.  (BAB)
    910502  Removed MATVEC and MSOLVE from ROUTINES CALLED list.  (FNF)
    920407  COMMON BLOCK renamed DSLBLK.  (WRB)
    920511  Added complete declaration section.  (WRB)
    920929  Corrected format of references.  (FNF)
    921019  Changed 500.0 to 500 to reduce SP/DP differences.  (FNF)
    END PROLOGUE
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DCGN

      SUBROUTINE DCGN(N, B, X, NELT, IA, JA, A, ISYM, MATVEC, MTTVEC,
     $     MSOLVE, ITOL, TOL, ITMAX, ITER, ERR, IERR, IUNIT, R,
     $     Z, P, ATP, ATZ, DZ, ATDZ, RWORK, IWORK)
 ***BEGIN PROLOGUE  DCGN
 ***PURPOSE  Preconditioned CG Sparse Ax=b Solver for Normal Equations.
             Routine to solve a general linear system  Ax = b  using the
             Preconditioned Conjugate Gradient method applied to the
             normal equations  AA'y = b, x=A'y.
 ***LIBRARY   SLATEC (SLAP)
 ***CATEGORY  D2A4, D2B4
 ***TYPE      DOUBLE PRECISION (SCGN-S, DCGN-D)
 ***KEYWORDS  ITERATIVE PRECONDITION, NON-SYMMETRIC LINEAR SYSTEM SOLVE,
              NORMAL EQUATIONS., SLAP, SPARSE
 ***AUTHOR  Greenbaum, Anne, (Courant Institute)
            Seager, Mark K., (LLNL)
              Lawrence Livermore National Laboratory
              PO BOX 808, L-60
              Livermore, CA 94550 (510) 423-3141
              seager@llnl.gov
 ***DESCRIPTION
 
  *Usage:
      INTEGER  N, NELT, IA(NELT), JA(NELT), ISYM, ITOL, ITMAX
      INTEGER  ITER, IERR, IUNIT, IWORK(USER DEFINED)
      DOUBLE PRECISION B(N), X(N), A(NELT), TOL, ERR, R(N), Z(N)
      DOUBLE PRECISION P(N), ATP(N), ATZ(N), DZ(N), ATDZ(N)
      DOUBLE PRECISION RWORK(USER DEFINED)
      EXTERNAL MATVEC, MTTVEC, MSOLVE
 
      CALL DCGN(N, B, X, NELT, IA, JA, A, ISYM, MATVEC, MTTVEC,
     $     MSOLVE, ITOL, TOL, ITMAX, ITER, ERR, IERR, IUNIT, R,
     $     Z, P, ATP, ATZ, DZ, ATDZ, RWORK, IWORK)
 
  *Arguments:
  N      :IN       Integer
          Order of the Matrix.
  B      :IN       Double Precision B(N).
          Right-hand side vector.
  X      :INOUT    Double Precision X(N).
          On input X is your initial guess for solution vector.
          On output X is the final approximate solution.
  NELT   :IN       Integer.
          Number of Non-Zeros stored in A.
  IA     :IN       Integer IA(NELT).
  JA     :IN       Integer JA(NELT).
  A      :IN       Double Precision A(NELT).
          These arrays contain the matrix data structure for A.
          It could take any form.  See "Description", below,
          for more details.
  ISYM   :IN       Integer.
          Flag to indicate symmetric storage format.
          If ISYM=0, all non-zero entries of the matrix are stored.
          If ISYM=1, the matrix is symmetric, and only the upper
          or lower triangle of the matrix is stored.
  MATVEC :EXT      External.
          Name of a routine which performs the matrix vector multiply
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          y = A*X given A and X.  The name of the MATVEC routine must
          be declared external in the calling program.  The calling
          sequence to MATVEC is:
              CALL MATVEC( N, X, Y, NELT, IA, JA, A, ISYM )
          Where N is the number of unknowns, Y is the product A*X
          upon return X is an input vector, NELT is the number of
          non-zeros in the SLAP-Column IA, JA, A storage for the matrix
          A.  ISYM is a flag which, if non-zero, denotes that A is
          symmetric and only the lower or upper triangle is stored.
  MTTVEC :EXT      External.
          Name of a routine which performs the matrix transpose vector
          multiply y = A'*X given A and X (where ' denotes transpose).
          The name of the MTTVEC routine must be declared external in
          the calling program.  The calling sequence to MTTVEC is the
          same as that for MATVEC, viz.:
              CALL MTTVEC( N, X, Y, NELT, IA, JA, A, ISYM )
          Where N is the number of unknowns, Y is the product A'*X
          upon return X is an input vector, NELT is the number of
          non-zeros in the SLAP-Column IA, JA, A storage for the matrix
          A.  ISYM is a flag which, if non-zero, denotes that A is
          symmetric and only the lower or upper triangle is stored.
  MSOLVE :EXT      External.
          Name of a routine which solves a linear system MZ = R for
          Z given R with the preconditioning matrix M (M is supplied via
          RWORK and IWORK arrays).  The name of the MSOLVE routine must
          be declared external in the calling program.  The calling
          sequence to MSOLVE is:
              CALL MSOLVE(N, R, Z, NELT, IA, JA, A, ISYM, RWORK, IWORK)
          Where N is the number of unknowns, R is the right-hand side
          vector and Z is the solution upon return.  NELT, IA, JA, A and
          ISYM are defined as above.  RWORK is a double precision array
          that can be used to pass necessary preconditioning information
          and/or workspace to MSOLVE.  IWORK is an integer work array
          for the same purpose as RWORK.
  ITOL   :IN       Integer.
          Flag to indicate type of convergence criterion.
          If ITOL=1, iteration stops when the 2-norm of the residual
          divided by the 2-norm of the right-hand side is less than TOL.
          If ITOL=2, iteration stops when the 2-norm of M-inv times the
          residual divided by the 2-norm of M-inv times the right hand
          side is less than TOL, where M-inv is the inverse of the
          diagonal of A.
          ITOL=11 is often useful for checking and comparing different
          routines.  For this case, the user must supply the "exact"
          solution or a very accurate approximation (one with an error
          much less than TOL) through a common block,
              COMMON /DSLBLK/ SOLN( )
          If ITOL=11, iteration stops when the 2-norm of the difference
          between the iterative approximation and the user-supplied
          solution divided by the 2-norm of the user-supplied solution
          is less than TOL.  Note that this requires the user to set up
          the "COMMON /DSLBLK/ SOLN(LENGTH)" in the calling routine.
          The routine with this declaration should be loaded before the
          stop test so that the correct length is used by the loader.
          This procedure is not standard Fortran and may not work
          correctly on your system (although it has worked on every
          system the authors have tried).  If ITOL is not 11 then this
          common block is indeed standard Fortran.
  TOL    :INOUT    Double Precision.
          Convergence criterion, as described above.  (Reset if IERR=4.)
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  ITMAX  :IN       Integer.
          Maximum number of iterations.
  ITER   :OUT      Integer.
          Number of iterations required to reach convergence, or
          ITMAX+1 if convergence criterion could not be achieved in
          ITMAX iterations.
  ERR    :OUT      Double Precision.
          Error estimate of error in final approximate solution, as
          defined by ITOL.
  IERR   :OUT      Integer.
          Return error flag.
            IERR = 0 => All went well.
            IERR = 1 => Insufficient space allocated for WORK or IWORK.
            IERR = 2 => Method failed to converge in ITMAX steps.
            IERR = 3 => Error in user input.
                        Check input values of N, ITOL.
            IERR = 4 => User error tolerance set too tight.
                        Reset to 500*D1MACH(3).  Iteration proceeded.
            IERR = 5 => Preconditioning matrix, M, is not positive
                        definite.  (r,z) < 0.
            IERR = 6 => Matrix A is not positive definite.  (p,Ap) < 0.
  IUNIT  :IN       Integer.
          Unit number on which to write the error at each iteration,
          if this is desired for monitoring convergence.  If unit
          number is 0, no writing will occur.
  R      :WORK     Double Precision R(N).
  Z      :WORK     Double Precision Z(N).
  P      :WORK     Double Precision P(N).
  ATP    :WORK     Double Precision ATP(N).
  ATZ    :WORK     Double Precision ATZ(N).
  DZ     :WORK     Double Precision DZ(N).
  ATDZ   :WORK     Double Precision ATDZ(N).
          Double Precision arrays used for workspace.
  RWORK  :WORK     Double Precision RWORK(USER DEFINED).
          Double Precision array that can be used by  MSOLVE.
  IWORK  :WORK     Integer IWORK(USER DEFINED).
          Integer array that can be used by  MSOLVE.
 
  *Description:
        This  routine applies the  preconditioned conjugate gradient
        (PCG) method to a non-symmetric system of equations Ax=b. To
        do this the normal equations are solved:
                AA' y  = b, where  x  = A'y.
        In PCG method the iteration count is determined by condition
                                -1
        number of the  matrix (M  A).   In the  situation where  the
        normal equations are  used  to solve a  non-symmetric system
        the condition number depends on  AA' and should therefore be
        much worse than that of A.  This is the conventional wisdom.
        When one has a good preconditioner for AA' this may not hold.
        The latter is the situation when DCGN should be tried.
 
        If one is trying to solve  a symmetric system, SCG should be
        used instead.
 
        This routine does  not care  what matrix data   structure is
        used for A and M.  It simply calls MATVEC, MTTVEC and MSOLVE
        routines, with arguments as described above.  The user could
        write any type of structure, and  appropriate MATVEC, MTTVEC
        and MSOLVE routines.  It is assumed  that A is stored in the
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        IA, JA, A  arrays in some fashion and  that M (or INV(M)) is
        stored  in  IWORK  and  RWORK)  in  some fashion.   The SLAP
        routines SSDCGN and SSLUCN are examples of this procedure.
 
        Two  examples  of  matrix  data structures  are the: 1) SLAP
        Triad  format and 2) SLAP Column format.
 
        =================== S L A P Triad format ===================
 
        In  this   format only the  non-zeros are  stored.  They may
        appear  in *ANY* order.   The user  supplies three arrays of
        length NELT, where  NELT  is the number  of non-zeros in the
        matrix:  (IA(NELT), JA(NELT),  A(NELT)).  For each  non-zero
        the  user puts   the row  and  column index   of that matrix
        element in the IA and JA arrays.  The  value of the non-zero
        matrix  element is  placed in  the corresponding location of
        the A  array.  This is  an extremely easy data  structure to
        generate.  On  the other hand it  is  not too  efficient  on
        vector  computers   for the  iterative  solution  of  linear
        systems.  Hence, SLAP  changes this input  data structure to
        the SLAP   Column  format for the  iteration (but   does not
        change it back).
 
        Here is an example of the  SLAP Triad   storage format for a
        5x5 Matrix.  Recall that the entries may appear in any order.
 
            5x5 Matrix      SLAP Triad format for 5x5 matrix on left.
                               1  2  3  4  5  6  7  8  9 10 11
        |11 12  0  0 15|   A: 51 12 11 33 15 53 55 22 35 44 21
        |21 22  0  0  0|  IA:  5  1  1  3  1  5  5  2  3  4  2
        | 0  0 33  0 35|  JA:  1  2  1  3  5  3  5  2  5  4  1
        | 0  0  0 44  0|
        |51  0 53  0 55|
 
        =================== S L A P Column format ==================
 
        In  this format   the non-zeros are    stored counting  down
        columns (except  for the diagonal  entry, which must  appear
        first  in each "column") and are  stored in the  double pre-
        cision array  A. In  other  words,  for each  column  in the
        matrix  first put  the diagonal entry in A.  Then put in the
        other non-zero  elements going  down the column  (except the
        diagonal)  in order.  The IA array  holds the  row index for
        each non-zero.  The JA array  holds the offsets into the IA,
        A  arrays  for  the  beginning  of  each  column.  That  is,
        IA(JA(ICOL)),A(JA(ICOL)) are the first elements of the ICOL-
        th column in IA and A, and IA(JA(ICOL+1)-1), A(JA(ICOL+1)-1)
        are  the last elements of the ICOL-th column.   Note that we
        always have JA(N+1)=NELT+1, where N is the number of columns
        in the matrix  and NELT  is the number  of non-zeros  in the
        matrix.
 
        Here is an example of the  SLAP Column  storage format for a
        5x5 Matrix (in the A and IA arrays '|'  denotes the end of a
        column):
 
            5x5 Matrix      SLAP Column format for 5x5 matrix on left.
                               1  2  3    4  5    6  7    8    9 10 11
        |11 12  0  0 15|   A: 11 21 51 | 22 12 | 33 53 | 44 | 55 15 35
        |21 22  0  0  0|  IA:  1  2  5 |  2  1 |  3  5 |  4 |  5  1  3
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        | 0  0 33  0 35|  JA:  1  4  6    8  9   12
        | 0  0  0 44  0|
        |51  0 53  0 55|
 
  *Cautions:
      This routine will attempt to write to the Fortran logical output
      unit IUNIT, if IUNIT .ne. 0.  Thus, the user must make sure that
      this logical unit is attached to a file or terminal before calling
      this routine with a non-zero value for IUNIT.  This routine does
      not check for the validity of a non-zero IUNIT unit number.
 
 ***SEE ALSO  DSDCGN, DSLUCN, ISDCGN
 ***REFERENCES  1. Mark K. Seager, A SLAP for the Masses, in
                   G. F. Carey, Ed., Parallel Supercomputing: Methods,
                   Algorithms and Applications, Wiley, 1989, pp.135-155.
 ***ROUTINES CALLED  D1MACH, DAXPY, DCOPY, DDOT, ISDCGN
 ***REVISION HISTORY  (YYMMDD)
    890404  DATE WRITTEN
    890404  Previous REVISION DATE
    890915  Made changes requested at July 1989 CML Meeting.  (MKS)
    890921  Removed TeX from comments.  (FNF)
    890922  Numerous changes to prologue to make closer to SLATEC
            standard.  (FNF)
    890929  Numerous changes to reduce SP/DP differences.  (FNF)
    891004  Added new reference.
    910411  Prologue converted to Version 4.0 format.  (BAB)
    910502  Removed MATVEC, MTTVEC and MSOLVE from ROUTINES CALLED
            list.  (FNF)
    920407  COMMON BLOCK renamed DSLBLK.  (WRB)
    920511  Added complete declaration section.  (WRB)
    920929  Corrected format of reference.  (FNF)
    921019  Changed 500.0 to 500 to reduce SP/DP differences.  (FNF)
    921113  Corrected C***CATEGORY line.  (FNF)
    END PROLOGUE
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DCGS

       SUBROUTINE DCGS(N, B, X, NELT, IA, JA, A, ISYM, MATVEC,
      $     MSOLVE, ITOL, TOL, ITMAX, ITER, ERR, IERR, IUNIT,
      $     R, R0, P, Q, U, V1, V2, RWORK, IWORK)
 ***BEGIN PROLOGUE  DCGS
 ***PURPOSE  Preconditioned BiConjugate Gradient Squared Ax=b Solver.
             Routine to solve a Non-Symmetric linear system  Ax = b
             using the Preconditioned BiConjugate Gradient Squared
             method.
 ***LIBRARY   SLATEC (SLAP)
 ***CATEGORY  D2A4, D2B4
 ***TYPE      DOUBLE PRECISION (SCGS-S, DCGS-D)
 ***KEYWORDS  BICONJUGATE GRADIENT, ITERATIVE PRECONDITION,
              NON-SYMMETRIC LINEAR SYSTEM, SLAP, SPARSE
 ***AUTHOR  Greenbaum, Anne, (Courant Institute)
            Seager, Mark K., (LLNL)
              Lawrence Livermore National Laboratory
              PO BOX 808, L-60
              Livermore, CA 94550 (510) 423-3141
              seager@llnl.gov
 ***DESCRIPTION
 
  *Usage:
       INTEGER N, NELT, IA(NELT), JA(NELT), ISYM, ITOL, ITMAX
       INTEGER ITER, IERR, IUNIT, IWORK(USER DEFINED)
       DOUBLE PRECISION B(N), X(N), A(NELT), TOL, ERR, R(N), R0(N), P(N)
       DOUBLE PRECISION Q(N), U(N), V1(N), V2(N), RWORK(USER DEFINED)
       EXTERNAL MATVEC, MSOLVE
 
       CALL DCGS(N, B, X, NELT, IA, JA, A, ISYM, MATVEC,
      $     MSOLVE, ITOL, TOL, ITMAX, ITER, ERR, IERR, IUNIT,
      $     R, R0, P, Q, U, V1, V2, RWORK, IWORK)
 
  *Arguments:
  N      :IN       Integer
          Order of the Matrix.
  B      :IN       Double Precision B(N).
          Right-hand side vector.
  X      :INOUT    Double Precision X(N).
          On input X is your initial guess for solution vector.
          On output X is the final approximate solution.
  NELT   :IN       Integer.
          Number of Non-Zeros stored in A.
  IA     :IN       Integer IA(NELT).
  JA     :IN       Integer JA(NELT).
  A      :IN       Double Precision A(NELT).
          These arrays contain the matrix data structure for A.
          It could take any form.  See "Description", below,
          for more details.
  ISYM   :IN       Integer.
          Flag to indicate symmetric storage format.
          If ISYM=0, all non-zero entries of the matrix are stored.
          If ISYM=1, the matrix is symmetric, and only the upper
          or lower triangle of the matrix is stored.
  MATVEC :EXT      External.
          Name of a routine which  performs the matrix vector multiply
          operation  Y = A*X  given A and X.  The  name of  the MATVEC
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          routine must  be declared external  in the  calling program.
          The calling sequence of MATVEC is:
              CALL MATVEC( N, X, Y, NELT, IA, JA, A, ISYM )
          Where N is the number of unknowns, Y is the product A*X upon
          return,  X is an input  vector.  NELT, IA,  JA,  A and  ISYM
          define the SLAP matrix data structure: see Description,below.
  MSOLVE :EXT      External.
          Name of a routine which solves a linear system MZ = R  for Z
          given R with the preconditioning matrix M (M is supplied via
          RWORK  and IWORK arrays).   The name  of  the MSOLVE routine
          must be declared  external  in the  calling   program.   The
          calling sequence of MSOLVE is:
              CALL MSOLVE(N, R, Z, NELT, IA, JA, A, ISYM, RWORK, IWORK)
          Where N is the number of unknowns, R is  the right-hand side
          vector, and Z is the solution upon return.  NELT,  IA, JA, A
          and  ISYM define the SLAP  matrix  data structure: see
          Description, below.  RWORK is a  double precision array that
          can be used to pass necessary preconditioning information and/
          or workspace to MSOLVE.  IWORK is an integer work array for
          the same purpose as RWORK.
  ITOL   :IN       Integer.
          Flag to indicate type of convergence criterion.
          If ITOL=1, iteration stops when the 2-norm of the residual
          divided by the 2-norm of the right-hand side is less than TOL.
          This routine must calculate the residual from R = A*X - B.
          This is unnatural and hence expensive for this type of iter-
          ative method.  ITOL=2 is *STRONGLY* recommended.
          If ITOL=2, iteration stops when the 2-norm of M-inv times the
          residual divided by the 2-norm of M-inv times the right hand
          side is less than TOL, where M-inv time a vector is the pre-
          conditioning step.  This is the *NATURAL* stopping for this
          iterative method and is *STRONGLY* recommended.
          ITOL=11 is often useful for checking and comparing different
          routines.  For this case, the user must supply the "exact"
          solution or a very accurate approximation (one with an error
          much less than TOL) through a common block,
              COMMON /DSLBLK/ SOLN( )
          If ITOL=11, iteration stops when the 2-norm of the difference
          between the iterative approximation and the user-supplied
          solution divided by the 2-norm of the user-supplied solution
          is less than TOL.
  TOL    :INOUT    Double Precision.
          Convergence criterion, as described above.  (Reset if IERR=4.)
  ITMAX  :IN       Integer.
          Maximum number of iterations.
  ITER   :OUT      Integer.
          Number of iterations required to reach convergence, or
          ITMAX+1 if convergence criterion could not be achieved in
          ITMAX iterations.
  ERR    :OUT      Double Precision.
          Error estimate of error in final approximate solution, as
          defined by ITOL.
  IERR   :OUT      Integer.
          Return error flag.
            IERR = 0 => All went well.
            IERR = 1 => Insufficient space allocated for WORK or IWORK.
            IERR = 2 => Method failed to converge in ITMAX steps.
            IERR = 3 => Error in user input.
                        Check input values of N, ITOL.
            IERR = 4 => User error tolerance set too tight.
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                        Reset to 500*D1MACH(3).  Iteration proceeded.
            IERR = 5 => Breakdown of the method detected.
                        (r0,r) approximately 0.
            IERR = 6 => Stagnation of the method detected.
                        (r0,v) approximately 0.
  IUNIT  :IN       Integer.
          Unit number on which to write the error at each iteration,
          if this is desired for monitoring convergence.  If unit
          number is 0, no writing will occur.
  R      :WORK     Double Precision R(N).
  R0     :WORK     Double Precision R0(N).
  P      :WORK     Double Precision P(N).
  Q      :WORK     Double Precision Q(N).
  U      :WORK     Double Precision U(N).
  V1     :WORK     Double Precision V1(N).
  V2     :WORK     Double Precision V2(N).
          Double Precision arrays used for workspace.
  RWORK  :WORK     Double Precision RWORK(USER DEFINED).
          Double Precision array that can be used for workspace in
          MSOLVE.
  IWORK  :WORK     Integer IWORK(USER DEFINED).
          Integer array that can be used for workspace in MSOLVE.
 
  *Description
        This routine does  not care  what matrix data   structure is
        used for  A and M.  It simply   calls  the MATVEC and MSOLVE
        routines, with  the arguments as  described above.  The user
        could write any type of structure and the appropriate MATVEC
        and MSOLVE routines.  It is assumed  that A is stored in the
        IA, JA, A  arrays in some fashion and  that M (or INV(M)) is
        stored  in  IWORK  and  RWORK   in  some fashion.   The SLAP
        routines DSDBCG and DSLUCS are examples of this procedure.
 
        Two  examples  of  matrix  data structures  are the: 1) SLAP
        Triad  format and 2) SLAP Column format.
 
        =================== S L A P Triad format ===================
 
        In  this   format only the  non-zeros are  stored.  They may
        appear  in *ANY* order.   The user  supplies three arrays of
        length NELT, where  NELT  is the number  of non-zeros in the
        matrix:  (IA(NELT), JA(NELT),  A(NELT)).  For each  non-zero
        the  user puts   the row  and  column index   of that matrix
        element in the IA and JA arrays.  The  value of the non-zero
        matrix  element is  placed in  the corresponding location of
        the A  array.  This is  an extremely easy data  structure to
        generate.  On  the other hand it  is  not too  efficient  on
        vector  computers   for the  iterative  solution  of  linear
        systems.  Hence, SLAP  changes this input  data structure to
        the SLAP   Column  format for the  iteration (but   does not
        change it back).
 
        Here is an example of the  SLAP Triad   storage format for a
        5x5 Matrix.  Recall that the entries may appear in any order.
 
            5x5 Matrix      SLAP Triad format for 5x5 matrix on left.
                               1  2  3  4  5  6  7  8  9 10 11
        |11 12  0  0 15|   A: 51 12 11 33 15 53 55 22 35 44 21
        |21 22  0  0  0|  IA:  5  1  1  3  1  5  5  2  3  4  2
        | 0  0 33  0 35|  JA:  1  2  1  3  5  3  5  2  5  4  1
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        | 0  0  0 44  0|
        |51  0 53  0 55|
 
        =================== S L A P Column format ==================
 
        In  this format   the non-zeros are    stored counting  down
        columns (except  for the diagonal  entry, which must  appear
        first  in each "column") and are  stored in the  double pre-
        cision array  A. In  other  words,  for each  column  in the
        matrix  first put  the diagonal entry in A.  Then put in the
        other non-zero  elements going  down the column  (except the
        diagonal)  in order.  The IA array  holds the  row index for
        each non-zero.  The JA array  holds the offsets into the IA,
        A  arrays  for  the  beginning  of  each  column.  That  is,
        IA(JA(ICOL)),A(JA(ICOL)) are the first elements of the ICOL-
        th column in IA and A, and IA(JA(ICOL+1)-1), A(JA(ICOL+1)-1)
        are  the last elements of the ICOL-th column.   Note that we
        always have JA(N+1)=NELT+1, where N is the number of columns
        in the matrix  and NELT  is the number  of non-zeros  in the
        matrix.
 
        Here is an example of the  SLAP Column  storage format for a
        5x5 Matrix (in the A and IA arrays '|'  denotes the end of a
        column):
 
            5x5 Matrix      SLAP Column format for 5x5 matrix on left.
                               1  2  3    4  5    6  7    8    9 10 11
        |11 12  0  0 15|   A: 11 21 51 | 22 12 | 33 53 | 44 | 55 15 35
        |21 22  0  0  0|  IA:  1  2  5 |  2  1 |  3  5 |  4 |  5  1  3
        | 0  0 33  0 35|  JA:  1  4  6    8  9   12
        | 0  0  0 44  0|
        |51  0 53  0 55|
 
  *Cautions:
      This routine will attempt to write to the Fortran logical output
      unit IUNIT, if IUNIT .ne. 0.  Thus, the user must make sure that
      this logical unit is attached to a file or terminal before calling
      this routine with a non-zero value for IUNIT.  This routine does
      not check for the validity of a non-zero IUNIT unit number.
 
 ***SEE ALSO  DSDCGS, DSLUCS
 ***REFERENCES  1. P. Sonneveld, CGS, a fast Lanczos-type solver
                   for nonsymmetric linear systems, Delft University
                   of Technology Report 84-16, Department of Mathe-
                   matics and Informatics, Delft, The Netherlands.
                2. E. F. Kaasschieter, The solution of non-symmetric
                   linear systems by biconjugate gradients or conjugate
                   gradients squared,  Delft University of Technology
                   Report 86-21, Department of Mathematics and Informa-
                   tics, Delft, The Netherlands.
                3. Mark K. Seager, A SLAP for the Masses, in
                   G. F. Carey, Ed., Parallel Supercomputing: Methods,
                   Algorithms and Applications, Wiley, 1989, pp.135-155.
 ***ROUTINES CALLED  D1MACH, DAXPY, DDOT, ISDCGS
 ***REVISION HISTORY  (YYMMDD)
    890404  DATE WRITTEN
    890404  Previous REVISION DATE
    890915  Made changes requested at July 1989 CML Meeting.  (MKS)
    890921  Removed TeX from comments.  (FNF)
    890922  Numerous changes to prologue to make closer to SLATEC
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            standard.  (FNF)
    890929  Numerous changes to reduce SP/DP differences.  (FNF)
    891004  Added new reference.
    910411  Prologue converted to Version 4.0 format.  (BAB)
    910502  Removed MATVEC and MSOLVE from ROUTINES CALLED list.  (FNF)
    920407  COMMON BLOCK renamed DSLBLK.  (WRB)
    920511  Added complete declaration section.  (WRB)
    920929  Corrected format of references.  (FNF)
    921019  Changed 500.0 to 500 to reduce SP/DP differences.  (FNF)
    921113  Corrected C***CATEGORY line.  (FNF)
    END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 125



DCHDC

      SUBROUTINE DCHDC (A, LDA, P, WORK, JPVT, JOB, INFO)
 ***BEGIN PROLOGUE  DCHDC
 ***PURPOSE  Compute the Cholesky decomposition of a positive definite
             matrix.  A pivoting option allows the user to estimate the
             condition number of a positive definite matrix or determine
             the rank of a positive semidefinite matrix.
 ***LIBRARY   SLATEC (LINPACK)
 ***CATEGORY  D2B1B
 ***TYPE      DOUBLE PRECISION (SCHDC-S, DCHDC-D, CCHDC-C)
 ***KEYWORDS  CHOLESKY DECOMPOSITION, LINEAR ALGEBRA, LINPACK, MATRIX,
              POSITIVE DEFINITE
 ***AUTHOR  Dongarra, J., (ANL)
            Stewart, G. W., (U. of Maryland)
 ***DESCRIPTION
 
      DCHDC computes the Cholesky decomposition of a positive definite
      matrix.  A pivoting option allows the user to estimate the
      condition of a positive definite matrix or determine the rank
      of a positive semidefinite matrix.
 
      On Entry
 
          A      DOUBLE PRECISION(LDA,P).
                 A contains the matrix whose decomposition is to
                 be computed.  Only the upper half of A need be stored.
                 The lower part of the array A is not referenced.
 
          LDA    INTEGER.
                 LDA is the leading dimension of the array A.
 
          P      INTEGER.
                 P is the order of the matrix.
 
          WORK   DOUBLE PRECISION.
                 WORK is a work array.
 
          JPVT   INTEGER(P).
                 JPVT contains integers that control the selection
                 of the pivot elements, if pivoting has been requested.
                 Each diagonal element A(K,K)
                 is placed in one of three classes according to the
                 value of JPVT(K).
 
                    If JPVT(K) .GT. 0, then X(K) is an initial
                                       element.
 
                    If JPVT(K) .EQ. 0, then X(K) is a free element.
 
                    If JPVT(K) .LT. 0, then X(K) is a final element.
 
                 Before the decomposition is computed, initial elements
                 are moved by symmetric row and column interchanges to
                 the beginning of the array A and final
                 elements to the end.  Both initial and final elements
                 are frozen in place during the computation and only
                 free elements are moved.  At the K-th stage of the
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                 reduction, if A(K,K) is occupied by a free element
                 it is interchanged with the largest free element
                 A(L,L) with L .GE. K.  JPVT is not referenced if
                 JOB .EQ. 0.
 
         JOB     INTEGER.
                 JOB is an integer that initiates column pivoting.
                 If JOB .EQ. 0, no pivoting is done.
                 If JOB .NE. 0, pivoting is done.
 
      On Return
 
          A      A contains in its upper half the Cholesky factor
                 of the matrix A as it has been permuted by pivoting.
 
          JPVT   JPVT(J) contains the index of the diagonal element
                 of a that was moved into the J-th position,
                 provided pivoting was requested.
 
          INFO   contains the index of the last positive diagonal
                 element of the Cholesky factor.
 
      For positive definite matrices INFO = P is the normal return.
      For pivoting with positive semidefinite matrices INFO will
      in general be less than P.  However, INFO may be greater than
      the rank of A, since rounding error can cause an otherwise zero
      element to be positive.  Indefinite systems will always cause
      INFO to be less than P.
 
 ***REFERENCES  J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
                  Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED  DAXPY, DSWAP
 ***REVISION HISTORY  (YYMMDD)
    790319  DATE WRITTEN
    890531  Changed all specific intrinsics to generic.  (WRB)
    890831  Modified array declarations.  (WRB)
    890831  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    900326  Removed duplicate information from DESCRIPTION section.
            (WRB)
    920501  Reformatted the REFERENCES section.  (WRB)
    END PROLOGUE
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DCHDD

      SUBROUTINE DCHDD (R, LDR, P, X, Z, LDZ, NZ, Y, RHO, C, S, INFO)
 ***BEGIN PROLOGUE  DCHDD
 ***PURPOSE  Downdate an augmented Cholesky decomposition or the
             triangular factor of an augmented QR decomposition.
 ***LIBRARY   SLATEC (LINPACK)
 ***CATEGORY  D7B
 ***TYPE      DOUBLE PRECISION (SCHDD-S, DCHDD-D, CCHDD-C)
 ***KEYWORDS  CHOLESKY DECOMPOSITION, DOWNDATE, LINEAR ALGEBRA, LINPACK,
              MATRIX
 ***AUTHOR  Stewart, G. W., (U. of Maryland)
 ***DESCRIPTION
 
      DCHDD downdates an augmented Cholesky decomposition or the
      triangular factor of an augmented QR decomposition.
      Specifically, given an upper triangular matrix R of order P,  a
      row vector X, a column vector Z, and a scalar Y, DCHDD
      determines an orthogonal matrix U and a scalar ZETA such that
 
                         (R   Z )     (RR  ZZ)
                     U * (      )  =  (      ) ,
                         (0 ZETA)     ( X   Y)
 
      where RR is upper triangular.  If R and Z have been obtained
      from the factorization of a least squares problem, then
      RR and ZZ are the factors corresponding to the problem
      with the observation (X,Y) removed.  In this case, if RHO
      is the norm of the residual vector, then the norm of
      the residual vector of the downdated problem is
      SQRT(RHO**2 - ZETA**2).  DCHDD will simultaneously downdate
      several triplets (Z,Y,RHO) along with R.
      For a less terse description of what DCHDD does and how
      it may be applied, see the LINPACK guide.
 
      The matrix U is determined as the product U(1)*...*U(P)
      where U(I) is a rotation in the (P+1,I)-plane of the
      form
 
                        ( C(I)     -S(I)     )
                        (                    ) .
                        ( S(I)       C(I)    )
 
      The rotations are chosen so that C(I) is double precision.
 
      The user is warned that a given downdating problem may
      be impossible to accomplish or may produce
      inaccurate results.  For example, this can happen
      if X is near a vector whose removal will reduce the
      rank of R.  Beware.
 
      On Entry
 
          R      DOUBLE PRECISION(LDR,P), where LDR .GE. P.
                 R contains the upper triangular matrix
                 that is to be downdated.  The part of  R
                 below the diagonal is not referenced.
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          LDR    INTEGER.
                 LDR is the leading dimension of the array R.
 
          P      INTEGER.
                 P is the order of the matrix R.
 
          X      DOUBLE PRECISION(P).
                 X contains the row vector that is to
                 be removed from R.  X is not altered by DCHDD.
 
          Z      DOUBLE PRECISION(LDZ,N)Z), where LDZ .GE. P.
                 Z is an array of NZ P-vectors which
                 are to be downdated along with R.
 
          LDZ    INTEGER.
                 LDZ is the leading dimension of the array Z.
 
          NZ     INTEGER.
                 NZ is the number of vectors to be downdated
                 NZ may be zero, in which case Z, Y, and RHO
                 are not referenced.
 
          Y      DOUBLE PRECISION(NZ).
                 Y contains the scalars for the downdating
                 of the vectors Z.  Y is not altered by DCHDD.
 
          RHO    DOUBLE PRECISION(NZ).
                 RHO contains the norms of the residual
                 vectors that are to be downdated.
 
      On Return
 
          R
          Z      contain the downdated quantities.
          RHO
 
          C      DOUBLE PRECISION(P).
                 C contains the cosines of the transforming
                 rotations.
 
          S      DOUBLE PRECISION(P).
                 S contains the sines of the transforming
                 rotations.
 
          INFO   INTEGER.
                 INFO is set as follows.
 
                    INFO = 0  if the entire downdating
                              was successful.
 
                    INFO =-1  if R could not be downdated.
                              in this case, all quantities
                              are left unaltered.
 
                    INFO = 1  if some RHO could not be
                              downdated.  The offending RHO's are
                              set to -1.
 
 ***REFERENCES  J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
                  Stewart, LINPACK Users' Guide, SIAM, 1979.
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 ***ROUTINES CALLED  DDOT, DNRM2
 ***REVISION HISTORY  (YYMMDD)
    780814  DATE WRITTEN
    890531  Changed all specific intrinsics to generic.  (WRB)
    890831  Modified array declarations.  (WRB)
    890831  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    900326  Removed duplicate information from DESCRIPTION section.
            (WRB)
    920501  Reformatted the REFERENCES section.  (WRB)
    END PROLOGUE
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DCHEX

      SUBROUTINE DCHEX (R, LDR, P, K, L, Z, LDZ, NZ, C, S, JOB)
 ***BEGIN PROLOGUE  DCHEX
 ***PURPOSE  Update the Cholesky factorization  A=TRANS(R)*R  of a
             positive definite matrix A of order P under diagonal
             permutations of the form  TRANS(E)*A*E, where E is a
             permutation matrix.
 ***LIBRARY   SLATEC (LINPACK)
 ***CATEGORY  D7B
 ***TYPE      DOUBLE PRECISION (SCHEX-S, DCHEX-D, CCHEX-C)
 ***KEYWORDS  CHOLESKY DECOMPOSITION, EXCHANGE, LINEAR ALGEBRA, LINPACK,
              MATRIX, POSITIVE DEFINITE
 ***AUTHOR  Stewart, G. W., (U. of Maryland)
 ***DESCRIPTION
 
      DCHEX updates the Cholesky factorization
 
                    A = TRANS(R)*R
 
      of a positive definite matrix A of order P under diagonal
      permutations of the form
 
                    TRANS(E)*A*E
 
      where E is a permutation matrix.  Specifically, given
      an upper triangular matrix R and a permutation matrix
      E (which is specified by K, L, and JOB), DCHEX determines
      an orthogonal matrix U such that
 
                            U*R*E = RR,
 
      where RR is upper triangular.  At the users option, the
      transformation U will be multiplied into the array Z.
      If A = TRANS(X)*X, so that R is the triangular part of the
      QR factorization of X, then RR is the triangular part of the
      QR factorization of X*E, i.e. X with its columns permuted.
      For a less terse description of what DCHEX does and how
      it may be applied, see the LINPACK guide.
 
      The matrix Q is determined as the product U(L-K)*...*U(1)
      of plane rotations of the form
 
                            (    C(I)       S(I) )
                            (                    ) ,
                            (    -S(I)      C(I) )
 
      where C(I) is double precision.  The rows these rotations operate
      on are described below.
 
      There are two types of permutations, which are determined
      by the value of JOB.
 
      1. Right circular shift (JOB = 1).
 
          The columns are rearranged in the following order.
 
                 1,...,K-1,L,K,K+1,...,L-1,L+1,...,P.
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          U is the product of L-K rotations U(I), where U(I)
          acts in the (L-I,L-I+1)-plane.
 
      2. Left circular shift (JOB = 2).
          The columns are rearranged in the following order
 
                 1,...,K-1,K+1,K+2,...,L,K,L+1,...,P.
 
          U is the product of L-K rotations U(I), where U(I)
          acts in the (K+I-1,K+I)-plane.
 
      On Entry
 
          R      DOUBLE PRECISION(LDR,P), where LDR .GE. P.
                 R contains the upper triangular factor
                 that is to be updated.  Elements of R
                 below the diagonal are not referenced.
 
          LDR    INTEGER.
                 LDR is the leading dimension of the array R.
 
          P      INTEGER.
                 P is the order of the matrix R.
 
          K      INTEGER.
                 K is the first column to be permuted.
 
          L      INTEGER.
                 L is the last column to be permuted.
                 L must be strictly greater than K.
 
          Z      DOUBLE PRECISION(LDZ,N)Z), where LDZ .GE. P.
                 Z is an array of NZ P-vectors into which the
                 transformation U is multiplied.  Z is
                 not referenced if NZ = 0.
 
          LDZ    INTEGER.
                 LDZ is the leading dimension of the array Z.
 
          NZ     INTEGER.
                 NZ is the number of columns of the matrix Z.
 
          JOB    INTEGER.
                 JOB determines the type of permutation.
                        JOB = 1  right circular shift.
                        JOB = 2  left circular shift.
 
      On Return
 
          R      contains the updated factor.
 
          Z      contains the updated matrix Z.
 
          C      DOUBLE PRECISION(P).
                 C contains the cosines of the transforming rotations.
 
          S      DOUBLE PRECISION(P).
                 S contains the sines of the transforming rotations.
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 ***REFERENCES  J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
                  Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED  DROTG
 ***REVISION HISTORY  (YYMMDD)
    780814  DATE WRITTEN
    890531  Changed all specific intrinsics to generic.  (WRB)
    890831  Modified array declarations.  (WRB)
    890831  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    900326  Removed duplicate information from DESCRIPTION section.
            (WRB)
    920501  Reformatted the REFERENCES section.  (WRB)
    END PROLOGUE
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DCHFDV

      SUBROUTINE DCHFDV (X1, X2, F1, F2, D1, D2, NE, XE, FE, DE, NEXT,
     +   IERR)
 ***BEGIN PROLOGUE  DCHFDV
 ***PURPOSE  Evaluate a cubic polynomial given in Hermite form and its
             first derivative at an array of points.  While designed for
             use by DPCHFD, it may be useful directly as an evaluator
             for a piecewise cubic Hermite function in applications,
             such as graphing, where the interval is known in advance.
             If only function values are required, use DCHFEV instead.
 ***LIBRARY   SLATEC (PCHIP)
 ***CATEGORY  E3, H1
 ***TYPE      DOUBLE PRECISION (CHFDV-S, DCHFDV-D)
 ***KEYWORDS  CUBIC HERMITE DIFFERENTIATION, CUBIC HERMITE EVALUATION,
              CUBIC POLYNOMIAL EVALUATION, PCHIP
 ***AUTHOR  Fritsch, F. N., (LLNL)
              Lawrence Livermore National Laboratory
              P.O. Box 808  (L-316)
              Livermore, CA  94550
              FTS 532-4275, (510) 422-4275
 ***DESCRIPTION
 
         DCHFDV:  Cubic Hermite Function and Derivative Evaluator
 
      Evaluates the cubic polynomial determined by function values
      F1,F2 and derivatives D1,D2 on interval (X1,X2), together with
      its first derivative, at the points  XE(J), J=1(1)NE.
 
      If only function values are required, use DCHFEV, instead.
 
  ----------------------------------------------------------------------
 
   Calling sequence:
 
         INTEGER  NE, NEXT(2), IERR
         DOUBLE PRECISION  X1, X2, F1, F2, D1, D2, XE(NE), FE(NE),
                           DE(NE)
 
         CALL  DCHFDV (X1,X2, F1,F2, D1,D2, NE, XE, FE, DE, NEXT, IERR)
 
    Parameters:
 
      X1,X2 -- (input) endpoints of interval of definition of cubic.
            (Error return if  X1.EQ.X2 .)
 
      F1,F2 -- (input) values of function at X1 and X2, respectively.
 
      D1,D2 -- (input) values of derivative at X1 and X2, respectively.
 
      NE -- (input) number of evaluation points.  (Error return if
            NE.LT.1 .)
 
      XE -- (input) real*8 array of points at which the functions are to
            be evaluated.  If any of the XE are outside the interval
            [X1,X2], a warning error is returned in NEXT.
 
      FE -- (output) real*8 array of values of the cubic function
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            defined by  X1,X2, F1,F2, D1,D2  at the points  XE.
 
      DE -- (output) real*8 array of values of the first derivative of
            the same function at the points  XE.
 
      NEXT -- (output) integer array indicating number of extrapolation
            points:
             NEXT(1) = number of evaluation points to left of interval.
             NEXT(2) = number of evaluation points to right of interval.
 
      IERR -- (output) error flag.
            Normal return:
               IERR = 0  (no errors).
            "Recoverable" errors:
               IERR = -1  if NE.LT.1 .
               IERR = -2  if X1.EQ.X2 .
                 (Output arrays have not been changed in either case.)
 
 ***REFERENCES  (NONE)
 ***ROUTINES CALLED  XERMSG
 ***REVISION HISTORY  (YYMMDD)
    811019  DATE WRITTEN
    820803  Minor cosmetic changes for release 1.
    870707  Corrected XERROR calls for d.p. names(s).
    870813  Minor cosmetic changes.
    890411  Added SAVE statements (Vers. 3.2).
    890531  Changed all specific intrinsics to generic.  (WRB)
    890831  Modified array declarations.  (WRB)
    891006  Cosmetic changes to prologue.  (WRB)
    891006  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    900315  CALLs to XERROR changed to CALLs to XERMSG.  (THJ)
    END PROLOGUE
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DCHFEV

      SUBROUTINE DCHFEV (X1, X2, F1, F2, D1, D2, NE, XE, FE, NEXT, IERR)
 ***BEGIN PROLOGUE  DCHFEV
 ***PURPOSE  Evaluate a cubic polynomial given in Hermite form at an
             array of points.  While designed for use by DPCHFE, it may
             be useful directly as an evaluator for a piecewise cubic
             Hermite function in applications, such as graphing, where
             the interval is known in advance.
 ***LIBRARY   SLATEC (PCHIP)
 ***CATEGORY  E3
 ***TYPE      DOUBLE PRECISION (CHFEV-S, DCHFEV-D)
 ***KEYWORDS  CUBIC HERMITE EVALUATION, CUBIC POLYNOMIAL EVALUATION,
              PCHIP
 ***AUTHOR  Fritsch, F. N., (LLNL)
              Lawrence Livermore National Laboratory
              P.O. Box 808  (L-316)
              Livermore, CA  94550
              FTS 532-4275, (510) 422-4275
 ***DESCRIPTION
 
           DCHFEV:  Cubic Hermite Function EValuator
 
      Evaluates the cubic polynomial determined by function values
      F1,F2 and derivatives D1,D2 on interval (X1,X2) at the points
      XE(J), J=1(1)NE.
 
  ----------------------------------------------------------------------
 
   Calling sequence:
 
         INTEGER  NE, NEXT(2), IERR
         DOUBLE PRECISION  X1, X2, F1, F2, D1, D2, XE(NE), FE(NE)
 
         CALL  DCHFEV (X1,X2, F1,F2, D1,D2, NE, XE, FE, NEXT, IERR)
 
    Parameters:
 
      X1,X2 -- (input) endpoints of interval of definition of cubic.
            (Error return if  X1.EQ.X2 .)
 
      F1,F2 -- (input) values of function at X1 and X2, respectively.
 
      D1,D2 -- (input) values of derivative at X1 and X2, respectively.
 
      NE -- (input) number of evaluation points.  (Error return if
            NE.LT.1 .)
 
      XE -- (input) real*8 array of points at which the function is to
            be evaluated.  If any of the XE are outside the interval
            [X1,X2], a warning error is returned in NEXT.
 
      FE -- (output) real*8 array of values of the cubic function
            defined by  X1,X2, F1,F2, D1,D2  at the points  XE.
 
      NEXT -- (output) integer array indicating number of extrapolation
            points:
             NEXT(1) = number of evaluation points to left of interval.
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             NEXT(2) = number of evaluation points to right of interval.
 
      IERR -- (output) error flag.
            Normal return:
               IERR = 0  (no errors).
            "Recoverable" errors:
               IERR = -1  if NE.LT.1 .
               IERR = -2  if X1.EQ.X2 .
                 (The FE-array has not been changed in either case.)
 
 ***REFERENCES  (NONE)
 ***ROUTINES CALLED  XERMSG
 ***REVISION HISTORY  (YYMMDD)
    811019  DATE WRITTEN
    820803  Minor cosmetic changes for release 1.
    870813  Corrected XERROR calls for d.p. names(s).
    890206  Corrected XERROR calls.
    890411  Added SAVE statements (Vers. 3.2).
    890531  Changed all specific intrinsics to generic.  (WRB)
    890703  Corrected category record.  (WRB)
    890831  Modified array declarations.  (WRB)
    891006  Cosmetic changes to prologue.  (WRB)
    891006  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    900315  CALLs to XERROR changed to CALLs to XERMSG.  (THJ)
    END PROLOGUE
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DCHU

      DOUBLE PRECISION FUNCTION DCHU (A, B, X)
 ***BEGIN PROLOGUE  DCHU
 ***PURPOSE  Compute the logarithmic confluent hypergeometric function.
 ***LIBRARY   SLATEC (FNLIB)
 ***CATEGORY  C11
 ***TYPE      DOUBLE PRECISION (CHU-S, DCHU-D)
 ***KEYWORDS  FNLIB, LOGARITHMIC CONFLUENT HYPERGEOMETRIC FUNCTION,
              SPECIAL FUNCTIONS
 ***AUTHOR  Fullerton, W., (LANL)
 ***DESCRIPTION
 
  DCHU(A,B,X) calculates the double precision logarithmic confluent
  hypergeometric function U(A,B,X) for double precision arguments
  A, B, and X.
 
  This routine is not valid when 1+A-B is close to zero if X is small.
 
 ***REFERENCES  (NONE)
 ***ROUTINES CALLED  D1MACH, D9CHU, DEXPRL, DGAMMA, DGAMR, DPOCH,
                     DPOCH1, XERMSG
 ***REVISION HISTORY  (YYMMDD)
    770801  DATE WRITTEN
    890531  Changed all specific intrinsics to generic.  (WRB)
    890531  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    900315  CALLs to XERROR changed to CALLs to XERMSG.  (THJ)
    900727  Added EXTERNAL statement.  (WRB)
    END PROLOGUE
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DCHUD

      SUBROUTINE DCHUD (R, LDR, P, X, Z, LDZ, NZ, Y, RHO, C, S)
 ***BEGIN PROLOGUE  DCHUD
 ***PURPOSE  Update an augmented Cholesky decomposition of the
             triangular part of an augmented QR decomposition.
 ***LIBRARY   SLATEC (LINPACK)
 ***CATEGORY  D7B
 ***TYPE      DOUBLE PRECISION (SCHUD-S, DCHUD-D, CCHUD-C)
 ***KEYWORDS  CHOLESKY DECOMPOSITION, LINEAR ALGEBRA, LINPACK, MATRIX,
              UPDATE
 ***AUTHOR  Stewart, G. W., (U. of Maryland)
 ***DESCRIPTION
 
      DCHUD updates an augmented Cholesky decomposition of the
      triangular part of an augmented QR decomposition.  Specifically,
      given an upper triangular matrix R of order P, a row vector
      X, a column vector Z, and a scalar Y, DCHUD determines a
      unitary matrix U and a scalar ZETA such that
 
 
                               (R  Z)     (RR   ZZ )
                          U  * (    )  =  (        ) ,
                               (X  Y)     ( 0  ZETA)
 
      where RR is upper triangular.  If R and Z have been
      obtained from the factorization of a least squares
      problem, then RR and ZZ are the factors corresponding to
      the problem with the observation (X,Y) appended.  In this
      case, if RHO is the norm of the residual vector, then the
      norm of the residual vector of the updated problem is
      SQRT(RHO**2 + ZETA**2).  DCHUD will simultaneously update
      several triplets (Z,Y,RHO).
      For a less terse description of what DCHUD does and how
      it may be applied, see the LINPACK guide.
 
      The matrix U is determined as the product U(P)*...*U(1),
      where U(I) is a rotation in the (I,P+1) plane of the
      form
 
                        (     C(I)      S(I) )
                        (                    ) .
                        (    -S(I)      C(I) )
 
      The rotations are chosen so that C(I) is double precision.
 
      On Entry
 
          R      DOUBLE PRECISION(LDR,P), where LDR .GE. P.
                 R contains the upper triangular matrix
                 that is to be updated.  The part of R
                 below the diagonal is not referenced.
 
          LDR    INTEGER.
                 LDR is the leading dimension of the array R.
 
          P      INTEGER.
                 P is the order of the matrix R.
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          X      DOUBLE PRECISION(P).
                 X contains the row to be added to R.  X is
                 not altered by DCHUD.
 
          Z      DOUBLE PRECISION(LDZ,N)Z), where LDZ .GE. P.
                 Z is an array containing NZ P-vectors to
                 be updated with R.
 
          LDZ    INTEGER.
                 LDZ is the leading dimension of the array Z.
 
          NZ     INTEGER.
                 NZ is the number of vectors to be updated
                 NZ may be zero, in which case Z, Y, and RHO
                 are not referenced.
 
          Y      DOUBLE PRECISION(NZ).
                 Y contains the scalars for updating the vectors
                 Z.  Y is not altered by DCHUD.
 
          RHO    DOUBLE PRECISION(NZ).
                 RHO contains the norms of the residual
                 vectors that are to be updated.  If RHO(J)
                 is negative, it is left unaltered.
 
      On Return
 
          RC
          RHO    contain the updated quantities.
          Z
 
          C      DOUBLE PRECISION(P).
                 C contains the cosines of the transforming
                 rotations.
 
          S      DOUBLE PRECISION(P).
                 S contains the sines of the transforming
                 rotations.
 
 ***REFERENCES  J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
                  Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED  DROTG
 ***REVISION HISTORY  (YYMMDD)
    780814  DATE WRITTEN
    890531  Changed all specific intrinsics to generic.  (WRB)
    890831  Modified array declarations.  (WRB)
    890831  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    900326  Removed duplicate information from DESCRIPTION section.
            (WRB)
    920501  Reformatted the REFERENCES section.  (WRB)
    END PROLOGUE
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DCKDER

      SUBROUTINE DCKDER (M, N, X, FVEC, FJAC, LDFJAC, XP, FVECP, MODE,
     +   ERR)
 ***BEGIN PROLOGUE  DCKDER
 ***PURPOSE  Check the gradients of M nonlinear functions in N
             variables, evaluated at a point X, for consistency
             with the functions themselves.
 ***LIBRARY   SLATEC
 ***CATEGORY  F3, G4C
 ***TYPE      DOUBLE PRECISION (CHKDER-S, DCKDER-D)
 ***KEYWORDS  GRADIENTS, JACOBIAN, MINPACK, NONLINEAR
 ***AUTHOR  Hiebert, K. L. (SNLA)
 ***DESCRIPTION
 
    This subroutine is a companion routine to DNSQ and DNSQE. It may
    be used to check the coding of the Jacobian calculation.
 
      SUBROUTINE DCKDER
 
      This subroutine checks the gradients of M nonlinear functions
      in N variables, evaluated at a point X, for consistency with
      the functions themselves. The user must call DCKDER twice,
      first with MODE = 1 and then with MODE = 2.
 
      MODE = 1. On input, X must contain the point of evaluation.
                On output, XP is set to a neighboring point.
 
      MODE = 2. On input, FVEC must contain the functions and the
                          rows of FJAC must contain the gradients
                          of the respective functions each evaluated
                          at X, and FVECP must contain the functions
                          evaluated at XP.
                On output, ERR contains measures of correctness of
                           the respective gradients.
 
      The subroutine does not perform reliably if cancellation or
      rounding errors cause a severe loss of significance in the
      evaluation of a function. Therefore, none of the components
      of X should be unusually small (in particular, zero) or any
      other value which may cause loss of significance.
 
      The SUBROUTINE statement is
 
        SUBROUTINE DCKDER(M,N,X,FVEC,FJAC,LDFJAC,XP,FVECP,MODE,ERR)
 
      where
 
        M is a positive integer input variable set to the number
          of functions.
 
        N is a positive integer input variable set to the number
          of variables.
 
        X is an input array of length N.
 
        FVEC is an array of length M. On input when MODE = 2,
          FVEC must contain the functions evaluated at X.
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        FJAC is an M by N array. On input when MODE = 2,
          the rows of FJAC must contain the gradients of
          the respective functions evaluated at X.
 
        LDFJAC is a positive integer input parameter not less than M
          which specifies the leading dimension of the array FJAC.
 
        XP is an array of length N. On output when MODE = 1,
          XP is set to a neighboring point of X.
 
        FVECP is an array of length M. On input when MODE = 2,
          FVECP must contain the functions evaluated at XP.
 
        MODE is an integer input variable set to 1 on the first call
          and 2 on the second. Other values of MODE are equivalent
          to MODE = 1.
 
        ERR is an array of length M. On output when MODE = 2,
          ERR contains measures of correctness of the respective
          gradients. If there is no severe loss of significance,
          then if ERR(I) is 1.0 the I-th gradient is correct,
          while if ERR(I) is 0.0 the I-th gradient is incorrect.
          For values of ERR between 0.0 and 1.0, the categorization
          is less certain. In general, a value of ERR(I) greater
          than 0.5 indicates that the I-th gradient is probably
          correct, while a value of ERR(I) less than 0.5 indicates
          that the I-th gradient is probably incorrect.
 
 ***REFERENCES  M. J. D. Powell, A hybrid method for nonlinear equa-
                  tions. In Numerical Methods for Nonlinear Algebraic
                  Equations, P. Rabinowitz, Editor.  Gordon and Breach,
                  1988.
 ***ROUTINES CALLED  D1MACH
 ***REVISION HISTORY  (YYMMDD)
    800301  DATE WRITTEN
    890531  Changed all specific intrinsics to generic.  (WRB)
    890831  Modified array declarations.  (WRB)
    890831  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    900326  Removed duplicate information from DESCRIPTION section.
            (WRB)
    920501  Reformatted the REFERENCES section.  (WRB)
    END PROLOGUE
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DCOPY

      SUBROUTINE DCOPY (N, DX, INCX, DY, INCY)
 ***BEGIN PROLOGUE  DCOPY
 ***PURPOSE  Copy a vector.
 ***LIBRARY   SLATEC (BLAS)
 ***CATEGORY  D1A5
 ***TYPE      DOUBLE PRECISION (SCOPY-S, DCOPY-D, CCOPY-C, ICOPY-I)
 ***KEYWORDS  BLAS, COPY, LINEAR ALGEBRA, VECTOR
 ***AUTHOR  Lawson, C. L., (JPL)
            Hanson, R. J., (SNLA)
            Kincaid, D. R., (U. of Texas)
            Krogh, F. T., (JPL)
 ***DESCRIPTION
 
                 B L A S  Subprogram
     Description of Parameters
 
      --Input--
         N  number of elements in input vector(s)
        DX  double precision vector with N elements
      INCX  storage spacing between elements of DX
        DY  double precision vector with N elements
      INCY  storage spacing between elements of DY
 
      --Output--
        DY  copy of vector DX (unchanged if N .LE. 0)
 
      Copy double precision DX to double precision DY.
      For I = 0 to N-1, copy DX(LX+I*INCX) to DY(LY+I*INCY),
      where LX = 1 if INCX .GE. 0, else LX = 1+(1-N)*INCX, and LY is
      defined in a similar way using INCY.
 
 ***REFERENCES  C. L. Lawson, R. J. Hanson, D. R. Kincaid and F. T.
                  Krogh, Basic linear algebra subprograms for Fortran
                  usage, Algorithm No. 539, Transactions on Mathematical
                  Software 5, 3 (September 1979), pp. 308-323.
 ***ROUTINES CALLED  (NONE)
 ***REVISION HISTORY  (YYMMDD)
    791001  DATE WRITTEN
    890831  Modified array declarations.  (WRB)
    890831  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    920310  Corrected definition of LX in DESCRIPTION.  (WRB)
    920501  Reformatted the REFERENCES section.  (WRB)
    END PROLOGUE
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DCOPYM

      SUBROUTINE DCOPYM (N, DX, INCX, DY, INCY)
 ***BEGIN PROLOGUE  DCOPYM
 ***PURPOSE  Copy the negative of a vector to a vector.
 ***LIBRARY   SLATEC (BLAS)
 ***CATEGORY  D1A5
 ***TYPE      DOUBLE PRECISION (SCOPYM-S, DCOPYM-D)
 ***KEYWORDS  BLAS, COPY, VECTOR
 ***AUTHOR  Kahaner, D. K., (NBS)
 ***DESCRIPTION
 
        Description of Parameters
            The * Flags Output Variables
 
        N   Number of elements in vector(s)
       DX   Double precision vector with N elements
     INCX   Storage spacing between elements of DX
       DY*  Double precision negative copy of DX
     INCY   Storage spacing between elements of DY
 
       ***  Note that DY = -DX  ***
 
      Copy negative of d.p. DX to d.p. DY.  For I=0 to N-1,
      copy  -DX(LX+I*INCX) to DY(LY+I*INCY), where LX=1 if
      INCX .GE. 0, else LX = 1+(1-N)*INCX, and LY is defined
      in a similar way using INCY.
 
 ***REFERENCES  (NONE)
 ***ROUTINES CALLED  (NONE)
 ***REVISION HISTORY  (YYMMDD)
    801001  DATE WRITTEN
    861211  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    920310  Corrected definition of LX in DESCRIPTION.  (WRB)
    END PROLOGUE
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DCOSDG

      DOUBLE PRECISION FUNCTION DCOSDG (X)
 ***BEGIN PROLOGUE  DCOSDG
 ***PURPOSE  Compute the cosine of an argument in degrees.
 ***LIBRARY   SLATEC (FNLIB)
 ***CATEGORY  C4A
 ***TYPE      DOUBLE PRECISION (COSDG-S, DCOSDG-D)
 ***KEYWORDS  COSINE, DEGREES, ELEMENTARY FUNCTIONS, FNLIB,
              TRIGONOMETRIC
 ***AUTHOR  Fullerton, W., (LANL)
 ***DESCRIPTION
 
  DCOSDG(X) calculates the double precision trigonometric cosine
  for double precision argument X in units of degrees.
 
 ***REFERENCES  (NONE)
 ***ROUTINES CALLED  (NONE)
 ***REVISION HISTORY  (YYMMDD)
    770601  DATE WRITTEN
    890531  Changed all specific intrinsics to generic.  (WRB)
    890531  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    END PROLOGUE
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DCOT

      DOUBLE PRECISION FUNCTION DCOT (X)
 ***BEGIN PROLOGUE  DCOT
 ***PURPOSE  Compute the cotangent.
 ***LIBRARY   SLATEC (FNLIB)
 ***CATEGORY  C4A
 ***TYPE      DOUBLE PRECISION (COT-S, DCOT-D, CCOT-C)
 ***KEYWORDS  COTANGENT, ELEMENTARY FUNCTIONS, FNLIB, TRIGONOMETRIC
 ***AUTHOR  Fullerton, W., (LANL)
 ***DESCRIPTION
 
  DCOT(X) calculates the double precision trigonometric cotangent
  for double precision argument X.  X is in units of radians.
 
  Series for COT        on the interval  0.          to  6.25000E-02
                                         with weighted error   5.52E-34
                                          log weighted error  33.26
                                significant figures required  32.34
                                     decimal places required  33.85
 
 ***REFERENCES  (NONE)
 ***ROUTINES CALLED  D1MACH, DCSEVL, INITDS, XERMSG
 ***REVISION HISTORY  (YYMMDD)
    770601  DATE WRITTEN
    890531  Changed all specific intrinsics to generic.  (WRB)
    890531  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    900315  CALLs to XERROR changed to CALLs to XERMSG.  (THJ)
    920618  Removed space from variable names.  (RWC, WRB)
    END PROLOGUE
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DCOV

      SUBROUTINE DCOV (FCN, IOPT, M, N, X, FVEC, R, LDR, INFO, WA1, WA2,
     +   WA3, WA4)
 ***BEGIN PROLOGUE  DCOV
 ***PURPOSE  Calculate the covariance matrix for a nonlinear data
             fitting problem.  It is intended to be used after a
             successful return from either DNLS1 or DNLS1E.
 ***LIBRARY   SLATEC
 ***CATEGORY  K1B1
 ***TYPE      DOUBLE PRECISION (SCOV-S, DCOV-D)
 ***KEYWORDS  COVARIANCE MATRIX, NONLINEAR DATA FITTING,
              NONLINEAR LEAST SQUARES
 ***AUTHOR  Hiebert, K. L., (SNLA)
 ***DESCRIPTION
 
   1. Purpose.
 
      DCOV calculates the covariance matrix for a nonlinear data
      fitting problem.  It is intended to be used after a
      successful return from either DNLS1 or DNLS1E. DCOV
      and DNLS1 (and DNLS1E) have compatible parameters.  The
      required external subroutine, FCN, is the same
      for all three codes, DCOV, DNLS1, and DNLS1E.
 
   2. Subroutine and Type Statements.
 
      SUBROUTINE DCOV(FCN,IOPT,M,N,X,FVEC,R,LDR,INFO,
                      WA1,WA2,WA3,WA4)
      INTEGER IOPT,M,N,LDR,INFO
      DOUBLE PRECISION X(N),FVEC(M),R(LDR,N),WA1(N),WA2(N),WA3(N),WA4(M)
      EXTERNAL FCN
 
   3. Parameters. All TYPE REAL parameters are DOUBLE PRECISION
 
       FCN is the name of the user-supplied subroutine which calculates
          the functions.  If the user wants to supply the Jacobian
          (IOPT=2 or 3), then FCN must be written to calculate the
          Jacobian, as well as the functions.  See the explanation
          of the IOPT argument below.
          If the user wants the iterates printed in DNLS1 or DNLS1E,
          then FCN must do the printing.  See the explanation of NPRINT
          in DNLS1 or DNLS1E.  FCN must be declared in an EXTERNAL
          statement in the calling program and should be written as
          follows.
 
          SUBROUTINE FCN(IFLAG,M,N,X,FVEC,FJAC,LDFJAC)
          INTEGER IFLAG,LDFJAC,M,N
          DOUBLE PRECISION X(N),FVEC(M)
          ----------
          FJAC and LDFJAC may be ignored       , if IOPT=1.
          DOUBLE PRECISION FJAC(LDFJAC,N)      , if IOPT=2.
          DOUBLE PRECISION FJAC(N)             , if IOPT=3.
          ----------
            If IFLAG=0, the values in X and FVEC are available
            for printing in DNLS1 or DNLS1E.
            IFLAG will never be zero when FCN is called by DCOV.
            The values of X and FVEC must not be changed.
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          RETURN
          ----------
            If IFLAG=1, calculate the functions at X and return
            this vector in FVEC.
          RETURN
          ----------
            If IFLAG=2, calculate the full Jacobian at X and return
            this matrix in FJAC.  Note that IFLAG will never be 2 unless
            IOPT=2.  FVEC contains the function values at X and must
            not be altered.  FJAC(I,J) must be set to the derivative
            of FVEC(I) with respect to X(J).
          RETURN
          ----------
            If IFLAG=3, calculate the LDFJAC-th row of the Jacobian
            and return this vector in FJAC.  Note that IFLAG will
            never be 3 unless IOPT=3.  FJAC(J) must be set to
            the derivative of FVEC(LDFJAC) with respect to X(J).
          RETURN
          ----------
          END
 
 
          The value of IFLAG should not be changed by FCN unless the
          user wants to terminate execution of DCOV.  In this case, set
          IFLAG to a negative integer.
 
 
        IOPT is an input variable which specifies how the Jacobian will
          be calculated.  If IOPT=2 or 3, then the user must supply the
          Jacobian, as well as the function values, through the
          subroutine FCN.  If IOPT=2, the user supplies the full
          Jacobian with one call to FCN.  If IOPT=3, the user supplies
          one row of the Jacobian with each call.  (In this manner,
          storage can be saved because the full Jacobian is not stored.)
          If IOPT=1, the code will approximate the Jacobian by forward
          differencing.
 
        M is a positive integer input variable set to the number of
          functions.
 
        N is a positive integer input variable set to the number of
          variables.  N must not exceed M.
 
        X is an array of length N.  On input X must contain the value
          at which the covariance matrix is to be evaluated.  This is
          usually the value for X returned from a successful run of
          DNLS1 (or DNLS1E).  The value of X will not be changed.
 
     FVEC is an output array of length M which contains the functions
          evaluated at X.
 
        R is an output array.  For IOPT=1 and 2, R is an M by N array.
          For IOPT=3, R is an N by N array.  On output, if INFO=1,
          the upper N by N submatrix of R contains the covariance
          matrix evaluated at X.
 
      LDR is a positive integer input variable which specifies
          the leading dimension of the array R.  For IOPT=1 and 2,
          LDR must not be less than M.  For IOPT=3, LDR must not
          be less than N.
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     INFO is an integer output variable.  If the user has terminated
          execution, INFO is set to the (negative) value of IFLAG.  See
          description of FCN. Otherwise, INFO is set as follows.
 
          INFO = 0 Improper input parameters (M.LE.0 or N.LE.0).
 
          INFO = 1 Successful return.  The covariance matrix has been
                   calculated and stored in the upper N by N
                   submatrix of R.
 
          INFO = 2 The Jacobian matrix is singular for the input value
                   of X.  The covariance matrix cannot be calculated.
                   The upper N by N submatrix of R contains the QR
                   factorization of the Jacobian (probably not of
                   interest to the user).
 
  WA1,WA2 are work arrays of length N.
  and WA3
 
      WA4 is a work array of length M.
 
 ***REFERENCES  (NONE)
 ***ROUTINES CALLED  DENORM, DFDJC3, DQRFAC, DWUPDT, XERMSG
 ***REVISION HISTORY  (YYMMDD)
    810522  DATE WRITTEN
    890831  Modified array declarations.  (WRB)
    891006  Cosmetic changes to prologue.  (WRB)
    891006  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    900315  CALLs to XERROR changed to CALLs to XERMSG.  (THJ)
    900510  Fixed an error message.  (RWC)
    END PROLOGUE
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DCPPLT

      SUBROUTINE DCPPLT (N, NELT, IA, JA, A, ISYM, IUNIT)
 ***BEGIN PROLOGUE  DCPPLT
 ***PURPOSE  Printer Plot of SLAP Column Format Matrix.
             Routine to print out a SLAP Column format matrix in a
             "printer plot" graphical representation.
 ***LIBRARY   SLATEC (SLAP)
 ***CATEGORY  N1
 ***TYPE      DOUBLE PRECISION (SCPPLT-S, DCPPLT-D)
 ***KEYWORDS  DIAGNOSTICS, LINEAR SYSTEM, SLAP SPARSE
 ***AUTHOR  Seager, Mark K., (LLNL)
              Lawrence Livermore National Laboratory
              PO BOX 808, L-60
              Livermore, CA 94550 (510) 423-3141
              seager@llnl.gov
 ***DESCRIPTION
 
  *Usage:
      INTEGER N, NELT, IA(NELT), JA(NELT), ISYM, IUNIT
      DOUBLE PRECISION A(NELT)
 
      CALL DCPPLT( N, NELT, IA, JA, A, ISYM, IUNIT )
 
  *Arguments:
  N      :IN       Integer
          Order of the Matrix.
          If N.gt.MAXORD, only the leading MAXORD x MAXORD
          submatrix will be printed.  (Currently MAXORD = 225.)
  NELT   :IN       Integer.
          Number of non-zeros stored in A.
  IA     :IN       Integer IA(NELT).
  JA     :IN       Integer JA(NELT).
  A      :IN       Double Precision A(NELT).
          These arrays should hold the matrix A in the SLAP
          Column format.  See "Description", below.
  ISYM   :IN       Integer.
          Flag to indicate symmetric storage format.
          If ISYM=0, all non-zero entries of the matrix are stored.
          If ISYM=1, the matrix is symmetric, and only the lower
          triangle of the matrix is stored.
  IUNIT  :IN       Integer.
          Fortran logical I/O device unit number to write the matrix
          to.  This unit must be connected in a system dependent fashion
          to a file or the console or you will get a nasty message
          from the Fortran I/O libraries.
 
  *Description:
        This routine prints out a SLAP  Column format matrix  to the
        Fortran logical I/O unit   number  IUNIT.  The  numbers them
        selves  are not printed  out, but   rather  a one  character
        representation of the numbers.   Elements of the matrix that
        are not represented in the (IA,JA,A)  arrays are  denoted by
        ' ' character (a blank).  Elements of A that are *ZERO* (and
        hence  should  really not be  stored) are  denoted  by a '0'
        character.  Elements of A that are *POSITIVE* are denoted by
        'D' if they are Diagonal elements  and '#' if  they are off
        Diagonal  elements.  Elements of  A that are *NEGATIVE* are
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        denoted by 'N'  if they  are Diagonal  elements and  '*' if
        they are off Diagonal elements.
 
        =================== S L A P Column format ==================
 
        This routine  requires that  the matrix A  be stored in  the
        SLAP Column format.  In this format the non-zeros are stored
        counting down columns (except for  the diagonal entry, which
        must appear first in each  "column")  and are stored  in the
        double precision array A.   In other words,  for each column
        in the matrix put the diagonal entry in  A.  Then put in the
        other non-zero  elements going down  the column (except  the
        diagonal) in order.   The  IA array holds the  row index for
        each non-zero.  The JA array holds the offsets  into the IA,
        A arrays  for  the  beginning  of each   column.   That  is,
        IA(JA(ICOL)),  A(JA(ICOL)) points   to the beginning  of the
        ICOL-th   column    in    IA and   A.      IA(JA(ICOL+1)-1),
        A(JA(ICOL+1)-1) points to  the  end of the   ICOL-th column.
        Note that we always have  JA(N+1) = NELT+1,  where N is  the
        number of columns in  the matrix and NELT  is the number  of
        non-zeros in the matrix.
 
        Here is an example of the  SLAP Column  storage format for a
        5x5 Matrix (in the A and IA arrays '|'  denotes the end of a
        column):
 
            5x5 Matrix      SLAP Column format for 5x5 matrix on left.
                               1  2  3    4  5    6  7    8    9 10 11
        |11 12  0  0 15|   A: 11 21 51 | 22 12 | 33 53 | 44 | 55 15 35
        |21 22  0  0  0|  IA:  1  2  5 |  2  1 |  3  5 |  4 |  5  1  3
        | 0  0 33  0 35|  JA:  1  4  6    8  9   12
        | 0  0  0 44  0|
        |51  0 53  0 55|
 
  *Cautions:
      This routine will attempt to write to the Fortran logical output
      unit IUNIT, if IUNIT .ne. 0.  Thus, the user must make sure that
      this logical unit is attached to a file or terminal before calling
      this routine with a non-zero value for IUNIT.  This routine does
      not check for the validity of a non-zero IUNIT unit number.
 
  *Portability:
      This routine, as distributed, can generate lines up to 229
      characters long.  Some Fortran systems have more restricted
      line lengths.  Change parameter MAXORD and the large number
      in FORMAT 1010 to reduce this line length.
 
 ***REFERENCES  (NONE)
 ***ROUTINES CALLED  (NONE)
 ***REVISION HISTORY  (YYMMDD)
    871119  DATE WRITTEN
    881213  Previous REVISION DATE
    890915  Made changes requested at July 1989 CML Meeting.  (MKS)
    890922  Numerous changes to prologue to make closer to SLATEC
            standard.  (FNF)
    890929  Numerous changes to reduce SP/DP differences.  (FNF)
    910411  Prologue converted to Version 4.0 format.  (BAB)
    920511  Added complete declaration section.  (WRB)
    921007  Replaced hard-wired 225 with parameter MAXORD.  (FNF)
    921021  Corrected syntax of CHARACTER declaration.  (FNF)
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    921026  Corrected D to E in output format.  (FNF)
    930701  Updated CATEGORY section.  (FNF, WRB)
    END PROLOGUE
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DCSEVL

      DOUBLE PRECISION FUNCTION DCSEVL (X, CS, N)
 ***BEGIN PROLOGUE  DCSEVL
 ***PURPOSE  Evaluate a Chebyshev series.
 ***LIBRARY   SLATEC (FNLIB)
 ***CATEGORY  C3A2
 ***TYPE      DOUBLE PRECISION (CSEVL-S, DCSEVL-D)
 ***KEYWORDS  CHEBYSHEV SERIES, FNLIB, SPECIAL FUNCTIONS
 ***AUTHOR  Fullerton, W., (LANL)
 ***DESCRIPTION
 
   Evaluate the N-term Chebyshev series CS at X.  Adapted from
   a method presented in the paper by Broucke referenced below.
 
        Input Arguments --
   X    value at which the series is to be evaluated.
   CS   array of N terms of a Chebyshev series.  In evaluating
        CS, only half the first coefficient is summed.
   N    number of terms in array CS.
 
 ***REFERENCES  R. Broucke, Ten subroutines for the manipulation of
                  Chebyshev series, Algorithm 446, Communications of
                  the A.C.M. 16, (1973) pp. 254-256.
                L. Fox and I. B. Parker, Chebyshev Polynomials in
                  Numerical Analysis, Oxford University Press, 1968,
                  page 56.
 ***ROUTINES CALLED  D1MACH, XERMSG
 ***REVISION HISTORY  (YYMMDD)
    770401  DATE WRITTEN
    890831  Modified array declarations.  (WRB)
    890831  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    900315  CALLs to XERROR changed to CALLs to XERMSG.  (THJ)
    900329  Prologued revised extensively and code rewritten to allow
            X to be slightly outside interval (-1,+1).  (WRB)
    920501  Reformatted the REFERENCES section.  (WRB)
    END PROLOGUE
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DCV

      SUBROUTINE DCV (XVAL, NDATA, NCONST, NORD, NBKPT,
     +   BKPT, W)
 ***BEGIN PROLOGUE  DCV
 ***PURPOSE  Evaluate the variance function of the curve obtained
             by the constrained B-spline fitting subprogram DFC.
 ***LIBRARY   SLATEC
 ***CATEGORY  L7A3
 ***TYPE      DOUBLE PRECISION (CV-S, DCV-D)
 ***KEYWORDS  ANALYSIS OF COVARIANCE, B-SPLINE,
              CONSTRAINED LEAST SQUARES, CURVE FITTING
 ***AUTHOR  Hanson, R. J., (SNLA)
 ***DESCRIPTION
 
      DCV( ) is a companion function subprogram for DFC( ).  The
      documentation for DFC( ) has complete usage instructions.
 
      DCV( ) is used to evaluate the variance function of the curve
      obtained by the constrained B-spline fitting subprogram, DFC( ).
      The variance function defines the square of the probable error
      of the fitted curve at any point, XVAL.  One can use the square
      root of this variance function to determine a probable error band
      around the fitted curve.
 
      DCV( ) is used after a call to DFC( ).  MODE, an input variable to
      DFC( ), is used to indicate if the variance function is desired.
      In order to use DCV( ), MODE must equal 2 or 4 on input to DFC( ).
      MODE is also used as an output flag from DFC( ).  Check to make
      sure that MODE = 0 after calling DFC( ), indicating a successful
      constrained curve fit.  The array SDDATA, as input to DFC( ), must
      also be defined with the standard deviation or uncertainty of the
      Y values to use DCV( ).
 
      To evaluate the variance function after calling DFC( ) as stated
      above, use DCV( ) as shown here
 
           VAR=DCV(XVAL,NDATA,NCONST,NORD,NBKPT,BKPT,W)
 
      The variance function is given by
 
       VAR=(transpose of B(XVAL))*C*B(XVAL)/DBLE(MAX(NDATA-N,1))
 
      where N = NBKPT - NORD.
 
      The vector B(XVAL) is the B-spline basis function values at
      X=XVAL.  The covariance matrix, C, of the solution coefficients
      accounts only for the least squares equations and the explicitly
      stated equality constraints.  This fact must be considered when
      interpreting the variance function from a data fitting problem
      that has inequality constraints on the fitted curve.
 
      All the variables in the calling sequence for DCV( ) are used in
      DFC( ) except the variable XVAL.  Do not change the values of
      these variables between the call to DFC( ) and the use of DCV( ).
 
      The following is a brief description of the variables
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      XVAL    The point where the variance is desired, a double
              precision variable.
 
      NDATA   The number of discrete (X,Y) pairs for which DFC( )
              calculated a piece-wise polynomial curve.
 
      NCONST  The number of conditions that constrained the B-spline in
              DFC( ).
 
      NORD    The order of the B-spline used in DFC( ).
              The value of NORD must satisfy 1 < NORD < 20 .
 
              (The order of the spline is one more than the degree of
              the piece-wise polynomial defined on each interval.  This
              is consistent with the B-spline package convention.  For
              example, NORD=4 when we are using piece-wise cubics.)
 
      NBKPT   The number of knots in the array BKPT(*).
              The value of NBKPT must satisfy NBKPT .GE. 2*NORD.
 
      BKPT(*) The double precision array of knots.  Normally the problem
              data interval will be included between the limits
              BKPT(NORD) and BKPT(NBKPT-NORD+1).  The additional end
              knots BKPT(I),I=1,...,NORD-1 and I=NBKPT-NORD+2,...,NBKPT,
              are required by DFC( ) to compute the functions used to
              fit the data.
 
      W(*)    Double precision work array as used in DFC( ).  See DFC( )
              for the required length of W(*).  The contents of W(*)
              must not be modified by the user if the variance function
              is desired.
 
 ***REFERENCES  R. J. Hanson, Constrained least squares curve fitting
                  to discrete data using B-splines, a users guide,
                  Report SAND78-1291, Sandia Laboratories, December
                  1978.
 ***ROUTINES CALLED  DDOT, DFSPVN
 ***REVISION HISTORY  (YYMMDD)
    780801  DATE WRITTEN
    890531  Changed all specific intrinsics to generic.  (WRB)
    890831  Modified array declarations.  (WRB)
    890911  Removed unnecessary intrinsics.  (WRB)
    891006  Cosmetic changes to prologue.  (WRB)
    891006  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    920501  Reformatted the REFERENCES section.  (WRB)
    END PROLOGUE
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DDASSL

      SUBROUTINE DDASSL (RES, NEQ, T, Y, YPRIME, TOUT, INFO, RTOL, ATOL,
     *   IDID, RWORK, LRW, IWORK, LIW, RPAR, IPAR, JAC)
 ***BEGIN PROLOGUE  DDASSL
 ***PURPOSE  This code solves a system of differential/algebraic
             equations of the form G(T,Y,YPRIME) = 0.
 ***LIBRARY   SLATEC (DASSL)
 ***CATEGORY  I1A2
 ***TYPE      DOUBLE PRECISION (SDASSL-S, DDASSL-D)
 ***KEYWORDS  BACKWARD DIFFERENTIATION FORMULAS, DASSL,
              DIFFERENTIAL/ALGEBRAIC, IMPLICIT DIFFERENTIAL SYSTEMS
 ***AUTHOR  Petzold, Linda R., (LLNL)
              Computing and Mathematics Research Division
              Lawrence Livermore National Laboratory
              L - 316, P.O. Box 808,
              Livermore, CA.    94550
 ***DESCRIPTION
 
  *Usage:
 
       EXTERNAL RES, JAC
       INTEGER NEQ, INFO(N), IDID, LRW, LIW, IWORK(LIW), IPAR
       DOUBLE PRECISION T, Y(NEQ), YPRIME(NEQ), TOUT, RTOL, ATOL,
      *   RWORK(LRW), RPAR
 
       CALL DDASSL (RES, NEQ, T, Y, YPRIME, TOUT, INFO, RTOL, ATOL,
      *   IDID, RWORK, LRW, IWORK, LIW, RPAR, IPAR, JAC)
 
 
  *Arguments:
   (In the following, all real arrays should be type DOUBLE PRECISION.)
 
   RES:EXT     This is a subroutine which you provide to define the
               differential/algebraic system.
 
   NEQ:IN      This is the number of equations to be solved.
 
   T:INOUT     This is the current value of the independent variable.
 
   Y(*):INOUT  This array contains the solution components at T.
 
   YPRIME(*):INOUT  This array contains the derivatives of the solution
               components at T.
 
   TOUT:IN     This is a point at which a solution is desired.
 
   INFO(N):IN  The basic task of the code is to solve the system from T
               to TOUT and return an answer at TOUT.  INFO is an integer
               array which is used to communicate exactly how you want
               this task to be carried out.  (See below for details.)
               N must be greater than or equal to 15.
 
   RTOL,ATOL:INOUT  These quantities represent relative and absolute
               error tolerances which you provide to indicate how
               accurately you wish the solution to be computed.  You
               may choose them to be both scalars or else both vectors.
               Caution:  In Fortran 77, a scalar is not the same as an
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                         array of length 1.  Some compilers may object
                         to using scalars for RTOL,ATOL.
 
   IDID:OUT    This scalar quantity is an indicator reporting what the
               code did.  You must monitor this integer variable to
               decide  what action to take next.
 
   RWORK:WORK  A real work array of length LRW which provides the
               code with needed storage space.
 
   LRW:IN      The length of RWORK.  (See below for required length.)
 
   IWORK:WORK  An integer work array of length LIW which provides the
               code with needed storage space.
 
   LIW:IN      The length of IWORK.  (See below for required length.)
 
   RPAR,IPAR:IN  These are real and integer parameter arrays which
               you can use for communication between your calling
               program and the RES subroutine (and the JAC subroutine)
 
   JAC:EXT     This is the name of a subroutine which you may choose
               to provide for defining a matrix of partial derivatives
               described below.
 
   Quantities which may be altered by DDASSL are:
      T, Y(*), YPRIME(*), INFO(1), RTOL, ATOL,
      IDID, RWORK(*) AND IWORK(*)
 
  *Description
 
   Subroutine DDASSL uses the backward differentiation formulas of
   orders one through five to solve a system of the above form for Y and
   YPRIME.  Values for Y and YPRIME at the initial time must be given as
   input.  These values must be consistent, (that is, if T,Y,YPRIME are
   the given initial values, they must satisfy G(T,Y,YPRIME) = 0.).  The
   subroutine solves the system from T to TOUT.  It is easy to continue
   the solution to get results at additional TOUT.  This is the interval
   mode of operation.  Intermediate results can also be obtained easily
   by using the intermediate-output capability.
 
   The following detailed description is divided into subsections:
     1. Input required for the first call to DDASSL.
     2. Output after any return from DDASSL.
     3. What to do to continue the integration.
     4. Error messages.
 
 
   -------- INPUT -- WHAT TO DO ON THE FIRST CALL TO DDASSL ------------
 
   The first call of the code is defined to be the start of each new
   problem. Read through the descriptions of all the following items,
   provide sufficient storage space for designated arrays, set
   appropriate variables for the initialization of the problem, and
   give information about how you want the problem to be solved.
 
 
   RES -- Provide a subroutine of the form
              SUBROUTINE RES(T,Y,YPRIME,DELTA,IRES,RPAR,IPAR)
          to define the system of differential/algebraic

SLATEC3 (DACOSH through DS2Y) - 157



          equations which is to be solved. For the given values
          of T,Y and YPRIME, the subroutine should
          return the residual of the differential/algebraic
          system
              DELTA = G(T,Y,YPRIME)
          (DELTA(*) is a vector of length NEQ which is
          output for RES.)
 
          Subroutine RES must not alter T,Y or YPRIME.
          You must declare the name RES in an external
          statement in your program that calls DDASSL.
          You must dimension Y,YPRIME and DELTA in RES.
 
          IRES is an integer flag which is always equal to
          zero on input. Subroutine RES should alter IRES
          only if it encounters an illegal value of Y or
          a stop condition. Set IRES = -1 if an input value
          is illegal, and DDASSL will try to solve the problem
          without getting IRES = -1. If IRES = -2, DDASSL
          will return control to the calling program
          with IDID = -11.
 
          RPAR and IPAR are real and integer parameter arrays which
          you can use for communication between your calling program
          and subroutine RES. They are not altered by DDASSL. If you
          do not need RPAR or IPAR, ignore these parameters by treat-
          ing them as dummy arguments. If you do choose to use them,
          dimension them in your calling program and in RES as arrays
          of appropriate length.
 
   NEQ -- Set it to the number of differential equations.
          (NEQ .GE. 1)
 
   T -- Set it to the initial point of the integration.
          T must be defined as a variable.
 
   Y(*) -- Set this vector to the initial values of the NEQ solution
          components at the initial point. You must dimension Y of
          length at least NEQ in your calling program.
 
   YPRIME(*) -- Set this vector to the initial values of the NEQ
          first derivatives of the solution components at the initial
          point.  You must dimension YPRIME at least NEQ in your
          calling program. If you do not know initial values of some
          of the solution components, see the explanation of INFO(11).
 
   TOUT -- Set it to the first point at which a solution
          is desired. You can not take TOUT = T.
          integration either forward in T (TOUT .GT. T) or
          backward in T (TOUT .LT. T) is permitted.
 
          The code advances the solution from T to TOUT using
          step sizes which are automatically selected so as to
          achieve the desired accuracy. If you wish, the code will
          return with the solution and its derivative at
          intermediate steps (intermediate-output mode) so that
          you can monitor them, but you still must provide TOUT in
          accord with the basic aim of the code.
 
          The first step taken by the code is a critical one
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          because it must reflect how fast the solution changes near
          the initial point. The code automatically selects an
          initial step size which is practically always suitable for
          the problem. By using the fact that the code will not step
          past TOUT in the first step, you could, if necessary,
          restrict the length of the initial step size.
 
          For some problems it may not be permissible to integrate
          past a point TSTOP because a discontinuity occurs there
          or the solution or its derivative is not defined beyond
          TSTOP. When you have declared a TSTOP point (SEE INFO(4)
          and RWORK(1)), you have told the code not to integrate
          past TSTOP. In this case any TOUT beyond TSTOP is invalid
          input.
 
   INFO(*) -- Use the INFO array to give the code more details about
          how you want your problem solved.  This array should be
          dimensioned of length 15, though DDASSL uses only the first
          eleven entries.  You must respond to all of the following
          items, which are arranged as questions.  The simplest use
          of the code corresponds to answering all questions as yes,
          i.e. setting all entries of INFO to 0.
 
        INFO(1) - This parameter enables the code to initialize
               itself. You must set it to indicate the start of every
               new problem.
 
           **** Is this the first call for this problem ...
                 Yes - Set INFO(1) = 0
                  No - Not applicable here.
                       See below for continuation calls.  ****
 
        INFO(2) - How much accuracy you want of your solution
               is specified by the error tolerances RTOL and ATOL.
               The simplest use is to take them both to be scalars.
               To obtain more flexibility, they can both be vectors.
               The code must be told your choice.
 
           **** Are both error tolerances RTOL, ATOL scalars ...
                 Yes - Set INFO(2) = 0
                       and input scalars for both RTOL and ATOL
                  No - Set INFO(2) = 1
                       and input arrays for both RTOL and ATOL ****
 
        INFO(3) - The code integrates from T in the direction
               of TOUT by steps. If you wish, it will return the
               computed solution and derivative at the next
               intermediate step (the intermediate-output mode) or
               TOUT, whichever comes first. This is a good way to
               proceed if you want to see the behavior of the solution.
               If you must have solutions at a great many specific
               TOUT points, this code will compute them efficiently.
 
           **** Do you want the solution only at
                 TOUT (and not at the next intermediate step) ...
                  Yes - Set INFO(3) = 0
                   No - Set INFO(3) = 1 ****
 
        INFO(4) - To handle solutions at a great many specific
               values TOUT efficiently, this code may integrate past
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               TOUT and interpolate to obtain the result at TOUT.
               Sometimes it is not possible to integrate beyond some
               point TSTOP because the equation changes there or it is
               not defined past TSTOP. Then you must tell the code
               not to go past.
 
            **** Can the integration be carried out without any
                 restrictions on the independent variable T ...
                  Yes - Set INFO(4)=0
                   No - Set INFO(4)=1
                        and define the stopping point TSTOP by
                        setting RWORK(1)=TSTOP ****
 
        INFO(5) - To solve differential/algebraic problems it is
               necessary to use a matrix of partial derivatives of the
               system of differential equations. If you do not
               provide a subroutine to evaluate it analytically (see
               description of the item JAC in the call list), it will
               be approximated by numerical differencing in this code.
               although it is less trouble for you to have the code
               compute partial derivatives by numerical differencing,
               the solution will be more reliable if you provide the
               derivatives via JAC. Sometimes numerical differencing
               is cheaper than evaluating derivatives in JAC and
               sometimes it is not - this depends on your problem.
 
            **** Do you want the code to evaluate the partial
                 derivatives automatically by numerical differences ...
                    Yes - Set INFO(5)=0
                     No - Set INFO(5)=1
                   and provide subroutine JAC for evaluating the
                   matrix of partial derivatives ****
 
        INFO(6) - DDASSL will perform much better if the matrix of
               partial derivatives, DG/DY + CJ*DG/DYPRIME,
               (here CJ is a scalar determined by DDASSL)
               is banded and the code is told this. In this
               case, the storage needed will be greatly reduced,
               numerical differencing will be performed much cheaper,
               and a number of important algorithms will execute much
               faster. The differential equation is said to have
               half-bandwidths ML (lower) and MU (upper) if equation i
               involves only unknowns Y(J) with
                              I-ML .LE. J .LE. I+MU
               for all I=1,2,...,NEQ. Thus, ML and MU are the widths
               of the lower and upper parts of the band, respectively,
               with the main diagonal being excluded. If you do not
               indicate that the equation has a banded matrix of partial
               derivatives, the code works with a full matrix of NEQ**2
               elements (stored in the conventional way). Computations
               with banded matrices cost less time and storage than with
               full matrices if 2*ML+MU .LT. NEQ. If you tell the
               code that the matrix of partial derivatives has a banded
               structure and you want to provide subroutine JAC to
               compute the partial derivatives, then you must be careful
               to store the elements of the matrix in the special form
               indicated in the description of JAC.
 
           **** Do you want to solve the problem using a full
                (dense) matrix (and not a special banded
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                structure) ...
                 Yes - Set INFO(6)=0
                  No - Set INFO(6)=1
                        and provide the lower (ML) and upper (MU)
                        bandwidths by setting
                        IWORK(1)=ML
                        IWORK(2)=MU ****
 
 
         INFO(7) -- You can specify a maximum (absolute value of)
               stepsize, so that the code
               will avoid passing over very
               large regions.
 
           ****  Do you want the code to decide
                 on its own maximum stepsize?
                 Yes - Set INFO(7)=0
                  No - Set INFO(7)=1
                       and define HMAX by setting
                       RWORK(2)=HMAX ****
 
         INFO(8) -- Differential/algebraic problems
               may occasionally suffer from
               severe scaling difficulties on the
               first step. If you know a great deal
               about the scaling of your problem, you can
               help to alleviate this problem by
               specifying an initial stepsize HO.
 
           ****  Do you want the code to define
                 its own initial stepsize?
                 Yes - Set INFO(8)=0
                  No - Set INFO(8)=1
                       and define HO by setting
                       RWORK(3)=HO ****
 
         INFO(9) -- If storage is a severe problem,
               you can save some locations by
               restricting the maximum order MAXORD.
               the default value is 5. for each
               order decrease below 5, the code
               requires NEQ fewer locations, however
               it is likely to be slower. In any
               case, you must have 1 .LE. MAXORD .LE. 5
           ****  Do you want the maximum order to
                 default to 5?
                 Yes - Set INFO(9)=0
                  No - Set INFO(9)=1
                       and define MAXORD by setting
                       IWORK(3)=MAXORD ****
 
         INFO(10) --If you know that the solutions to your equations
                will always be nonnegative, it may help to set this
                parameter. However, it is probably best to
                try the code without using this option first,
                and only to use this option if that doesn't
                work very well.
            ****  Do you want the code to solve the problem without
                  invoking any special nonnegativity constraints?
                   Yes - Set INFO(10)=0
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                    No - Set INFO(10)=1
 
         INFO(11) --DDASSL normally requires the initial T,
                Y, and YPRIME to be consistent. That is,
                you must have G(T,Y,YPRIME) = 0 at the initial
                time. If you do not know the initial
                derivative precisely, you can let DDASSL try
                to compute it.
           ****   Are the initial T, Y, YPRIME consistent?
                  Yes - Set INFO(11) = 0
                   No - Set INFO(11) = 1,
                        and set YPRIME to an initial approximation
                        to YPRIME.  (If you have no idea what
                        YPRIME should be, set it to zero. Note
                        that the initial Y should be such
                        that there must exist a YPRIME so that
                        G(T,Y,YPRIME) = 0.)
 
   RTOL, ATOL -- You must assign relative (RTOL) and absolute (ATOL
          error tolerances to tell the code how accurately you
          want the solution to be computed.  They must be defined
          as variables because the code may change them.  You
          have two choices --
                Both RTOL and ATOL are scalars. (INFO(2)=0)
                Both RTOL and ATOL are vectors. (INFO(2)=1)
          in either case all components must be non-negative.
 
          The tolerances are used by the code in a local error
          test at each step which requires roughly that
                ABS(LOCAL ERROR) .LE. RTOL*ABS(Y)+ATOL
          for each vector component.
          (More specifically, a root-mean-square norm is used to
          measure the size of vectors, and the error test uses the
          magnitude of the solution at the beginning of the step.)
 
          The true (global) error is the difference between the
          true solution of the initial value problem and the
          computed approximation.  Practically all present day
          codes, including this one, control the local error at
          each step and do not even attempt to control the global
          error directly.
          Usually, but not always, the true accuracy of the
          computed Y is comparable to the error tolerances. This
          code will usually, but not always, deliver a more
          accurate solution if you reduce the tolerances and
          integrate again.  By comparing two such solutions you
          can get a fairly reliable idea of the true error in the
          solution at the bigger tolerances.
 
          Setting ATOL=0. results in a pure relative error test on
          that component.  Setting RTOL=0. results in a pure
          absolute error test on that component.  A mixed test
          with non-zero RTOL and ATOL corresponds roughly to a
          relative error test when the solution component is much
          bigger than ATOL and to an absolute error test when the
          solution component is smaller than the threshhold ATOL.
 
          The code will not attempt to compute a solution at an
          accuracy unreasonable for the machine being used.  It will
          advise you if you ask for too much accuracy and inform
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          you as to the maximum accuracy it believes possible.
 
   RWORK(*) --  Dimension this real work array of length LRW in your
          calling program.
 
   LRW -- Set it to the declared length of the RWORK array.
                You must have
                     LRW .GE. 40+(MAXORD+4)*NEQ+NEQ**2
                for the full (dense) JACOBIAN case (when INFO(6)=0), or
                     LRW .GE. 40+(MAXORD+4)*NEQ+(2*ML+MU+1)*NEQ
                for the banded user-defined JACOBIAN case
                (when INFO(5)=1 and INFO(6)=1), or
                      LRW .GE. 40+(MAXORD+4)*NEQ+(2*ML+MU+1)*NEQ
                            +2*(NEQ/(ML+MU+1)+1)
                for the banded finite-difference-generated JACOBIAN case
                (when INFO(5)=0 and INFO(6)=1)
 
   IWORK(*) --  Dimension this integer work array of length LIW in
          your calling program.
 
   LIW -- Set it to the declared length of the IWORK array.
                You must have LIW .GE. 20+NEQ
 
   RPAR, IPAR -- These are parameter arrays, of real and integer
          type, respectively.  You can use them for communication
          between your program that calls DDASSL and the
          RES subroutine (and the JAC subroutine).  They are not
          altered by DDASSL.  If you do not need RPAR or IPAR,
          ignore these parameters by treating them as dummy
          arguments.  If you do choose to use them, dimension
          them in your calling program and in RES (and in JAC)
          as arrays of appropriate length.
 
   JAC -- If you have set INFO(5)=0, you can ignore this parameter
          by treating it as a dummy argument.  Otherwise, you must
          provide a subroutine of the form
              SUBROUTINE JAC(T,Y,YPRIME,PD,CJ,RPAR,IPAR)
          to define the matrix of partial derivatives
              PD=DG/DY+CJ*DG/DYPRIME
          CJ is a scalar which is input to JAC.
          For the given values of T,Y,YPRIME, the
          subroutine must evaluate the non-zero partial
          derivatives for each equation and each solution
          component, and store these values in the
          matrix PD.  The elements of PD are set to zero
          before each call to JAC so only non-zero elements
          need to be defined.
 
          Subroutine JAC must not alter T,Y,(*),YPRIME(*), or CJ.
          You must declare the name JAC in an EXTERNAL statement in
          your program that calls DDASSL.  You must dimension Y,
          YPRIME and PD in JAC.
 
          The way you must store the elements into the PD matrix
          depends on the structure of the matrix which you
          indicated by INFO(6).
                *** INFO(6)=0 -- Full (dense) matrix ***
                    Give PD a first dimension of NEQ.
                    When you evaluate the (non-zero) partial derivative
                    of equation I with respect to variable J, you must
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                    store it in PD according to
                    PD(I,J) = "DG(I)/DY(J)+CJ*DG(I)/DYPRIME(J)"
                *** INFO(6)=1 -- Banded JACOBIAN with ML lower and MU
                    upper diagonal bands (refer to INFO(6) description
                    of ML and MU) ***
                    Give PD a first dimension of 2*ML+MU+1.
                    when you evaluate the (non-zero) partial derivative
                    of equation I with respect to variable J, you must
                    store it in PD according to
                    IROW = I - J + ML + MU + 1
                    PD(IROW,J) = "DG(I)/DY(J)+CJ*DG(I)/DYPRIME(J)"
 
          RPAR and IPAR are real and integer parameter arrays
          which you can use for communication between your calling
          program and your JACOBIAN subroutine JAC. They are not
          altered by DDASSL. If you do not need RPAR or IPAR,
          ignore these parameters by treating them as dummy
          arguments. If you do choose to use them, dimension
          them in your calling program and in JAC as arrays of
          appropriate length.
 
 
   OPTIONALLY REPLACEABLE NORM ROUTINE:
 
      DDASSL uses a weighted norm DDANRM to measure the size
      of vectors such as the estimated error in each step.
      A FUNCTION subprogram
        DOUBLE PRECISION FUNCTION DDANRM(NEQ,V,WT,RPAR,IPAR)
        DIMENSION V(NEQ),WT(NEQ)
      is used to define this norm. Here, V is the vector
      whose norm is to be computed, and WT is a vector of
      weights.  A DDANRM routine has been included with DDASSL
      which computes the weighted root-mean-square norm
      given by
        DDANRM=SQRT((1/NEQ)*SUM(V(I)/WT(I))**2)
      this norm is suitable for most problems. In some
      special cases, it may be more convenient and/or
      efficient to define your own norm by writing a function
      subprogram to be called instead of DDANRM. This should,
      however, be attempted only after careful thought and
      consideration.
 
 
   -------- OUTPUT -- AFTER ANY RETURN FROM DDASSL ---------------------
 
   The principal aim of the code is to return a computed solution at
   TOUT, although it is also possible to obtain intermediate results
   along the way. To find out whether the code achieved its goal
   or if the integration process was interrupted before the task was
   completed, you must check the IDID parameter.
 
 
   T -- The solution was successfully advanced to the
                output value of T.
 
   Y(*) -- Contains the computed solution approximation at T.
 
   YPRIME(*) -- Contains the computed derivative
                approximation at T.
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   IDID -- Reports what the code did.
 
                      *** Task completed ***
                 Reported by positive values of IDID
 
            IDID = 1 -- A step was successfully taken in the
                    intermediate-output mode. The code has not
                    yet reached TOUT.
 
            IDID = 2 -- The integration to TSTOP was successfully
                    completed (T=TSTOP) by stepping exactly to TSTOP.
 
            IDID = 3 -- The integration to TOUT was successfully
                    completed (T=TOUT) by stepping past TOUT.
                    Y(*) is obtained by interpolation.
                    YPRIME(*) is obtained by interpolation.
 
                     *** Task interrupted ***
                 Reported by negative values of IDID
 
            IDID = -1 -- A large amount of work has been expended.
                    (About 500 steps)
 
            IDID = -2 -- The error tolerances are too stringent.
 
            IDID = -3 -- The local error test cannot be satisfied
                    because you specified a zero component in ATOL
                    and the corresponding computed solution
                    component is zero. Thus, a pure relative error
                    test is impossible for this component.
 
            IDID = -6 -- DDASSL had repeated error test
                    failures on the last attempted step.
 
            IDID = -7 -- The corrector could not converge.
 
            IDID = -8 -- The matrix of partial derivatives
                    is singular.
 
            IDID = -9 -- The corrector could not converge.
                    there were repeated error test failures
                    in this step.
 
            IDID =-10 -- The corrector could not converge
                    because IRES was equal to minus one.
 
            IDID =-11 -- IRES equal to -2 was encountered
                    and control is being returned to the
                    calling program.
 
            IDID =-12 -- DDASSL failed to compute the initial
                    YPRIME.
 
 
 
            IDID = -13,..,-32 -- Not applicable for this code
 
                     *** Task terminated ***
                 Reported by the value of IDID=-33
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            IDID = -33 -- The code has encountered trouble from which
                    it cannot recover. A message is printed
                    explaining the trouble and control is returned
                    to the calling program. For example, this occurs
                    when invalid input is detected.
 
   RTOL, ATOL -- These quantities remain unchanged except when
                IDID = -2. In this case, the error tolerances have been
                increased by the code to values which are estimated to
                be appropriate for continuing the integration. However,
                the reported solution at T was obtained using the input
                values of RTOL and ATOL.
 
   RWORK, IWORK -- Contain information which is usually of no
                interest to the user but necessary for subsequent calls.
                However, you may find use for
 
                RWORK(3)--Which contains the step size H to be
                        attempted on the next step.
 
                RWORK(4)--Which contains the current value of the
                        independent variable, i.e., the farthest point
                        integration has reached. This will be different
                        from T only when interpolation has been
                        performed (IDID=3).
 
                RWORK(7)--Which contains the stepsize used
                        on the last successful step.
 
                IWORK(7)--Which contains the order of the method to
                        be attempted on the next step.
 
                IWORK(8)--Which contains the order of the method used
                        on the last step.
 
                IWORK(11)--Which contains the number of steps taken so
                         far.
 
                IWORK(12)--Which contains the number of calls to RES
                         so far.
 
                IWORK(13)--Which contains the number of evaluations of
                         the matrix of partial derivatives needed so
                         far.
 
                IWORK(14)--Which contains the total number
                         of error test failures so far.
 
                IWORK(15)--Which contains the total number
                         of convergence test failures so far.
                         (includes singular iteration matrix
                         failures.)
 
 
   -------- INPUT -- WHAT TO DO TO CONTINUE THE INTEGRATION ------------
                     (CALLS AFTER THE FIRST)
 
   This code is organized so that subsequent calls to continue the
   integration involve little (if any) additional effort on your
   part. You must monitor the IDID parameter in order to determine
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   what to do next.
 
   Recalling that the principal task of the code is to integrate
   from T to TOUT (the interval mode), usually all you will need
   to do is specify a new TOUT upon reaching the current TOUT.
 
   Do not alter any quantity not specifically permitted below,
   in particular do not alter NEQ,T,Y(*),YPRIME(*),RWORK(*),IWORK(*)
   or the differential equation in subroutine RES. Any such
   alteration constitutes a new problem and must be treated as such,
   i.e., you must start afresh.
 
   You cannot change from vector to scalar error control or vice
   versa (INFO(2)), but you can change the size of the entries of
   RTOL, ATOL. Increasing a tolerance makes the equation easier
   to integrate. Decreasing a tolerance will make the equation
   harder to integrate and should generally be avoided.
 
   You can switch from the intermediate-output mode to the
   interval mode (INFO(3)) or vice versa at any time.
 
   If it has been necessary to prevent the integration from going
   past a point TSTOP (INFO(4), RWORK(1)), keep in mind that the
   code will not integrate to any TOUT beyond the currently
   specified TSTOP. Once TSTOP has been reached you must change
   the value of TSTOP or set INFO(4)=0. You may change INFO(4)
   or TSTOP at any time but you must supply the value of TSTOP in
   RWORK(1) whenever you set INFO(4)=1.
 
   Do not change INFO(5), INFO(6), IWORK(1), or IWORK(2)
   unless you are going to restart the code.
 
                  *** Following a completed task ***
   If
      IDID = 1, call the code again to continue the integration
                   another step in the direction of TOUT.
 
      IDID = 2 or 3, define a new TOUT and call the code again.
                   TOUT must be different from T. You cannot change
                   the direction of integration without restarting.
 
                  *** Following an interrupted task ***
                To show the code that you realize the task was
                interrupted and that you want to continue, you
                must take appropriate action and set INFO(1) = 1
   If
     IDID = -1, The code has taken about 500 steps.
                   If you want to continue, set INFO(1) = 1 and
                   call the code again. An additional 500 steps
                   will be allowed.
 
     IDID = -2, The error tolerances RTOL, ATOL have been
                   increased to values the code estimates appropriate
                   for continuing. You may want to change them
                   yourself. If you are sure you want to continue
                   with relaxed error tolerances, set INFO(1)=1 and
                   call the code again.
 
     IDID = -3, A solution component is zero and you set the
                   corresponding component of ATOL to zero. If you
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                   are sure you want to continue, you must first
                   alter the error criterion to use positive values
                   for those components of ATOL corresponding to zero
                   solution components, then set INFO(1)=1 and call
                   the code again.
 
     IDID = -4,-5  --- Cannot occur with this code.
 
     IDID = -6, Repeated error test failures occurred on the
                   last attempted step in DDASSL. A singularity in the
                   solution may be present. If you are absolutely
                   certain you want to continue, you should restart
                   the integration. (Provide initial values of Y and
                   YPRIME which are consistent)
 
     IDID = -7, Repeated convergence test failures occurred
                   on the last attempted step in DDASSL. An inaccurate
                   or ill-conditioned JACOBIAN may be the problem. If
                   you are absolutely certain you want to continue, you
                   should restart the integration.
 
     IDID = -8, The matrix of partial derivatives is singular.
                   Some of your equations may be redundant.
                   DDASSL cannot solve the problem as stated.
                   It is possible that the redundant equations
                   could be removed, and then DDASSL could
                   solve the problem. It is also possible
                   that a solution to your problem either
                   does not exist or is not unique.
 
     IDID = -9, DDASSL had multiple convergence test
                   failures, preceded by multiple error
                   test failures, on the last attempted step.
                   It is possible that your problem
                   is ill-posed, and cannot be solved
                   using this code. Or, there may be a
                   discontinuity or a singularity in the
                   solution. If you are absolutely certain
                   you want to continue, you should restart
                   the integration.
 
     IDID =-10, DDASSL had multiple convergence test failures
                   because IRES was equal to minus one.
                   If you are absolutely certain you want
                   to continue, you should restart the
                   integration.
 
     IDID =-11, IRES=-2 was encountered, and control is being
                   returned to the calling program.
 
     IDID =-12, DDASSL failed to compute the initial YPRIME.
                   This could happen because the initial
                   approximation to YPRIME was not very good, or
                   if a YPRIME consistent with the initial Y
                   does not exist. The problem could also be caused
                   by an inaccurate or singular iteration matrix.
 
     IDID = -13,..,-32  --- Cannot occur with this code.
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                  *** Following a terminated task ***
 
   If IDID= -33, you cannot continue the solution of this problem.
                   An attempt to do so will result in your
                   run being terminated.
 
 
   -------- ERROR MESSAGES ---------------------------------------------
 
       The SLATEC error print routine XERMSG is called in the event of
    unsuccessful completion of a task.  Most of these are treated as
    "recoverable errors", which means that (unless the user has directed
    otherwise) control will be returned to the calling program for
    possible action after the message has been printed.
 
    In the event of a negative value of IDID other than -33, an appro-
    priate message is printed and the "error number" printed by XERMSG
    is the value of IDID.  There are quite a number of illegal input
    errors that can lead to a returned value IDID=-33.  The conditions
    and their printed "error numbers" are as follows:
 
    Error number       Condition
 
         1       Some element of INFO vector is not zero or one.
         2       NEQ .le. 0
         3       MAXORD not in range.
         4       LRW is less than the required length for RWORK.
         5       LIW is less than the required length for IWORK.
         6       Some element of RTOL is .lt. 0
         7       Some element of ATOL is .lt. 0
         8       All elements of RTOL and ATOL are zero.
         9       INFO(4)=1 and TSTOP is behind TOUT.
        10       HMAX .lt. 0.0
        11       TOUT is behind T.
        12       INFO(8)=1 and H0=0.0
        13       Some element of WT is .le. 0.0
        14       TOUT is too close to T to start integration.
        15       INFO(4)=1 and TSTOP is behind T.
        16       --( Not used in this version )--
        17       ML illegal.  Either .lt. 0 or .gt. NEQ
        18       MU illegal.  Either .lt. 0 or .gt. NEQ
        19       TOUT = T.
 
    If DDASSL is called again without any action taken to remove the
    cause of an unsuccessful return, XERMSG will be called with a fatal
    error flag, which will cause unconditional termination of the
    program.  There are two such fatal errors:
 
    Error number -998:  The last step was terminated with a negative
        value of IDID other than -33, and no appropriate action was
        taken.
 
    Error number -999:  The previous call was terminated because of
        illegal input (IDID=-33) and there is illegal input in the
        present call, as well.  (Suspect infinite loop.)
 
   ---------------------------------------------------------------------
 
 ***REFERENCES  A DESCRIPTION OF DASSL: A DIFFERENTIAL/ALGEBRAIC
                  SYSTEM SOLVER, L. R. PETZOLD, SAND82-8637,
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                  SANDIA NATIONAL LABORATORIES, SEPTEMBER 1982.
 ***ROUTINES CALLED  D1MACH, DDAINI, DDANRM, DDASTP, DDATRP, DDAWTS,
                     XERMSG
 ***REVISION HISTORY  (YYMMDD)
    830315  DATE WRITTEN
    880387  Code changes made.  All common statements have been
            replaced by a DATA statement, which defines pointers into
            RWORK, and PARAMETER statements which define pointers
            into IWORK.  As well the documentation has gone through
            grammatical changes.
    881005  The prologue has been changed to mixed case.
            The subordinate routines had revision dates changed to
            this date, although the documentation for these routines
            is all upper case.  No code changes.
    890511  Code changes made.  The DATA statement in the declaration
            section of DDASSL was replaced with a PARAMETER
            statement.  Also the statement S = 100.D0 was removed
            from the top of the Newton iteration in DDASTP.
            The subordinate routines had revision dates changed to
            this date.
    890517  The revision date syntax was replaced with the revision
            history syntax.  Also the "DECK" comment was added to
            the top of all subroutines.  These changes are consistent
            with new SLATEC guidelines.
            The subordinate routines had revision dates changed to
            this date.  No code changes.
    891013  Code changes made.
            Removed all occurrences of FLOAT or DBLE.  All operations
            are now performed with "mixed-mode" arithmetic.
            Also, specific function names were replaced with generic
            function names to be consistent with new SLATEC guidelines.
            In particular:
               Replaced DSQRT with SQRT everywhere.
               Replaced DABS with ABS everywhere.
               Replaced DMIN1 with MIN everywhere.
               Replaced MIN0 with MIN everywhere.
               Replaced DMAX1 with MAX everywhere.
               Replaced MAX0 with MAX everywhere.
               Replaced DSIGN with SIGN everywhere.
            Also replaced REVISION DATE with REVISION HISTORY in all
            subordinate routines.
    901004  Miscellaneous changes to prologue to complete conversion
            to SLATEC 4.0 format.  No code changes.  (F.N.Fritsch)
    901009  Corrected GAMS classification code and converted subsidiary
            routines to 4.0 format.  No code changes.  (F.N.Fritsch)
    901010  Converted XERRWV calls to XERMSG calls.  (R.Clemens, AFWL)
    901019  Code changes made.
            Merged SLATEC 4.0 changes with previous changes made
            by C. Ulrich.  Below is a history of the changes made by
            C. Ulrich. (Changes in subsidiary routines are implied
            by this history)
            891228  Bug was found and repaired inside the DDASSL
                    and DDAINI routines.  DDAINI was incorrectly
                    returning the initial T with Y and YPRIME
                    computed at T+H.  The routine now returns T+H
                    rather than the initial T.
                    Cosmetic changes made to DDASTP.
            900904  Three modifications were made to fix a bug (inside
                    DDASSL) re interpolation for continuation calls and
                    cases where TN is very close to TSTOP:
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                    1) In testing for whether H is too large, just
                       compare H to (TSTOP - TN), rather than
                       (TSTOP - TN) * (1-4*UROUND), and set H to
                       TSTOP - TN.  This will force DDASTP to step
                       exactly to TSTOP under certain situations
                       (i.e. when H returned from DDASTP would otherwise
                       take TN beyond TSTOP).
 
                    2) Inside the DDASTP loop, interpolate exactly to
                       TSTOP if TN is very close to TSTOP (rather than
                       interpolating to within roundoff of TSTOP).
 
                    3) Modified IDID description for IDID = 2 to say
                       that the solution is returned by stepping exactly
                       to TSTOP, rather than TOUT.  (In some cases the
                       solution is actually obtained by extrapolating
                       over a distance near unit roundoff to TSTOP,
                       but this small distance is deemed acceptable in
                       these circumstances.)
    901026  Added explicit declarations for all variables and minor
            cosmetic changes to prologue, removed unreferenced labels,
            and improved XERMSG calls.  (FNF)
    901030  Added ERROR MESSAGES section and reworked other sections to
            be of more uniform format.  (FNF)
    910624  Fixed minor bug related to HMAX (six lines after label
            525).  (LRP)
    END PROLOGUE
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DDAWS

      DOUBLE PRECISION FUNCTION DDAWS (X)
 ***BEGIN PROLOGUE  DDAWS
 ***PURPOSE  Compute Dawson's function.
 ***LIBRARY   SLATEC (FNLIB)
 ***CATEGORY  C8C
 ***TYPE      DOUBLE PRECISION (DAWS-S, DDAWS-D)
 ***KEYWORDS  DAWSON'S FUNCTION, FNLIB, SPECIAL FUNCTIONS
 ***AUTHOR  Fullerton, W., (LANL)
 ***DESCRIPTION
 
  DDAWS(X) calculates the double precision Dawson's integral
  for double precision argument X.
 
  Series for DAW        on the interval  0.          to  1.00000E+00
                                         with weighted error   8.95E-32
                                          log weighted error  31.05
                                significant figures required  30.41
                                     decimal places required  31.71
 
  Series for DAW2       on the interval  0.          to  1.60000E+01
                                         with weighted error   1.61E-32
                                          log weighted error  31.79
                                significant figures required  31.40
                                     decimal places required  32.62
 
  Series for DAWA       on the interval  0.          to  6.25000E-02
                                         with weighted error   1.97E-32
                                          log weighted error  31.71
                                significant figures required  29.79
                                     decimal places required  32.64
 
 ***REFERENCES  (NONE)
 ***ROUTINES CALLED  D1MACH, DCSEVL, INITDS, XERMSG
 ***REVISION HISTORY  (YYMMDD)
    780401  DATE WRITTEN
    890531  Changed all specific intrinsics to generic.  (WRB)
    890531  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    900315  CALLs to XERROR changed to CALLs to XERMSG.  (THJ)
    920618  Removed space from variable names.  (RWC, WRB)
    END PROLOGUE
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DDEABM

      SUBROUTINE DDEABM (DF, NEQ, T, Y, TOUT, INFO, RTOL, ATOL, IDID,
     +   RWORK, LRW, IWORK, LIW, RPAR, IPAR)
 ***BEGIN PROLOGUE  DDEABM
 ***PURPOSE  Solve an initial value problem in ordinary differential
             equations using an Adams-Bashforth method.
 ***LIBRARY   SLATEC (DEPAC)
 ***CATEGORY  I1A1B
 ***TYPE      DOUBLE PRECISION (DEABM-S, DDEABM-D)
 ***KEYWORDS  ADAMS-BASHFORTH METHOD, DEPAC, INITIAL VALUE PROBLEMS,
              ODE, ORDINARY DIFFERENTIAL EQUATIONS, PREDICTOR-CORRECTOR
 ***AUTHOR  Shampine, L. F., (SNLA)
            Watts, H. A., (SNLA)
 ***DESCRIPTION
 
    This is the Adams code in the package of differential equation
    solvers DEPAC, consisting of the codes DDERKF, DDEABM, and DDEBDF.
    Design of the package was by L. F. Shampine and H. A. Watts.
    It is documented in
         SAND79-2374 , DEPAC - Design of a User Oriented Package of ODE
                               Solvers.
    DDEABM is a driver for a modification of the code ODE written by
              L. F. Shampine and M. K. Gordon
              Sandia Laboratories
              Albuquerque, New Mexico 87185
 
  **********************************************************************
  * ABSTRACT *
  ************
 
    Subroutine DDEABM uses the Adams-Bashforth-Moulton
    Predictor-Corrector formulas of orders one through twelve to
    integrate a system of NEQ first order ordinary differential
    equations of the form
                          DU/DX = DF(X,U)
    when the vector Y(*) of initial values for U(*) at X=T is given.
    The subroutine integrates from T to TOUT. It is easy to continue the
    integration to get results at additional TOUT.  This is the interval
    mode of operation.  It is also easy for the routine to return with
    the solution at each intermediate step on the way to TOUT.  This is
    the intermediate-output mode of operation.
 
    DDEABM uses subprograms DDES, DSTEPS, DINTP, DHSTRT, DHVNRM,
    D1MACH, and the error handling routine XERMSG.  The only machine
    dependent parameters to be assigned appear in D1MACH.
 
  **********************************************************************
  * Description of The Arguments To DDEABM (An Overview) *
  **********************************************************************
 
    The Parameters are
 
       DF -- This is the name of a subroutine which you provide to
              define the differential equations.
 
       NEQ -- This is the number of (first order) differential
              equations to be integrated.
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       T -- This is a DOUBLE PRECISION value of the independent
            variable.
 
       Y(*) -- This DOUBLE PRECISION array contains the solution
               components at T.
 
       TOUT -- This is a DOUBLE PRECISION point at which a solution is
               desired.
 
       INFO(*) -- The basic task of the code is to integrate the
              differential equations from T to TOUT and return an
              answer at TOUT.  INFO(*) is an INTEGER array which is used
              to communicate exactly how you want this task to be
              carried out.
 
       RTOL, ATOL -- These DOUBLE PRECISION quantities represent
                     relative and absolute error tolerances which you
                     provide to indicate how accurately you wish the
                     solution to be computed.  You may choose them to be
                     both scalars or else both vectors.
 
       IDID -- This scalar quantity is an indicator reporting what
              the code did.  You must monitor this INTEGER variable to
              decide what action to take next.
 
       RWORK(*), LRW -- RWORK(*) is a DOUBLE PRECISION work array of
              length LRW which provides the code with needed storage
              space.
 
       IWORK(*), LIW -- IWORK(*) is an INTEGER work array of length LIW
              which provides the code with needed storage space and an
              across call flag.
 
       RPAR, IPAR -- These are DOUBLE PRECISION and INTEGER parameter
              arrays which you can use for communication between your
              calling program and the DF subroutine.
 
   Quantities which are used as input items are
              NEQ, T, Y(*), TOUT, INFO(*),
              RTOL, ATOL, RWORK(1), LRW and LIW.
 
   Quantities which may be altered by the code are
              T, Y(*), INFO(1), RTOL, ATOL,
              IDID, RWORK(*) and IWORK(*).
 
  **********************************************************************
  * INPUT -- What To Do On The First Call To DDEABM *
  **********************************************************************
 
    The first call of the code is defined to be the start of each new
    problem.  Read through the descriptions of all the following items,
    provide sufficient storage space for designated arrays, set
    appropriate variables for the initialization of the problem, and
    give information about how you want the problem to be solved.
 
 
       DF -- Provide a subroutine of the form
                                DF(X,U,UPRIME,RPAR,IPAR)
              to define the system of first order differential equations
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              which is to be solved.  For the given values of X and the
              vector  U(*)=(U(1),U(2),...,U(NEQ)) , the subroutine must
              evaluate the NEQ components of the system of differential
              equations  DU/DX=DF(X,U)  and store the derivatives in the
              array UPRIME(*), that is,  UPRIME(I) = * DU(I)/DX *  for
              equations I=1,...,NEQ.
 
              Subroutine DF must NOT alter X or U(*).  You must declare
              the name df in an external statement in your program that
              calls DDEABM.  You must dimension U and UPRIME in DF.
 
              RPAR and IPAR are DOUBLE PRECISION and INTEGER parameter
              arrays which you can use for communication between your
              calling program and subroutine DF. They are not used or
              altered by DDEABM.  If you do not need RPAR or IPAR,
              ignore these parameters by treating them as dummy
              arguments. If you do choose to use them, dimension them in
              your calling program and in DF as arrays of appropriate
              length.
 
       NEQ -- Set it to the number of differential equations.
              (NEQ .GE. 1)
 
       T -- Set it to the initial point of the integration.
              You must use a program variable for T because the code
              changes its value.
 
       Y(*) -- Set this vector to the initial values of the NEQ solution
              components at the initial point.  You must dimension Y at
              least NEQ in your calling program.
 
       TOUT -- Set it to the first point at which a solution
              is desired.  You can take TOUT = T, in which case the code
              will evaluate the derivative of the solution at T and
              return. Integration either forward in T  (TOUT .GT. T)  or
              backward in T  (TOUT .LT. T)  is permitted.
 
              The code advances the solution from T to TOUT using
              step sizes which are automatically selected so as to
              achieve the desired accuracy.  If you wish, the code will
              return with the solution and its derivative following
              each intermediate step (intermediate-output mode) so that
              you can monitor them, but you still must provide TOUT in
              accord with the basic aim of the code.
 
              The first step taken by the code is a critical one
              because it must reflect how fast the solution changes near
              the initial point.  The code automatically selects an
              initial step size which is practically always suitable for
              the problem. By using the fact that the code will not step
              past TOUT in the first step, you could, if necessary,
              restrict the length of the initial step size.
 
              For some problems it may not be permissible to integrate
              past a point TSTOP because a discontinuity occurs there
              or the solution or its derivative is not defined beyond
              TSTOP.  When you have declared a TSTOP point (see INFO(4)
              and RWORK(1)), you have told the code not to integrate
              past TSTOP.  In this case any TOUT beyond TSTOP is invalid
              input.
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       INFO(*) -- Use the INFO array to give the code more details about
              how you want your problem solved.  This array should be
              dimensioned of length 15 to accommodate other members of
              DEPAC or possible future extensions, though DDEABM uses
              only the first four entries.  You must respond to all of
              the following items which are arranged as questions.  The
              simplest use of the code corresponds to answering all
              questions as YES ,i.e. setting ALL entries of INFO to 0.
 
         INFO(1) -- This parameter enables the code to initialize
                itself.  You must set it to indicate the start of every
                new problem.
 
             **** Is this the first call for this problem ...
                   YES -- set INFO(1) = 0
                    NO -- not applicable here.
                          See below for continuation calls.  ****
 
         INFO(2) -- How much accuracy you want of your solution
                is specified by the error tolerances RTOL and ATOL.
                The simplest use is to take them both to be scalars.
                To obtain more flexibility, they can both be vectors.
                The code must be told your choice.
 
             **** Are both error tolerances RTOL, ATOL scalars ...
                   YES -- set INFO(2) = 0
                          and input scalars for both RTOL and ATOL
                    NO -- set INFO(2) = 1
                          and input arrays for both RTOL and ATOL ****
 
         INFO(3) -- The code integrates from T in the direction
                of TOUT by steps.  If you wish, it will return the
                computed solution and derivative at the next
                intermediate step (the intermediate-output mode) or
                TOUT, whichever comes first.  This is a good way to
                proceed if you want to see the behavior of the solution.
                If you must have solutions at a great many specific
                TOUT points, this code will compute them efficiently.
 
             **** Do you want the solution only at
                  TOUT (and not at the next intermediate step) ...
                   YES -- set INFO(3) = 0
                    NO -- set INFO(3) = 1 ****
 
         INFO(4) -- To handle solutions at a great many specific
                values TOUT efficiently, this code may integrate past
                TOUT and interpolate to obtain the result at TOUT.
                Sometimes it is not possible to integrate beyond some
                point TSTOP because the equation changes there or it is
                not defined past TSTOP.  Then you must tell the code
                not to go past.
 
             **** Can the integration be carried out without any
                  Restrictions on the independent variable T ...
                   YES -- set INFO(4)=0
                    NO -- set INFO(4)=1
                          and define the stopping point TSTOP by
                          setting RWORK(1)=TSTOP ****
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       RTOL, ATOL -- You must assign relative (RTOL) and absolute (ATOL)
              error tolerances to tell the code how accurately you want
              the solution to be computed.  They must be defined as
              program variables because the code may change them.  You
              have two choices --
                   Both RTOL and ATOL are scalars. (INFO(2)=0)
                   Both RTOL and ATOL are vectors. (INFO(2)=1)
              In either case all components must be non-negative.
 
              The tolerances are used by the code in a local error test
              at each step which requires roughly that
                      ABS(LOCAL ERROR) .LE. RTOL*ABS(Y)+ATOL
              for each vector component.
              (More specifically, a Euclidean norm is used to measure
              the size of vectors, and the error test uses the magnitude
              of the solution at the beginning of the step.)
 
              The true (global) error is the difference between the true
              solution of the initial value problem and the computed
              approximation.  Practically all present day codes,
              including this one, control the local error at each step
              and do not even attempt to control the global error
              directly.  Roughly speaking, they produce a solution Y(T)
              which satisfies the differential equations with a
              residual R(T),    DY(T)/DT = DF(T,Y(T)) + R(T)   ,
              and, almost always, R(T) is bounded by the error
              tolerances.  Usually, but not always, the true accuracy of
              the computed Y is comparable to the error tolerances. This
              code will usually, but not always, deliver a more accurate
              solution if you reduce the tolerances and integrate again.
              By comparing two such solutions you can get a fairly
              reliable idea of the true error in the solution at the
              bigger tolerances.
 
              Setting ATOL=0.D0 results in a pure relative error test on
              that component. Setting RTOL=0. results in a pure absolute
              error test on that component.  A mixed test with non-zero
              RTOL and ATOL corresponds roughly to a relative error
              test when the solution component is much bigger than ATOL
              and to an absolute error test when the solution component
              is smaller than the threshold ATOL.
 
              Proper selection of the absolute error control parameters
              ATOL  requires you to have some idea of the scale of the
              solution components.  To acquire this information may mean
              that you will have to solve the problem more than once. In
              the absence of scale information, you should ask for some
              relative accuracy in all the components (by setting  RTOL
              values non-zero) and perhaps impose extremely small
              absolute error tolerances to protect against the danger of
              a solution component becoming zero.
 
              The code will not attempt to compute a solution at an
              accuracy unreasonable for the machine being used.  It will
              advise you if you ask for too much accuracy and inform
              you as to the maximum accuracy it believes possible.
 
       RWORK(*) -- Dimension this DOUBLE PRECISION work array of length
              LRW in your calling program.
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       RWORK(1) -- If you have set INFO(4)=0, you can ignore this
              optional input parameter.  Otherwise you must define a
              stopping point TSTOP by setting   RWORK(1) = TSTOP.
              (for some problems it may not be permissible to integrate
              past a point TSTOP because a discontinuity occurs there
              or the solution or its derivative is not defined beyond
              TSTOP.)
 
       LRW -- Set it to the declared length of the RWORK array.
              You must have  LRW .GE. 130+21*NEQ
 
       IWORK(*) -- Dimension this INTEGER work array of length LIW in
              your calling program.
 
       LIW -- Set it to the declared length of the IWORK array.
              You must have  LIW .GE. 51
 
       RPAR, IPAR -- These are parameter arrays, of DOUBLE PRECISION and
              INTEGER type, respectively.  You can use them for
              communication between your program that calls DDEABM and
              the  DF subroutine.  They are not used or altered by
              DDEABM.  If you do not need RPAR or IPAR, ignore these
              parameters by treating them as dummy arguments.  If you do
              choose to use them, dimension them in your calling program
              and in DF as arrays of appropriate length.
 
  **********************************************************************
  * OUTPUT -- After Any Return From DDEABM *
  **********************************************************************
 
    The principal aim of the code is to return a computed solution at
    TOUT, although it is also possible to obtain intermediate results
    along the way.  To find out whether the code achieved its goal
    or if the integration process was interrupted before the task was
    completed, you must check the IDID parameter.
 
 
       T -- The solution was successfully advanced to the
              output value of T.
 
       Y(*) -- Contains the computed solution approximation at T.
              You may also be interested in the approximate derivative
              of the solution at T.  It is contained in
              RWORK(21),...,RWORK(20+NEQ).
 
       IDID -- Reports what the code did
 
                          *** Task Completed ***
                    Reported by positive values of IDID
 
              IDID = 1 -- A step was successfully taken in the
                        intermediate-output mode.  The code has not
                        yet reached TOUT.
 
              IDID = 2 -- The integration to TOUT was successfully
                        completed (T=TOUT) by stepping exactly to TOUT.
 
              IDID = 3 -- The integration to TOUT was successfully
                        completed (T=TOUT) by stepping past TOUT.
                        Y(*) is obtained by interpolation.
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                          *** Task Interrupted ***
                    Reported by negative values of IDID
 
              IDID = -1 -- A large amount of work has been expended.
                        (500 steps attempted)
 
              IDID = -2 -- The error tolerances are too stringent.
 
              IDID = -3 -- The local error test cannot be satisfied
                        because you specified a zero component in ATOL
                        and the corresponding computed solution
                        component is zero.  Thus, a pure relative error
                        test is impossible for this component.
 
              IDID = -4 -- The problem appears to be stiff.
 
              IDID = -5,-6,-7,..,-32  -- Not applicable for this code
                        but used by other members of DEPAC or possible
                        future extensions.
 
                          *** Task Terminated ***
                    Reported by the value of IDID=-33
 
              IDID = -33 -- The code has encountered trouble from which
                        it cannot recover.  A message is printed
                        explaining the trouble and control is returned
                        to the calling program. For example, this occurs
                        when invalid input is detected.
 
       RTOL, ATOL -- These quantities remain unchanged except when
              IDID = -2.  In this case, the error tolerances have been
              increased by the code to values which are estimated to be
              appropriate for continuing the integration.  However, the
              reported solution at T was obtained using the input values
              of RTOL and ATOL.
 
       RWORK, IWORK -- Contain information which is usually of no
              interest to the user but necessary for subsequent calls.
              However, you may find use for
 
              RWORK(11)--which contains the step size H to be
                         attempted on the next step.
 
              RWORK(12)--if the tolerances have been increased by the
                         code (IDID = -2) , they were multiplied by the
                         value in RWORK(12).
 
              RWORK(13)--Which contains the current value of the
                         independent variable, i.e. the farthest point
                         integration has reached. This will be different
                         from T only when interpolation has been
                         performed (IDID=3).
 
              RWORK(20+I)--Which contains the approximate derivative
                         of the solution component Y(I).  In DDEABM, it
                         is obtained by calling subroutine DF to
                         evaluate the differential equation using T and
                         Y(*) when IDID=1 or 2, and by interpolation
                         when IDID=3.
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  **********************************************************************
  * INPUT -- What To Do To Continue The Integration *
  *             (calls after the first)             *
  **********************************************************************
 
         This code is organized so that subsequent calls to continue the
         integration involve little (if any) additional effort on your
         part. You must monitor the IDID parameter in order to determine
         what to do next.
 
         Recalling that the principal task of the code is to integrate
         from T to TOUT (the interval mode), usually all you will need
         to do is specify a new TOUT upon reaching the current TOUT.
 
         Do not alter any quantity not specifically permitted below,
         in particular do not alter NEQ, T, Y(*), RWORK(*), IWORK(*) or
         the differential equation in subroutine DF. Any such alteration
         constitutes a new problem and must be treated as such, i.e.
         you must start afresh.
 
         You cannot change from vector to scalar error control or vice
         versa (INFO(2)) but you can change the size of the entries of
         RTOL, ATOL.  Increasing a tolerance makes the equation easier
         to integrate.  Decreasing a tolerance will make the equation
         harder to integrate and should generally be avoided.
 
         You can switch from the intermediate-output mode to the
         interval mode (INFO(3)) or vice versa at any time.
 
         If it has been necessary to prevent the integration from going
         past a point TSTOP (INFO(4), RWORK(1)), keep in mind that the
         code will not integrate to any TOUT beyond the currently
         specified TSTOP.  Once TSTOP has been reached you must change
         the value of TSTOP or set INFO(4)=0.  You may change INFO(4)
         or TSTOP at any time but you must supply the value of TSTOP in
         RWORK(1) whenever you set INFO(4)=1.
 
         The parameter INFO(1) is used by the code to indicate the
         beginning of a new problem and to indicate whether integration
         is to be continued.  You must input the value  INFO(1) = 0
         when starting a new problem.  You must input the value
         INFO(1) = 1  if you wish to continue after an interrupted task.
         Do not set  INFO(1) = 0  on a continuation call unless you
         want the code to restart at the current T.
 
                          *** Following A Completed Task ***
          If
              IDID = 1, call the code again to continue the integration
                      another step in the direction of TOUT.
 
              IDID = 2 or 3, define a new TOUT and call the code again.
                      TOUT must be different from T. You cannot change
                      the direction of integration without restarting.
 
                          *** Following An Interrupted Task ***
                      To show the code that you realize the task was
                      interrupted and that you want to continue, you
                      must take appropriate action and reset INFO(1) = 1
          If
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              IDID = -1, the code has attempted 500 steps.
                      If you want to continue, set INFO(1) = 1 and
                      call the code again. An additional 500 steps
                      will be allowed.
 
              IDID = -2, the error tolerances RTOL, ATOL have been
                      increased to values the code estimates appropriate
                      for continuing.  You may want to change them
                      yourself.  If you are sure you want to continue
                      with relaxed error tolerances, set INFO(1)=1 and
                      call the code again.
 
              IDID = -3, a solution component is zero and you set the
                      corresponding component of ATOL to zero.  If you
                      are sure you want to continue, you must first
                      alter the error criterion to use positive values
                      for those components of ATOL corresponding to zero
                      solution components, then set INFO(1)=1 and call
                      the code again.
 
              IDID = -4, the problem appears to be stiff.  It is very
                      inefficient to solve such problems with DDEABM.
                      The code DDEBDF in DEPAC handles this task
                      efficiently.  If you are absolutely sure you want
                      to continue with DDEABM, set INFO(1)=1 and call
                      the code again.
 
              IDID = -5,-6,-7,..,-32  --- cannot occur with this code
                      but used by other members of DEPAC or possible
                      future extensions.
 
                          *** Following A Terminated Task ***
          If
              IDID = -33, you cannot continue the solution of this
                      problem.  An attempt to do so will result in your
                      run being terminated.
 
  **********************************************************************
  *Long Description:
 
  **********************************************************************
  *             DEPAC Package Overview           *
  **********************************************************************
 
  ....   You have a choice of three differential equation solvers from
  ....   DEPAC. The following brief descriptions are meant to aid you in
  ....   choosing the most appropriate code for your problem.
 
  ....   DDERKF is a fifth order Runge-Kutta code. It is the simplest of
  ....   the three choices, both algorithmically and in the use of the
  ....   code. DDERKF is primarily designed to solve non-stiff and
  ....   mildly stiff differential equations when derivative evaluations
  ....   are not expensive. It should generally not be used to get high
  ....   accuracy results nor answers at a great many specific points.
  ....   Because DDERKF has very low overhead costs, it will usually
  ....   result in the least expensive integration when solving
  ....   problems requiring a modest amount of accuracy and having
  ....   equations that are not costly to evaluate. DDERKF attempts to
  ....   discover when it is not suitable for the task posed.
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  ....   DDEABM is a variable order (one through twelve) Adams code.
  ....   Its complexity lies somewhere between that of DDERKF and
  ....   DDEBDF.  DDEABM is primarily designed to solve non-stiff and
  ....   mildly stiff differential equations when derivative evaluations
  ....   are expensive, high accuracy results are needed or answers at
  ....   many specific points are required. DDEABM attempts to discover
  ....   when it is not suitable for the task posed.
 
  ....   DDEBDF is a variable order (one through five) backward
  ....   differentiation formula code. it is the most complicated of
  ....   the three choices. DDEBDF is primarily designed to solve stiff
  ....   differential equations at crude to moderate tolerances.
  ....   If the problem is very stiff at all, DDERKF and DDEABM will be
  ....   quite inefficient compared to DDEBDF. However, DDEBDF will be
  ....   inefficient compared to DDERKF and DDEABM on non-stiff problems
  ....   because it uses much more storage, has a much larger overhead,
  ....   and the low order formulas will not give high accuracies
  ....   efficiently.
 
  ....   The concept of stiffness cannot be described in a few words.
  ....   If you do not know the problem to be stiff, try either DDERKF
  ....   or DDEABM. Both of these codes will inform you of stiffness
  ....   when the cost of solving such problems becomes important.
 
  *********************************************************************
 
 ***REFERENCES  L. F. Shampine and H. A. Watts, DEPAC - design of a user
                  oriented package of ODE solvers, Report SAND79-2374,
                  Sandia Laboratories, 1979.
 ***ROUTINES CALLED  DDES, XERMSG
 ***REVISION HISTORY  (YYMMDD)
    820301  DATE WRITTEN
    890531  Changed all specific intrinsics to generic.  (WRB)
    890831  Modified array declarations.  (WRB)
    891006  Cosmetic changes to prologue.  (WRB)
    891024  Changed references from DVNORM to DHVNRM.  (WRB)
    891024  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    900510  Convert XERRWV calls to XERMSG calls.  (RWC)
    920501  Reformatted the REFERENCES section.  (WRB)
    END PROLOGUE
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DDEBDF

      SUBROUTINE DDEBDF (DF, NEQ, T, Y, TOUT, INFO, RTOL, ATOL, IDID,
     +   RWORK, LRW, IWORK, LIW, RPAR, IPAR, DJAC)
 ***BEGIN PROLOGUE  DDEBDF
 ***PURPOSE  Solve an initial value problem in ordinary differential
             equations using backward differentiation formulas.  It is
             intended primarily for stiff problems.
 ***LIBRARY   SLATEC (DEPAC)
 ***CATEGORY  I1A2
 ***TYPE      DOUBLE PRECISION (DEBDF-S, DDEBDF-D)
 ***KEYWORDS  BACKWARD DIFFERENTIATION FORMULAS, DEPAC,
              INITIAL VALUE PROBLEMS, ODE,
              ORDINARY DIFFERENTIAL EQUATIONS, STIFF
 ***AUTHOR  Shampine, L. F., (SNLA)
            Watts, H. A., (SNLA)
 ***DESCRIPTION
 
    This is the backward differentiation code in the package of
    differential equation solvers DEPAC, consisting of the codes
    DDERKF, DDEABM, and DDEBDF.  Design of the package was by
    L. F. Shampine and H. A. Watts.  It is documented in
         SAND-79-2374 , DEPAC - Design of a User Oriented Package of ODE
                               Solvers.
    DDEBDF is a driver for a modification of the code LSODE written by
              A. C. Hindmarsh
              Lawrence Livermore Laboratory
              Livermore, California 94550
 
  **********************************************************************
  **             DEPAC PACKAGE OVERVIEW           **
  **********************************************************************
 
         You have a choice of three differential equation solvers from
         DEPAC.  The following brief descriptions are meant to aid you
         in choosing the most appropriate code for your problem.
 
         DDERKF is a fifth order Runge-Kutta code. It is the simplest of
         the three choices, both algorithmically and in the use of the
         code. DDERKF is primarily designed to solve non-stiff and mild-
         ly stiff differential equations when derivative evaluations are
         not expensive.  It should generally not be used to get high
         accuracy results nor answers at a great many specific points.
         Because DDERKF has very low overhead costs, it will usually
         result in the least expensive integration when solving
         problems requiring a modest amount of accuracy and having
         equations that are not costly to evaluate.  DDERKF attempts to
         discover when it is not suitable for the task posed.
 
         DDEABM is a variable order (one through twelve) Adams code. Its
         complexity lies somewhere between that of DDERKF and DDEBDF.
         DDEABM is primarily designed to solve non-stiff and mildly
         stiff differential equations when derivative evaluations are
         expensive, high accuracy results are needed or answers at
         many specific points are required.  DDEABM attempts to discover
         when it is not suitable for the task posed.
 
         DDEBDF is a variable order (one through five) backward
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         differentiation formula code.  It is the most complicated of
         the three choices.  DDEBDF is primarily designed to solve stiff
         differential equations at crude to moderate tolerances.
         If the problem is very stiff at all, DDERKF and DDEABM will be
         quite inefficient compared to DDEBDF.  However, DDEBDF will be
         inefficient compared to DDERKF and DDEABM on non-stiff problems
         because it uses much more storage, has a much larger overhead,
         and the low order formulas will not give high accuracies
         efficiently.
 
         The concept of stiffness cannot be described in a few words.
         If you do not know the problem to be stiff, try either DDERKF
         or DDEABM.  Both of these codes will inform you of stiffness
         when the cost of solving such problems becomes important.
 
  **********************************************************************
  ** ABSTRACT **
  **********************************************************************
 
    Subroutine DDEBDF uses the backward differentiation formulas of
    orders one through five to integrate a system of NEQ first order
    ordinary differential equations of the form
                          DU/DX = DF(X,U)
    when the vector Y(*) of initial values for U(*) at X=T is given.
    The subroutine integrates from T to TOUT. It is easy to continue the
    integration to get results at additional TOUT. This is the interval
    mode of operation. It is also easy for the routine to return with
    the solution at each intermediate step on the way to TOUT. This is
    the intermediate-output mode of operation.
 
  **********************************************************************
  * Description of The Arguments To DDEBDF (An Overview) *
  **********************************************************************
 
    The Parameters are:
 
       DF -- This is the name of a subroutine which you provide to
             define the differential equations.
 
       NEQ -- This is the number of (first order) differential
              equations to be integrated.
 
       T -- This is a DOUBLE PRECISION value of the independent
            variable.
 
       Y(*) -- This DOUBLE PRECISION array contains the solution
               components at T.
 
       TOUT -- This is a DOUBLE PRECISION point at which a solution is
               desired.
 
       INFO(*) -- The basic task of the code is to integrate the
              differential equations from T to TOUT and return an
              answer at TOUT.  INFO(*) is an INTEGER array which is used
              to communicate exactly how you want this task to be
              carried out.
 
       RTOL, ATOL -- These DOUBLE PRECISION quantities
              represent relative and absolute error tolerances which you
              provide to indicate how accurately you wish the solution
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              to be computed.  You may choose them to be both scalars
              or else both vectors.
 
       IDID -- This scalar quantity is an indicator reporting what
              the code did.  You must monitor this INTEGER variable to
              decide what action to take next.
 
       RWORK(*), LRW -- RWORK(*) is a DOUBLE PRECISION work array of
              length LRW which provides the code with needed storage
              space.
 
       IWORK(*), LIW -- IWORK(*) is an INTEGER work array of length LIW
              which provides the code with needed storage space and an
              across call flag.
 
       RPAR, IPAR -- These are DOUBLE PRECISION and INTEGER parameter
              arrays which you can use for communication between your
              calling program and the DF subroutine (and the DJAC
              subroutine).
 
       DJAC -- This is the name of a subroutine which you may choose to
              provide for defining the Jacobian matrix of partial
              derivatives DF/DU.
 
   Quantities which are used as input items are
              NEQ, T, Y(*), TOUT, INFO(*),
              RTOL, ATOL, RWORK(1), LRW,
              IWORK(1), IWORK(2), and LIW.
 
   Quantities which may be altered by the code are
              T, Y(*), INFO(1), RTOL, ATOL,
              IDID, RWORK(*) and IWORK(*).
 
  **********************************************************************
  * INPUT -- What To Do On The First Call To DDEBDF *
  **********************************************************************
 
    The first call of the code is defined to be the start of each new
    problem.  Read through the descriptions of all the following items,
    provide sufficient storage space for designated arrays, set
    appropriate variables for the initialization of the problem, and
    give information about how you want the problem to be solved.
 
 
       DF -- Provide a subroutine of the form
                                DF(X,U,UPRIME,RPAR,IPAR)
              to define the system of first order differential equations
              which is to be solved. For the given values of X and the
              vector  U(*)=(U(1),U(2),...,U(NEQ)) , the subroutine must
              evaluate the NEQ components of the system of differential
              equations  DU/DX=DF(X,U)  and store the derivatives in the
              array UPRIME(*), that is,  UPRIME(I) = * DU(I)/DX *  for
              equations I=1,...,NEQ.
 
              Subroutine DF must not alter X or U(*). You must declare
              the name DF in an external statement in your program that
              calls DDEBDF. You must dimension U and UPRIME in DF.
 
              RPAR and IPAR are DOUBLE PRECISION and INTEGER parameter
              arrays which you can use for communication between your
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              calling program and subroutine DF. They are not used or
              altered by DDEBDF.  If you do not need RPAR or IPAR,
              ignore these parameters by treating them as dummy
              arguments. If you do choose to use them, dimension them in
              your calling program and in DF as arrays of appropriate
              length.
 
       NEQ -- Set it to the number of differential equations.
              (NEQ .GE. 1)
 
       T -- Set it to the initial point of the integration.
              You must use a program variable for T because the code
              changes its value.
 
       Y(*) -- Set this vector to the initial values of the NEQ solution
              components at the initial point.  You must dimension Y at
              least NEQ in your calling program.
 
       TOUT -- Set it to the first point at which a solution is desired.
              You can take TOUT = T, in which case the code
              will evaluate the derivative of the solution at T and
              return.  Integration either forward in T  (TOUT .GT. T)
              or backward in T  (TOUT .LT. T)  is permitted.
 
              The code advances the solution from T to TOUT using
              step sizes which are automatically selected so as to
              achieve the desired accuracy.  If you wish, the code will
              return with the solution and its derivative following
              each intermediate step (intermediate-output mode) so that
              you can monitor them, but you still must provide TOUT in
              accord with the basic aim of the code.
 
              The first step taken by the code is a critical one
              because it must reflect how fast the solution changes near
              the initial point.  The code automatically selects an
              initial step size which is practically always suitable for
              the problem.  By using the fact that the code will not
              step past TOUT in the first step, you could, if necessary,
              restrict the length of the initial step size.
 
              For some problems it may not be permissible to integrate
              past a point TSTOP because a discontinuity occurs there
              or the solution or its derivative is not defined beyond
              TSTOP.  When you have declared a TSTOP point (see INFO(4)
              and RWORK(1)), you have told the code not to integrate
              past TSTOP.  In this case any TOUT beyond TSTOP is invalid
              input.
 
       INFO(*) -- Use the INFO array to give the code more details about
              how you want your problem solved.  This array should be
              dimensioned of length 15 to accommodate other members of
              DEPAC or possible future extensions, though DDEBDF uses
              only the first six entries.  You must respond to all of
              the following items which are arranged as questions.  The
              simplest use of the code corresponds to answering all
              questions as YES ,i.e. setting all entries of INFO to 0.
 
         INFO(1) -- This parameter enables the code to initialize
                itself.  You must set it to indicate the start of every
                new problem.
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             **** Is this the first call for this problem ...
                   YES -- Set INFO(1) = 0
                    NO -- Not applicable here.
                          See below for continuation calls.  ****
 
         INFO(2) -- How much accuracy you want of your solution
                is specified by the error tolerances RTOL and ATOL.
                The simplest use is to take them both to be scalars.
                To obtain more flexibility, they can both be vectors.
                The code must be told your choice.
 
             **** Are both error tolerances RTOL, ATOL scalars ...
                   YES -- Set INFO(2) = 0
                          and input scalars for both RTOL and ATOL
                    NO -- Set INFO(2) = 1
                          and input arrays for both RTOL and ATOL ****
 
         INFO(3) -- The code integrates from T in the direction
                of TOUT by steps.  If you wish, it will return the
                computed solution and derivative at the next
                intermediate step (the intermediate-output mode) or
                TOUT, whichever comes first.  This is a good way to
                proceed if you want to see the behavior of the solution.
                If you must have solutions at a great many specific
                TOUT points, this code will compute them efficiently.
 
             **** Do you want the solution only at
                  TOUT (and NOT at the next intermediate step) ...
                   YES -- Set INFO(3) = 0
                    NO -- Set INFO(3) = 1 ****
 
         INFO(4) -- To handle solutions at a great many specific
                values TOUT efficiently, this code may integrate past
                TOUT and interpolate to obtain the result at TOUT.
                Sometimes it is not possible to integrate beyond some
                point TSTOP because the equation changes there or it is
                not defined past TSTOP.  Then you must tell the code
                not to go past.
 
             **** Can the integration be carried out without any
                  restrictions on the independent variable T ...
                   YES -- Set INFO(4)=0
                    NO -- Set INFO(4)=1
                          and define the stopping point TSTOP by
                          setting RWORK(1)=TSTOP ****
 
         INFO(5) -- To solve stiff problems it is necessary to use the
                Jacobian matrix of partial derivatives of the system
                of differential equations.  If you do not provide a
                subroutine to evaluate it analytically (see the
                description of the item DJAC in the call list), it will
                be approximated by numerical differencing in this code.
                Although it is less trouble for you to have the code
                compute partial derivatives by numerical differencing,
                the solution will be more reliable if you provide the
                derivatives via DJAC.  Sometimes numerical differencing
                is cheaper than evaluating derivatives in DJAC and
                sometimes it is not - this depends on your problem.
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                If your problem is linear, i.e. has the form
                DU/DX = DF(X,U) = J(X)*U + G(X)   for some matrix J(X)
                and vector G(X), the Jacobian matrix  DF/DU = J(X).
                Since you must provide a subroutine to evaluate DF(X,U)
                analytically, it is little extra trouble to provide
                subroutine DJAC for evaluating J(X) analytically.
                Furthermore, in such cases, numerical differencing is
                much more expensive than analytic evaluation.
 
             **** Do you want the code to evaluate the partial
                  derivatives automatically by numerical differences ...
                   YES -- Set INFO(5)=0
                    NO -- Set INFO(5)=1
                          and provide subroutine DJAC for evaluating the
                          Jacobian matrix ****
 
         INFO(6) -- DDEBDF will perform much better if the Jacobian
                matrix is banded and the code is told this.  In this
                case, the storage needed will be greatly reduced,
                numerical differencing will be performed more cheaply,
                and a number of important algorithms will execute much
                faster.  The differential equation is said to have
                half-bandwidths ML (lower) and MU (upper) if equation I
                involves only unknowns Y(J) with
                               I-ML .LE. J .LE. I+MU
                for all I=1,2,...,NEQ.  Thus, ML and MU are the widths
                of the lower and upper parts of the band, respectively,
                with the main diagonal being excluded.  If you do not
                indicate that the equation has a banded Jacobian,
                the code works with a full matrix of NEQ**2 elements
                (stored in the conventional way).  Computations with
                banded matrices cost less time and storage than with
                full matrices if  2*ML+MU .LT. NEQ.  If you tell the
                code that the Jacobian matrix has a banded structure and
                you want to provide subroutine DJAC to compute the
                partial derivatives, then you must be careful to store
                the elements of the Jacobian matrix in the special form
                indicated in the description of DJAC.
 
             **** Do you want to solve the problem using a full
                  (dense) Jacobian matrix (and not a special banded
                  structure) ...
                   YES -- Set INFO(6)=0
                    NO -- Set INFO(6)=1
                          and provide the lower (ML) and upper (MU)
                          bandwidths by setting
                          IWORK(1)=ML
                          IWORK(2)=MU ****
 
       RTOL, ATOL -- You must assign relative (RTOL) and absolute (ATOL)
              error tolerances to tell the code how accurately you want
              the solution to be computed.  They must be defined as
              program variables because the code may change them.  You
              have two choices --
                   Both RTOL and ATOL are scalars. (INFO(2)=0)
                   Both RTOL and ATOL are vectors. (INFO(2)=1)
              In either case all components must be non-negative.
 
              The tolerances are used by the code in a local error test
              at each step which requires roughly that
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                      ABS(LOCAL ERROR) .LE. RTOL*ABS(Y)+ATOL
              for each vector component.
              (More specifically, a root-mean-square norm is used to
              measure the size of vectors, and the error test uses the
              magnitude of the solution at the beginning of the step.)
 
              The true (global) error is the difference between the true
              solution of the initial value problem and the computed
              approximation.  Practically all present day codes,
              including this one, control the local error at each step
              and do not even attempt to control the global error
              directly.  Roughly speaking, they produce a solution Y(T)
              which satisfies the differential equations with a
              residual R(T),    DY(T)/DT = DF(T,Y(T)) + R(T)   ,
              and, almost always, R(T) is bounded by the error
              tolerances.  Usually, but not always, the true accuracy of
              the computed Y is comparable to the error tolerances. This
              code will usually, but not always, deliver a more accurate
              solution if you reduce the tolerances and integrate again.
              By comparing two such solutions you can get a fairly
              reliable idea of the true error in the solution at the
              bigger tolerances.
 
              Setting ATOL=0. results in a pure relative error test on
              that component.  Setting RTOL=0. results in a pure abso-
              lute error test on that component.  A mixed test with non-
              zero RTOL and ATOL corresponds roughly to a relative error
              test when the solution component is much bigger than ATOL
              and to an absolute error test when the solution component
              is smaller than the threshold ATOL.
 
              Proper selection of the absolute error control parameters
              ATOL  requires you to have some idea of the scale of the
              solution components.  To acquire this information may mean
              that you will have to solve the problem more than once. In
              the absence of scale information, you should ask for some
              relative accuracy in all the components (by setting  RTOL
              values non-zero) and perhaps impose extremely small
              absolute error tolerances to protect against the danger of
              a solution component becoming zero.
 
              The code will not attempt to compute a solution at an
              accuracy unreasonable for the machine being used.  It will
              advise you if you ask for too much accuracy and inform
              you as to the maximum accuracy it believes possible.
 
       RWORK(*) -- Dimension this DOUBLE PRECISION work array of length
              LRW in your calling program.
 
       RWORK(1) -- If you have set INFO(4)=0, you can ignore this
              optional input parameter.  Otherwise you must define a
              stopping point TSTOP by setting   RWORK(1) = TSTOP.
              (For some problems it may not be permissible to integrate
              past a point TSTOP because a discontinuity occurs there
              or the solution or its derivative is not defined beyond
              TSTOP.)
 
       LRW -- Set it to the declared length of the RWORK array.
              You must have
                   LRW .GE. 250+10*NEQ+NEQ**2
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              for the full (dense) Jacobian case (when INFO(6)=0),  or
                   LRW .GE. 250+10*NEQ+(2*ML+MU+1)*NEQ
              for the banded Jacobian case (when INFO(6)=1).
 
       IWORK(*) -- Dimension this INTEGER work array of length LIW in
              your calling program.
 
       IWORK(1), IWORK(2) -- If you have set INFO(6)=0, you can ignore
              these optional input parameters. Otherwise you must define
              the half-bandwidths ML (lower) and MU (upper) of the
              Jacobian matrix by setting    IWORK(1) = ML   and
              IWORK(2) = MU.  (The code will work with a full matrix
              of NEQ**2 elements unless it is told that the problem has
              a banded Jacobian, in which case the code will work with
              a matrix containing at most  (2*ML+MU+1)*NEQ  elements.)
 
       LIW -- Set it to the declared length of the IWORK array.
              You must have LIW .GE. 56+NEQ.
 
       RPAR, IPAR -- These are parameter arrays, of DOUBLE PRECISION and
              INTEGER type, respectively. You can use them for
              communication between your program that calls DDEBDF and
              the  DF subroutine (and the DJAC subroutine). They are not
              used or altered by DDEBDF. If you do not need RPAR or
              IPAR, ignore these parameters by treating them as dummy
              arguments. If you do choose to use them, dimension them in
              your calling program and in DF (and in DJAC) as arrays of
              appropriate length.
 
       DJAC -- If you have set INFO(5)=0, you can ignore this parameter
              by treating it as a dummy argument. (For some compilers
              you may have to write a dummy subroutine named  DJAC  in
              order to avoid problems associated with missing external
              routine names.)  Otherwise, you must provide a subroutine
              of the form
                           DJAC(X,U,PD,NROWPD,RPAR,IPAR)
              to define the Jacobian matrix of partial derivatives DF/DU
              of the system of differential equations   DU/DX = DF(X,U).
              For the given values of X and the vector
              U(*)=(U(1),U(2),...,U(NEQ)), the subroutine must evaluate
              the non-zero partial derivatives  DF(I)/DU(J)  for each
              differential equation I=1,...,NEQ and each solution
              component J=1,...,NEQ , and store these values in the
              matrix PD.  The elements of PD are set to zero before each
              call to DJAC so only non-zero elements need to be defined.
 
              Subroutine DJAC must not alter X, U(*), or NROWPD. You
              must declare the name DJAC in an external statement in
              your program that calls DDEBDF. NROWPD is the row
              dimension of the PD matrix and is assigned by the code.
              Therefore you must dimension PD in DJAC according to
                               DIMENSION PD(NROWPD,1)
              You must also dimension U in DJAC.
 
              The way you must store the elements into the PD matrix
              depends on the structure of the Jacobian which you
              indicated by INFO(6).
              *** INFO(6)=0 -- Full (Dense) Jacobian ***
                  When you evaluate the (non-zero) partial derivative
                  of equation I with respect to variable J, you must
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                  store it in PD according to
                                 PD(I,J) = * DF(I)/DU(J) *
              *** INFO(6)=1 -- Banded Jacobian with ML Lower and MU
                  Upper Diagonal Bands (refer to INFO(6) description of
                  ML and MU) ***
                  When you evaluate the (non-zero) partial derivative
                  of equation I with respect to variable J, you must
                  store it in PD according to
                                 IROW = I - J + ML + MU + 1
                                 PD(IROW,J) = * DF(I)/DU(J) *
 
              RPAR and IPAR are DOUBLE PRECISION and INTEGER parameter
              arrays which you can use for communication between your
              calling program and your Jacobian subroutine DJAC. They
              are not altered by DDEBDF. If you do not need RPAR or
              IPAR, ignore these parameters by treating them as dummy
              arguments.  If you do choose to use them, dimension them
              in your calling program and in DJAC as arrays of
              appropriate length.
 
  **********************************************************************
  * OUTPUT -- After any return from DDEBDF *
  **********************************************************************
 
    The principal aim of the code is to return a computed solution at
    TOUT, although it is also possible to obtain intermediate results
    along the way.  To find out whether the code achieved its goal
    or if the integration process was interrupted before the task was
    completed, you must check the IDID parameter.
 
 
       T -- The solution was successfully advanced to the
              output value of T.
 
       Y(*) -- Contains the computed solution approximation at T.
              You may also be interested in the approximate derivative
              of the solution at T.  It is contained in
              RWORK(21),...,RWORK(20+NEQ).
 
       IDID -- Reports what the code did
 
                          *** Task Completed ***
                    Reported by positive values of IDID
 
              IDID = 1 -- A step was successfully taken in the
                        intermediate-output mode.  The code has not
                        yet reached TOUT.
 
              IDID = 2 -- The integration to TOUT was successfully
                        completed (T=TOUT) by stepping exactly to TOUT.
 
              IDID = 3 -- The integration to TOUT was successfully
                        completed (T=TOUT) by stepping past TOUT.
                        Y(*) is obtained by interpolation.
 
                          *** Task Interrupted ***
                    Reported by negative values of IDID
 
              IDID = -1 -- A large amount of work has been expended.
                        (500 steps attempted)
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              IDID = -2 -- The error tolerances are too stringent.
 
              IDID = -3 -- The local error test cannot be satisfied
                        because you specified a zero component in ATOL
                        and the corresponding computed solution
                        component is zero.  Thus, a pure relative error
                        test is impossible for this component.
 
              IDID = -4,-5  -- Not applicable for this code but used
                        by other members of DEPAC.
 
              IDID = -6 -- DDEBDF had repeated convergence test failures
                        on the last attempted step.
 
              IDID = -7 -- DDEBDF had repeated error test failures on
                        the last attempted step.
 
              IDID = -8,..,-32  -- Not applicable for this code but
                        used by other members of DEPAC or possible
                        future extensions.
 
                          *** Task Terminated ***
                    Reported by the value of IDID=-33
 
              IDID = -33 -- The code has encountered trouble from which
                        it cannot recover.  A message is printed
                        explaining the trouble and control is returned
                        to the calling program.  For example, this
                        occurs when invalid input is detected.
 
       RTOL, ATOL -- These quantities remain unchanged except when
              IDID = -2.  In this case, the error tolerances have been
              increased by the code to values which are estimated to be
              appropriate for continuing the integration.  However, the
              reported solution at T was obtained using the input values
              of RTOL and ATOL.
 
       RWORK, IWORK -- Contain information which is usually of no
              interest to the user but necessary for subsequent calls.
              However, you may find use for
 
              RWORK(11)--which contains the step size H to be
                         attempted on the next step.
 
              RWORK(12)--If the tolerances have been increased by the
                         code (IDID = -2) , they were multiplied by the
                         value in RWORK(12).
 
              RWORK(13)--which contains the current value of the
                         independent variable, i.e. the farthest point
                         integration has reached.  This will be
                         different from T only when interpolation has
                         been performed (IDID=3).
 
              RWORK(20+I)--which contains the approximate derivative
                         of the solution component Y(I).  In DDEBDF, it
                         is never obtained by calling subroutine DF to
                         evaluate the differential equation using T and
                         Y(*), except at the initial point of
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                         integration.
 
  **********************************************************************
  ** INPUT -- What To Do To Continue The Integration **
  **             (calls after the first)             **
  **********************************************************************
 
         This code is organized so that subsequent calls to continue the
         integration involve little (if any) additional effort on your
         part. You must monitor the IDID parameter in order to determine
         what to do next.
 
         Recalling that the principal task of the code is to integrate
         from T to TOUT (the interval mode), usually all you will need
         to do is specify a new TOUT upon reaching the current TOUT.
 
         Do not alter any quantity not specifically permitted below,
         in particular do not alter NEQ, T, Y(*), RWORK(*), IWORK(*) or
         the differential equation in subroutine DF. Any such alteration
         constitutes a new problem and must be treated as such, i.e.
         you must start afresh.
 
         You cannot change from vector to scalar error control or vice
         versa (INFO(2)) but you can change the size of the entries of
         RTOL, ATOL.  Increasing a tolerance makes the equation easier
         to integrate.  Decreasing a tolerance will make the equation
         harder to integrate and should generally be avoided.
 
         You can switch from the intermediate-output mode to the
         interval mode (INFO(3)) or vice versa at any time.
 
         If it has been necessary to prevent the integration from going
         past a point TSTOP (INFO(4), RWORK(1)), keep in mind that the
         code will not integrate to any TOUT beyond the currently
         specified TSTOP.  Once TSTOP has been reached you must change
         the value of TSTOP or set INFO(4)=0.  You may change INFO(4)
         or TSTOP at any time but you must supply the value of TSTOP in
         RWORK(1) whenever you set INFO(4)=1.
 
         Do not change INFO(5), INFO(6), IWORK(1), or IWORK(2)
         unless you are going to restart the code.
 
         The parameter INFO(1) is used by the code to indicate the
         beginning of a new problem and to indicate whether integration
         is to be continued.  You must input the value  INFO(1) = 0
         when starting a new problem.  You must input the value
         INFO(1) = 1  if you wish to continue after an interrupted task.
         Do not set  INFO(1) = 0  on a continuation call unless you
         want the code to restart at the current T.
 
                          *** Following a Completed Task ***
          If
              IDID = 1, call the code again to continue the integration
                      another step in the direction of TOUT.
 
              IDID = 2 or 3, define a new TOUT and call the code again.
                      TOUT must be different from T.  You cannot change
                      the direction of integration without restarting.
 
                          *** Following an Interrupted Task ***
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                      To show the code that you realize the task was
                      interrupted and that you want to continue, you
                      must take appropriate action and reset INFO(1) = 1
          If
              IDID = -1, the code has attempted 500 steps.
                      If you want to continue, set INFO(1) = 1 and
                      call the code again.  An additional 500 steps
                      will be allowed.
 
              IDID = -2, the error tolerances RTOL, ATOL have been
                      increased to values the code estimates appropriate
                      for continuing.  You may want to change them
                      yourself.  If you are sure you want to continue
                      with relaxed error tolerances, set INFO(1)=1 and
                      call the code again.
 
              IDID = -3, a solution component is zero and you set the
                      corresponding component of ATOL to zero.  If you
                      are sure you want to continue, you must first
                      alter the error criterion to use positive values
                      for those components of ATOL corresponding to zero
                      solution components, then set INFO(1)=1 and call
                      the code again.
 
              IDID = -4,-5  --- cannot occur with this code but used
                      by other members of DEPAC.
 
              IDID = -6, repeated convergence test failures occurred
                      on the last attempted step in DDEBDF.  An inaccu-
                      rate Jacobian may be the problem.  If you are
                      absolutely certain you want to continue, restart
                      the integration at the current T by setting
                      INFO(1)=0 and call the code again.
 
              IDID = -7, repeated error test failures occurred on the
                      last attempted step in DDEBDF.  A singularity in
                      the solution may be present.  You should re-
                      examine the problem being solved.  If you are
                      absolutely certain you want to continue, restart
                      the integration at the current T by setting
                      INFO(1)=0 and call the code again.
 
              IDID = -8,..,-32  --- cannot occur with this code but
                      used by other members of DDEPAC or possible future
                      extensions.
 
                          *** Following a Terminated Task ***
          If
              IDID = -33, you cannot continue the solution of this
                      problem.  An attempt to do so will result in your
                      run being terminated.
 
  **********************************************************************
 
          ***** Warning *****
 
      If DDEBDF is to be used in an overlay situation, you must save and
      restore certain items used internally by DDEBDF  (values in the
      common block DDEBD1).  This can be accomplished as follows.
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      To save the necessary values upon return from DDEBDF, simply call
         DSVCO(RWORK(22+NEQ),IWORK(21+NEQ)).
 
      To restore the necessary values before the next call to DDEBDF,
      simply call    DRSCO(RWORK(22+NEQ),IWORK(21+NEQ)).
 
 ***REFERENCES  L. F. Shampine and H. A. Watts, DEPAC - design of a user
                  oriented package of ODE solvers, Report SAND79-2374,
                  Sandia Laboratories, 1979.
 ***ROUTINES CALLED  DLSOD, XERMSG
 ***COMMON BLOCKS    DDEBD1
 ***REVISION HISTORY  (YYMMDD)
    820301  DATE WRITTEN
    890831  Modified array declarations.  (WRB)
    891024  Changed references from DVNORM to DHVNRM.  (WRB)
    891024  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    900326  Removed duplicate information from DESCRIPTION section.
            (WRB)
    900510  Convert XERRWV calls to XERMSG calls, make Prologue comments
            consistent with DEBDF.  (RWC)
    920501  Reformatted the REFERENCES section.  (WRB)
    END PROLOGUE
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DDERKF

      SUBROUTINE DDERKF (DF, NEQ, T, Y, TOUT, INFO, RTOL, ATOL, IDID,
     +   RWORK, LRW, IWORK, LIW, RPAR, IPAR)
 ***BEGIN PROLOGUE  DDERKF
 ***PURPOSE  Solve an initial value problem in ordinary differential
             equations using a Runge-Kutta-Fehlberg scheme.
 ***LIBRARY   SLATEC (DEPAC)
 ***CATEGORY  I1A1A
 ***TYPE      DOUBLE PRECISION (DERKF-S, DDERKF-D)
 ***KEYWORDS  DEPAC, INITIAL VALUE PROBLEMS, ODE,
              ORDINARY DIFFERENTIAL EQUATIONS, RKF,
              RUNGE-KUTTA-FEHLBERG METHODS
 ***AUTHOR  Watts, H. A., (SNLA)
            Shampine, L. F., (SNLA)
 ***DESCRIPTION
 
    This is the Runge-Kutta code in the package of differential equation
    solvers DEPAC, consisting of the codes DDERKF, DDEABM, and DDEBDF.
    Design of the package was by L. F. Shampine and H. A. Watts.
    It is documented in
         SAND-79-2374 , DEPAC - Design of a User Oriented Package of ODE
                               Solvers.
    DDERKF is a driver for a modification of the code RKF45 written by
              H. A. Watts and L. F. Shampine
              Sandia Laboratories
              Albuquerque, New Mexico 87185
 
  **********************************************************************
  **            DDEPAC PACKAGE OVERVIEW           **
  **********************************************************************
 
         You have a choice of three differential equation solvers from
         DDEPAC.  The following brief descriptions are meant to aid you
         in choosing the most appropriate code for your problem.
 
         DDERKF is a fifth order Runge-Kutta code. It is the simplest of
         the three choices, both algorithmically and in the use of the
         code. DDERKF is primarily designed to solve non-stiff and mild-
         ly stiff differential equations when derivative evaluations are
         not expensive.  It should generally not be used to get high
         accuracy results nor answers at a great many specific points.
         Because DDERKF has very low overhead costs, it will usually
         result in the least expensive integration when solving
         problems requiring a modest amount of accuracy and having
         equations that are not costly to evaluate.  DDERKF attempts to
         discover when it is not suitable for the task posed.
 
         DDEABM is a variable order (one through twelve) Adams code. Its
         complexity lies somewhere between that of DDERKF and DDEBDF.
         DDEABM is primarily designed to solve non-stiff and mildly
         stiff differential equations when derivative evaluations are
         expensive, high accuracy results are needed or answers at
         many specific points are required.  DDEABM attempts to discover
         when it is not suitable for the task posed.
 
         DDEBDF is a variable order (one through five) backward
         differentiation formula code.  It is the most complicated of
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         the three choices.  DDEBDF is primarily designed to solve stiff
         differential equations at crude to moderate tolerances.
         If the problem is very stiff at all, DDERKF and DDEABM will be
         quite inefficient compared to DDEBDF.  However, DDEBDF will be
         inefficient compared to DDERKF and DDEABM on non-stiff problems
         because it uses much more storage, has a much larger overhead,
         and the low order formulas will not give high accuracies
         efficiently.
 
         The concept of stiffness cannot be described in a few words.
         If you do not know the problem to be stiff, try either DDERKF
         or DDEABM.  Both of these codes will inform you of stiffness
         when the cost of solving such problems becomes important.
 
  **********************************************************************
  ** ABSTRACT **
  **********************************************************************
 
    Subroutine DDERKF uses a Runge-Kutta-Fehlberg (4,5) method to
    integrate a system of NEQ first order ordinary differential
    equations of the form
                          DU/DX = DF(X,U)
    when the vector Y(*) of initial values for U(*) at X=T is given.
    The subroutine integrates from T to TOUT. It is easy to continue the
    integration to get results at additional TOUT.  This is the interval
    mode of operation.  It is also easy for the routine to return with
    the solution at each intermediate step on the way to TOUT.  This is
    the intermediate-output mode of operation.
 
    DDERKF uses subprograms DRKFS, DFEHL, DHSTRT, DHVNRM, D1MACH, and
    the error handling routine XERMSG. The only machine dependent
    parameters to be assigned appear in D1MACH.
 
  **********************************************************************
  ** DESCRIPTION OF THE ARGUMENTS TO DDERKF (AN OVERVIEW) **
  **********************************************************************
 
    The Parameters are:
 
       DF -- This is the name of a subroutine which you provide to
              define the differential equations.
 
       NEQ -- This is the number of (first order) differential
              equations to be integrated.
 
       T -- This is a DOUBLE PRECISION value of the independent
            variable.
 
       Y(*) -- This DOUBLE PRECISION array contains the solution
               components at T.
 
       TOUT -- This is a DOUBLE PRECISION point at which a solution is
               desired.
 
       INFO(*) -- The basic task of the code is to integrate the
              differential equations from T to TOUT and return an
              answer at TOUT.  INFO(*) is an INTEGER array which is used
              to communicate exactly how you want this task to be
              carried out.
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       RTOL, ATOL -- These DOUBLE PRECISION quantities represent
              relative and absolute error tolerances which you provide
              to indicate how accurately you wish the solution to be
              computed. You may choose them to be both scalars or else
              both vectors.
 
       IDID -- This scalar quantity is an indicator reporting what
              the code did.  You must monitor this INTEGER variable to
              decide what action to take next.
 
       RWORK(*), LRW -- RWORK(*) is a DOUBLE PRECISION work array of
              length LRW which provides the code with needed storage
              space.
 
       IWORK(*), LIW -- IWORK(*) is an INTEGER work array of length LIW
              which provides the code with needed storage space and an
              across call flag.
 
       RPAR, IPAR -- These are DOUBLE PRECISION and INTEGER parameter
              arrays which you can use for communication between your
              calling program and the DF subroutine.
 
   Quantities which are used as input items are
              NEQ, T, Y(*), TOUT, INFO(*),
              RTOL, ATOL, LRW and LIW.
 
   Quantities which may be altered by the code are
              T, Y(*), INFO(1), RTOL, ATOL,
              IDID, RWORK(*) and IWORK(*).
 
  **********************************************************************
  ** INPUT -- What to do On The First Call To DDERKF **
  **********************************************************************
 
    The first call of the code is defined to be the start of each new
    problem.  Read through the descriptions of all the following items,
    provide sufficient storage space for designated arrays, set
    appropriate variables for the initialization of the problem, and
    give information about how you want the problem to be solved.
 
 
       DF -- Provide a subroutine of the form
                                DF(X,U,UPRIME,RPAR,IPAR)
              to define the system of first order differential equations
              which is to be solved.  For the given values of X and the
              vector  U(*)=(U(1),U(2),...,U(NEQ)) , the subroutine must
              evaluate the NEQ components of the system of differential
              equations  DU/DX=DF(X,U)  and store the derivatives in the
              array UPRIME(*), that is,  UPRIME(I) = * DU(I)/DX *  for
              equations I=1,...,NEQ.
 
              Subroutine DF must not alter X or U(*). You must declare
              the name DF in an external statement in your program that
              calls DDERKF. You must dimension U and UPRIME in DF.
 
              RPAR and IPAR are DOUBLE PRECISION and INTEGER parameter
              arrays which you can use for communication between your
              calling program and subroutine DF. They are not used or
              altered by DDERKF.  If you do not need RPAR or IPAR,
              ignore these parameters by treating them as dummy
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              arguments. If you do choose to use them, dimension them in
              your calling program and in DF as arrays of appropriate
              length.
 
       NEQ -- Set it to the number of differential equations.
              (NEQ .GE. 1)
 
       T -- Set it to the initial point of the integration.
              You must use a program variable for T because the code
              changes its value.
 
       Y(*) -- Set this vector to the initial values of the NEQ solution
              components at the initial point.  You must dimension Y at
              least NEQ in your calling program.
 
       TOUT -- Set it to the first point at which a solution
              is desired.  You can take TOUT = T, in which case the code
              will evaluate the derivative of the solution at T and
              return.  Integration either forward in T  (TOUT .GT. T) or
              backward in T  (TOUT .LT. T)  is permitted.
 
              The code advances the solution from T to TOUT using
              step sizes which are automatically selected so as to
              achieve the desired accuracy.  If you wish, the code will
              return with the solution and its derivative following
              each intermediate step (intermediate-output mode) so that
              you can monitor them, but you still must provide TOUT in
              accord with the basic aim of the code.
 
              The first step taken by the code is a critical one
              because it must reflect how fast the solution changes near
              the initial point.  The code automatically selects an
              initial step size which is practically always suitable for
              the problem.  By using the fact that the code will not
              step past TOUT in the first step, you could, if necessary,
              restrict the length of the initial step size.
 
              For some problems it may not be permissible to integrate
              past a point TSTOP because a discontinuity occurs there
              or the solution or its derivative is not defined beyond
              TSTOP.  Since DDERKF will never step past a TOUT point,
              you need only make sure that no TOUT lies beyond TSTOP.
 
       INFO(*) -- Use the INFO array to give the code more details about
              how you want your problem solved.  This array should be
              dimensioned of length 15 to accommodate other members of
              DEPAC or possible future extensions, though DDERKF uses
              only the first three entries.  You must respond to all of
              the following items which are arranged as questions.  The
              simplest use of the code corresponds to answering all
              questions as YES ,i.e. setting all entries of INFO to 0.
 
         INFO(1) -- This parameter enables the code to initialize
                itself.  You must set it to indicate the start of every
                new problem.
 
             **** Is this the first call for this problem ...
                   YES -- Set INFO(1) = 0
                    NO -- Not applicable here.
                          See below for continuation calls.  ****
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         INFO(2) -- How much accuracy you want of your solution
                is specified by the error tolerances RTOL and ATOL.
                The simplest use is to take them both to be scalars.
                To obtain more flexibility, they can both be vectors.
                The code must be told your choice.
 
             **** Are both error tolerances RTOL, ATOL scalars ...
                   YES -- Set INFO(2) = 0
                          and input scalars for both RTOL and ATOL
                    NO -- Set INFO(2) = 1
                          and input arrays for both RTOL and ATOL ****
 
         INFO(3) -- The code integrates from T in the direction
                of TOUT by steps.  If you wish, it will return the
                computed solution and derivative at the next
                intermediate step (the intermediate-output mode).
                This is a good way to proceed if you want to see the
                behavior of the solution.  If you must have solutions at
                a great many specific TOUT points, this code is
                INEFFICIENT.  The code DDEABM in DEPAC handles this task
                more efficiently.
 
             **** Do you want the solution only at
                  TOUT (and not at the next intermediate step) ...
                   YES -- Set INFO(3) = 0
                    NO -- Set INFO(3) = 1 ****
 
       RTOL, ATOL -- You must assign relative (RTOL) and absolute (ATOL)
              error tolerances to tell the code how accurately you want
              the solution to be computed.  They must be defined as
              program variables because the code may change them.  You
              have two choices --
                   Both RTOL and ATOL are scalars. (INFO(2)=0)
                   Both RTOL and ATOL are vectors. (INFO(2)=1)
              In either case all components must be non-negative.
 
              The tolerances are used by the code in a local error test
              at each step which requires roughly that
                      ABS(LOCAL ERROR) .LE. RTOL*ABS(Y)+ATOL
              for each vector component.
              (More specifically, a maximum norm is used to measure
              the size of vectors, and the error test uses the average
              of the magnitude of the solution at the beginning and end
              of the step.)
 
              The true (global) error is the difference between the true
              solution of the initial value problem and the computed
              approximation.  Practically all present day codes,
              including this one, control the local error at each step
              and do not even attempt to control the global error
              directly.  Roughly speaking, they produce a solution Y(T)
              which satisfies the differential equations with a
              residual R(T),    DY(T)/DT = DF(T,Y(T)) + R(T)   ,
              and, almost always, R(T) is bounded by the error
              tolerances.  Usually, but not always, the true accuracy of
              the computed Y is comparable to the error tolerances. This
              code will usually, but not always, deliver a more accurate
              solution if you reduce the tolerances and integrate again.
              By comparing two such solutions you can get a fairly
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              reliable idea of the true error in the solution at the
              bigger tolerances.
 
              Setting ATOL=0. results in a pure relative error test on
              that component.  Setting RTOL=0. yields a pure absolute
              error test on that component.  A mixed test with non-zero
              RTOL and ATOL corresponds roughly to a relative error
              test when the solution component is much bigger than ATOL
              and to an absolute error test when the solution component
              is smaller than the threshold ATOL.
 
              Proper selection of the absolute error control parameters
              ATOL  requires you to have some idea of the scale of the
              solution components.  To acquire this information may mean
              that you will have to solve the problem more than once. In
              the absence of scale information, you should ask for some
              relative accuracy in all the components (by setting  RTOL
              values non-zero) and perhaps impose extremely small
              absolute error tolerances to protect against the danger of
              a solution component becoming zero.
 
              The code will not attempt to compute a solution at an
              accuracy unreasonable for the machine being used.  It will
              advise you if you ask for too much accuracy and inform
              you as to the maximum accuracy it believes possible.
              If you want relative accuracies smaller than about
              10**(-8), you should not ordinarily use DDERKF. The code
              DDEABM in DEPAC obtains stringent accuracies more
              efficiently.
 
       RWORK(*) -- Dimension this DOUBLE PRECISION work array of length
              LRW in your calling program.
 
       LRW -- Set it to the declared length of the RWORK array.
              You must have  LRW .GE. 33+7*NEQ
 
       IWORK(*) -- Dimension this INTEGER work array of length LIW in
              your calling program.
 
       LIW -- Set it to the declared length of the IWORK array.
              You must have  LIW .GE. 34
 
       RPAR, IPAR -- These are parameter arrays, of DOUBLE PRECISION and
              INTEGER type, respectively. You can use them for
              communication between your program that calls DDERKF and
              the  DF subroutine. They are not used or altered by
              DDERKF. If you do not need RPAR or IPAR, ignore these
              parameters by treating them as dummy arguments. If you do
              choose to use them, dimension them in your calling program
              and in DF as arrays of appropriate length.
 
  **********************************************************************
  ** OUTPUT -- After any return from DDERKF **
  **********************************************************************
 
    The principal aim of the code is to return a computed solution at
    TOUT, although it is also possible to obtain intermediate results
    along the way.  To find out whether the code achieved its goal
    or if the integration process was interrupted before the task was
    completed, you must check the IDID parameter.
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       T -- The solution was successfully advanced to the
              output value of T.
 
       Y(*) -- Contains the computed solution approximation at T.
              You may also be interested in the approximate derivative
              of the solution at T.  It is contained in
              RWORK(21),...,RWORK(20+NEQ).
 
       IDID -- Reports what the code did
 
                          *** Task Completed ***
                    Reported by positive values of IDID
 
              IDID = 1 -- A step was successfully taken in the
                        intermediate-output mode.  The code has not
                        yet reached TOUT.
 
              IDID = 2 -- The integration to TOUT was successfully
                        completed (T=TOUT) by stepping exactly to TOUT.
 
                          *** Task Interrupted ***
                    Reported by negative values of IDID
 
              IDID = -1 -- A large amount of work has been expended.
                        (500 steps attempted)
 
              IDID = -2 -- The error tolerances are too stringent.
 
              IDID = -3 -- The local error test cannot be satisfied
                        because you specified a zero component in ATOL
                        and the corresponding computed solution
                        component is zero.  Thus, a pure relative error
                        test is impossible for this component.
 
              IDID = -4 -- The problem appears to be stiff.
 
              IDID = -5 -- DDERKF is being used very inefficiently
                        because the natural step size is being
                        restricted by too frequent output.
 
              IDID = -6,-7,..,-32  -- Not applicable for this code but
                        used by other members of DEPAC or possible
                        future extensions.
 
                          *** Task Terminated ***
                    Reported by the value of IDID=-33
 
              IDID = -33 -- The code has encountered trouble from which
                        it cannot recover.  A message is printed
                        explaining the trouble and control is returned
                        to the calling program.  For example, this
                        occurs when invalid input is detected.
 
       RTOL, ATOL -- These quantities remain unchanged except when
              IDID = -2.  In this case, the error tolerances have been
              increased by the code to values which are estimated to be
              appropriate for continuing the integration.  However, the
              reported solution at T was obtained using the input values
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              of RTOL and ATOL.
 
       RWORK, IWORK -- Contain information which is usually of no
              interest to the user but necessary for subsequent calls.
              However, you may find use for
 
              RWORK(11)--which contains the step size H to be
                         attempted on the next step.
 
              RWORK(12)--If the tolerances have been increased by the
                         code (IDID = -2) , they were multiplied by the
                         value in RWORK(12).
 
              RWORK(20+I)--which contains the approximate derivative
                         of the solution component Y(I).  In DDERKF, it
                         is always obtained by calling subroutine DF to
                         evaluate the differential equation using T and
                         Y(*).
 
  **********************************************************************
  ** INPUT -- What To Do To Continue The Integration **
  **             (calls after the first)             **
  **********************************************************************
 
         This code is organized so that subsequent calls to continue the
         integration involve little (if any) additional effort on your
         part.  You must monitor the IDID parameter to determine
         what to do next.
 
         Recalling that the principal task of the code is to integrate
         from T to TOUT (the interval mode), usually all you will need
         to do is specify a new TOUT upon reaching the current TOUT.
 
         Do not alter any quantity not specifically permitted below,
         in particular do not alter NEQ, T, Y(*), RWORK(*), IWORK(*) or
         the differential equation in subroutine DF. Any such alteration
         constitutes a new problem and must be treated as such, i.e.
         you must start afresh.
 
         You cannot change from vector to scalar error control or vice
         versa (INFO(2)) but you can change the size of the entries of
         RTOL, ATOL.  Increasing a tolerance makes the equation easier
         to integrate.  Decreasing a tolerance will make the equation
         harder to integrate and should generally be avoided.
 
         You can switch from the intermediate-output mode to the
         interval mode (INFO(3)) or vice versa at any time.
 
         The parameter INFO(1) is used by the code to indicate the
         beginning of a new problem and to indicate whether integration
         is to be continued.  You must input the value  INFO(1) = 0
         when starting a new problem.  You must input the value
         INFO(1) = 1  if you wish to continue after an interrupted task.
         Do not set  INFO(1) = 0  on a continuation call unless you
         want the code to restart at the current T.
 
                          *** Following a Completed Task ***
          If
              IDID = 1, call the code again to continue the integration
                      another step in the direction of TOUT.
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              IDID = 2, define a new TOUT and call the code again.
                      TOUT must be different from T.  You cannot change
                      the direction of integration without restarting.
 
                          *** Following an Interrupted Task ***
                      To show the code that you realize the task was
                      interrupted and that you want to continue, you
                      must take appropriate action and reset INFO(1) = 1
          If
              IDID = -1, the code has attempted 500 steps.
                      If you want to continue, set INFO(1) = 1 and
                      call the code again.  An additional 500 steps
                      will be allowed.
 
              IDID = -2, the error tolerances RTOL, ATOL have been
                      increased to values the code estimates appropriate
                      for continuing.  You may want to change them
                      yourself.  If you are sure you want to continue
                      with relaxed error tolerances, set INFO(1)=1 and
                      call the code again.
 
              IDID = -3, a solution component is zero and you set the
                      corresponding component of ATOL to zero.  If you
                      are sure you want to continue, you must first
                      alter the error criterion to use positive values
                      for those components of ATOL corresponding to zero
                      solution components, then set INFO(1)=1 and call
                      the code again.
 
              IDID = -4, the problem appears to be stiff.  It is very
                      inefficient to solve such problems with DDERKF.
                      The code DDEBDF in DEPAC handles this task
                      efficiently.  If you are absolutely sure you want
                      to continue with DDERKF, set INFO(1)=1 and call
                      the code again.
 
              IDID = -5, you are using DDERKF very inefficiently by
                      choosing output points TOUT so close together that
                      the step size is repeatedly forced to be rather
                      smaller than necessary.  If you are willing to
                      accept solutions at the steps chosen by the code,
                      a good way to proceed is to use the intermediate
                      output mode (setting INFO(3)=1).  If you must have
                      solutions at so many specific TOUT points, the
                      code DDEABM in DEPAC handles this task
                      efficiently.  If you want to continue with DDERKF,
                      set INFO(1)=1 and call the code again.
 
              IDID = -6,-7,..,-32  --- cannot occur with this code but
                      used by other members of DEPAC or possible future
                      extensions.
 
                          *** Following a Terminated Task ***
          If
              IDID = -33, you cannot continue the solution of this
                      problem.  An attempt to do so will result in your
                      run being terminated.
 
  **********************************************************************
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  *Long Description:
 
  **********************************************************************
  **             DEPAC Package Overview           **
  **********************************************************************
 
  ....   You have a choice of three differential equation solvers from
  ....   DEPAC. The following brief descriptions are meant to aid you in
  ....   choosing the most appropriate code for your problem.
 
  ....   DDERKF is a fifth order Runge-Kutta code. It is the simplest of
  ....   the three choices, both algorithmically and in the use of the
  ....   code. DDERKF is primarily designed to solve non-stiff and
  ....   mildly stiff differential equations when derivative evaluations
  ....   are not expensive. It should generally not be used to get high
  ....   accuracy results nor answers at a great many specific points.
  ....   Because DDERKF has very low overhead costs, it will usually
  ....   result in the least expensive integration when solving
  ....   problems requiring a modest amount of accuracy and having
  ....   equations that are not costly to evaluate. DDERKF attempts to
  ....   discover when it is not suitable for the task posed.
 
  ....   DDEABM is a variable order (one through twelve) Adams code.
  ....   Its complexity lies somewhere between that of DDERKF and
  ....   DDEBDF.  DDEABM is primarily designed to solve non-stiff and
  ....   mildly stiff differential equations when derivative evaluations
  ....   are expensive, high accuracy results are needed or answers at
  ....   many specific points are required. DDEABM attempts to discover
  ....   when it is not suitable for the task posed.
 
  ....   DDEBDF is a variable order (one through five) backward
  ....   differentiation formula code. it is the most complicated of
  ....   the three choices. DDEBDF is primarily designed to solve stiff
  ....   differential equations at crude to moderate tolerances.
  ....   If the problem is very stiff at all, DDERKF and DDEABM will be
  ....   quite inefficient compared to DDEBDF. However, DDEBDF will be
  ....   inefficient compared to DDERKF and DDEABM on non-stiff problems
  ....   because it uses much more storage, has a much larger overhead,
  ....   and the low order formulas will not give high accuracies
  ....   efficiently.
 
  ....   The concept of stiffness cannot be described in a few words.
  ....   If you do not know the problem to be stiff, try either DDERKF
  ....   or DDEABM. Both of these codes will inform you of stiffness
  ....   when the cost of solving such problems becomes important.
 
  *********************************************************************
 
 ***REFERENCES  L. F. Shampine and H. A. Watts, DEPAC - design of a user
                  oriented package of ODE solvers, Report SAND79-2374,
                  Sandia Laboratories, 1979.
                L. F. Shampine and H. A. Watts, Practical solution of
                  ordinary differential equations by Runge-Kutta
                  methods, Report SAND76-0585, Sandia Laboratories,
                  1976.
 ***ROUTINES CALLED  DRKFS, XERMSG
 ***REVISION HISTORY  (YYMMDD)
    820301  DATE WRITTEN
    890831  Modified array declarations.  (WRB)
    891024  Changed references from DVNORM to DHVNRM.  (WRB)
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    891024  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    900510  Convert XERRWV calls to XERMSG calls, make Prologue comments
            consistent with DERKF.  (RWC)
    920501  Reformatted the REFERENCES section.  (WRB)
    END PROLOGUE
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DDOT

      DOUBLE PRECISION FUNCTION DDOT (N, DX, INCX, DY, INCY)
 ***BEGIN PROLOGUE  DDOT
 ***PURPOSE  Compute the inner product of two vectors.
 ***LIBRARY   SLATEC (BLAS)
 ***CATEGORY  D1A4
 ***TYPE      DOUBLE PRECISION (SDOT-S, DDOT-D, CDOTU-C)
 ***KEYWORDS  BLAS, INNER PRODUCT, LINEAR ALGEBRA, VECTOR
 ***AUTHOR  Lawson, C. L., (JPL)
            Hanson, R. J., (SNLA)
            Kincaid, D. R., (U. of Texas)
            Krogh, F. T., (JPL)
 ***DESCRIPTION
 
                 B L A S  Subprogram
     Description of Parameters
 
      --Input--
         N  number of elements in input vector(s)
        DX  double precision vector with N elements
      INCX  storage spacing between elements of DX
        DY  double precision vector with N elements
      INCY  storage spacing between elements of DY
 
      --Output--
      DDOT  double precision dot product (zero if N .LE. 0)
 
      Returns the dot product of double precision DX and DY.
      DDOT = sum for I = 0 to N-1 of  DX(LX+I*INCX) * DY(LY+I*INCY),
      where LX = 1 if INCX .GE. 0, else LX = 1+(1-N)*INCX, and LY is
      defined in a similar way using INCY.
 
 ***REFERENCES  C. L. Lawson, R. J. Hanson, D. R. Kincaid and F. T.
                  Krogh, Basic linear algebra subprograms for Fortran
                  usage, Algorithm No. 539, Transactions on Mathematical
                  Software 5, 3 (September 1979), pp. 308-323.
 ***ROUTINES CALLED  (NONE)
 ***REVISION HISTORY  (YYMMDD)
    791001  DATE WRITTEN
    890831  Modified array declarations.  (WRB)
    890831  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    920310  Corrected definition of LX in DESCRIPTION.  (WRB)
    920501  Reformatted the REFERENCES section.  (WRB)
    END PROLOGUE
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DDRIV1

      SUBROUTINE DDRIV1 (N, T, Y, F, TOUT, MSTATE, EPS, LENW,
     8   IERFLG)
 ***BEGIN PROLOGUE  DDRIV1
 ***PURPOSE  The function of DDRIV1 is to solve N (200 or fewer)
             ordinary differential equations of the form
             dY(I)/dT = F(Y(I),T), given the initial conditions
             Y(I) = YI.  DDRIV1 uses double precision arithmetic.
 ***LIBRARY   SLATEC (SDRIVE)
 ***CATEGORY  I1A2, I1A1B
 ***TYPE      DOUBLE PRECISION (SDRIV1-S, DDRIV1-D, CDRIV1-C)
 ***KEYWORDS  DOUBLE PRECISION, GEAR'S METHOD, INITIAL VALUE PROBLEMS,
              ODE, ORDINARY DIFFERENTIAL EQUATIONS, SDRIVE, STIFF
 ***AUTHOR  Kahaner, D. K., (NIST)
              National Institute of Standards and Technology
              Gaithersburg, MD  20899
            Sutherland, C. D., (LANL)
              Mail Stop D466
              Los Alamos National Laboratory
              Los Alamos, NM  87545
 ***DESCRIPTION
 
    Version 92.1
 
   I.  CHOOSING THE CORRECT ROUTINE  ...................................
 
      SDRIV
      DDRIV
      CDRIV
            These are the generic names for three packages for solving
            initial value problems for ordinary differential equations.
            SDRIV uses single precision arithmetic.  DDRIV uses double
            precision arithmetic.  CDRIV allows complex-valued
            differential equations, integrated with respect to a single,
            real, independent variable.
 
     As an aid in selecting the proper program, the following is a
     discussion of the important options or restrictions associated with
     each program:
 
       A. DDRIV1 should be tried first for those routine problems with
          no more than 200 differential equations (DDRIV2 and DDRIV3
          have no such restriction.)  Internally this routine has two
          important technical defaults:
            1. Numerical approximation of the Jacobian matrix of the
               right hand side is used.
            2. The stiff solver option is used.
          Most users of DDRIV1 should not have to concern themselves
          with these details.
 
       B. DDRIV2 should be considered for those problems for which
          DDRIV1 is inadequate.  For example, DDRIV1 may have difficulty
          with problems having zero initial conditions and zero
          derivatives.  In this case DDRIV2, with an appropriate value
          of the parameter EWT, should perform more efficiently.  DDRIV2
          provides three important additional options:
            1. The nonstiff equation solver (as well as the stiff
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               solver) is available.
            2. The root-finding option is available.
            3. The program can dynamically select either the non-stiff
               or the stiff methods.
          Internally this routine also defaults to the numerical
          approximation of the Jacobian matrix of the right hand side.
 
       C. DDRIV3 is the most flexible, and hence the most complex, of
          the programs.  Its important additional features include:
            1. The ability to exploit band structure in the Jacobian
               matrix.
            2. The ability to solve some implicit differential
               equations, i.e., those having the form:
                    A(Y,T)*dY/dT = F(Y,T).
            3. The option of integrating in the one step mode.
            4. The option of allowing the user to provide a routine
               which computes the analytic Jacobian matrix of the right
               hand side.
            5. The option of allowing the user to provide a routine
               which does all the matrix algebra associated with
               corrections to the solution components.
 
   II.  PARAMETERS  ....................................................
 
        (REMEMBER--To run DDRIV1 correctly in double precision, ALL
        non-integer arguments in the call sequence, including
        arrays, MUST be declared double precision.)
 
     The user should use parameter names in the call sequence of DDRIV1
     for those quantities whose value may be altered by DDRIV1.  The
     parameters in the call sequence are:
 
     N      = (Input) The number of differential equations, N .LE. 200
 
     T      = The independent variable.  On input for the first call, T
              is the initial point.  On output, T is the point at which
              the solution is given.
 
     Y      = The vector of dependent variables.  Y is used as input on
              the first call, to set the initial values.  On output, Y
              is the computed solution vector.  This array Y is passed
              in the call sequence of the user-provided routine F.  Thus
              parameters required by F can be stored in this array in
              components N+1 and above.  (Note: Changes by the user to
              the first N components of this array will take effect only
              after a restart, i.e., after setting MSTATE to +1(-1).)
 
     F      = A subroutine supplied by the user.  The name must be
              declared EXTERNAL in the user's calling program.  This
              subroutine is of the form:
                    SUBROUTINE F (N, T, Y, YDOT)
                    DOUBLE PRECISION Y(*), YDOT(*)
                      .
                      .
                    YDOT(1) = ...
                      .
                      .
                    YDOT(N) = ...
                    END (Sample)
              This computes YDOT = F(Y,T), the right hand side of the
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              differential equations.  Here Y is a vector of length at
              least N.  The actual length of Y is determined by the
              user's declaration in the program which calls DDRIV1.
              Thus the dimensioning of Y in F, while required by FORTRAN
              convention, does not actually allocate any storage.  When
              this subroutine is called, the first N components of Y are
              intermediate approximations to the solution components.
              The user should not alter these values.  Here YDOT is a
              vector of length N.  The user should only compute YDOT(I)
              for I from 1 to N.  Normally a return from F passes
              control back to  DDRIV1.  However, if the user would like
              to abort the calculation, i.e., return control to the
              program which calls DDRIV1, he should set N to zero.
              DDRIV1 will signal this by returning a value of MSTATE
              equal to +5(-5).  Altering the value of N in F has no
              effect on the value of N in the call sequence of DDRIV1.
 
     TOUT   = (Input) The point at which the solution is desired.
 
     MSTATE = An integer describing the status of integration.  The user
              must initialize MSTATE to +1 or -1.  If MSTATE is
              positive, the routine will integrate past TOUT and
              interpolate the solution.  This is the most efficient
              mode.  If MSTATE is negative, the routine will adjust its
              internal step to reach TOUT exactly (useful if a
              singularity exists beyond TOUT.)  The meaning of the
              magnitude of MSTATE:
                1  (Input) Means the first call to the routine.  This
                   value must be set by the user.  On all subsequent
                   calls the value of MSTATE should be tested by the
                   user.  Unless DDRIV1 is to be reinitialized, only the
                   sign of MSTATE may be changed by the user.  (As a
                   convenience to the user who may wish to put out the
                   initial conditions, DDRIV1 can be called with
                   MSTATE=+1(-1), and TOUT=T.  In this case the program
                   will return with MSTATE unchanged, i.e.,
                   MSTATE=+1(-1).)
                2  (Output) Means a successful integration.  If a normal
                   continuation is desired (i.e., a further integration
                   in the same direction), simply advance TOUT and call
                   again.  All other parameters are automatically set.
                3  (Output)(Unsuccessful) Means the integrator has taken
                   1000 steps without reaching TOUT.  The user can
                   continue the integration by simply calling DDRIV1
                   again.
                4  (Output)(Unsuccessful) Means too much accuracy has
                   been requested.  EPS has been increased to a value
                   the program estimates is appropriate.  The user can
                   continue the integration by simply calling DDRIV1
                   again.
                5  (Output)(Unsuccessful) N has been set to zero in
                   SUBROUTINE F.
                6  (Output)(Successful) For MSTATE negative, T is beyond
                   TOUT.  The solution was obtained by interpolation.
                   The user can continue the integration by simply
                   advancing TOUT and calling DDRIV1 again.
                7  (Output)(Unsuccessful) The solution could not be
                   obtained.  The value of IERFLG (see description
                   below) for a "Recoverable" situation indicates the
                   type of difficulty encountered: either an illegal
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                   value for a parameter or an inability to continue the
                   solution.  For this condition the user should take
                   corrective action and reset MSTATE to +1(-1) before
                   calling DDRIV1 again.  Otherwise the program will
                   terminate the run.
 
     EPS    = On input, the requested relative accuracy in all solution
              components.  On output, the adjusted relative accuracy if
              the input value was too small.  The value of EPS should be
              set as large as is reasonable, because the amount of work
              done by DDRIV1 increases as EPS decreases.
 
     WORK
     LENW   = (Input)
              WORK is an array of LENW double precision words used
              internally for temporary storage.  The user must allocate
              space for this array in the calling program by a statement
              such as
                        DOUBLE PRECISION WORK(...)
              The length of WORK should be at least N*N + 11*N + 300
              and LENW should be set to the value used.  The contents of
              WORK should not be disturbed between calls to DDRIV1.
 
     IERFLG = An error flag.  The error number associated with a
              diagnostic message (see Section IV-A below) is the same as
              the corresponding value of IERFLG.  The meaning of IERFLG:
                0  The routine completed successfully. (No message is
                   issued.)
                3  (Warning) The number of steps required to reach TOUT
                   exceeds 1000 .
                4  (Warning) The value of EPS is too small.
               11  (Warning) For MSTATE negative, T is beyond TOUT.
                   The solution was obtained by interpolation.
               15  (Warning) The integration step size is below the
                   roundoff level of T.  (The program issues this
                   message as a warning but does not return control to
                   the user.)
               21  (Recoverable) N is greater than 200 .
               22  (Recoverable) N is not positive.
               26  (Recoverable) The magnitude of MSTATE is either 0 or
                   greater than 7 .
               27  (Recoverable) EPS is less than zero.
               32  (Recoverable) Insufficient storage has been allocated
                   for the WORK array.
               41  (Recoverable) The integration step size has gone
                   to zero.
               42  (Recoverable) The integration step size has been
                   reduced about 50 times without advancing the
                   solution.  The problem setup may not be correct.
              999  (Fatal) The magnitude of MSTATE is 7 .
 
   III.  USAGE  ........................................................
 
                 PROGRAM SAMPLE
                 EXTERNAL F
                 DOUBLE PRECISION ALFA, EPS, T, TOUT
           C                                N is the number of equations
                 PARAMETER(ALFA = 1.D0, N = 3, LENW = N*N + 11*N + 300)
                 DOUBLE PRECISION WORK(LENW), Y(N+1)
           C                                               Initial point
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                 T = 0.00001D0
           C                                      Set initial conditions
                 Y(1) = 10.D0
                 Y(2) = 0.D0
                 Y(3) = 10.D0
           C                                              Pass parameter
                 Y(4) = ALFA
                 TOUT = T
                 MSTATE = 1
                 EPS = .001D0
            10   CALL DDRIV1 (N, T, Y, F, TOUT, MSTATE, EPS, WORK, LENW,
                8             IERFLG)
                 IF (MSTATE .GT. 2) STOP
                 WRITE(*, '(4E12.3)') TOUT, (Y(I), I=1,3)
                 TOUT = 10.D0*TOUT
                 IF (TOUT .LT. 50.D0) GO TO 10
                 END
 
                 SUBROUTINE F (N, T, Y, YDOT)
                 DOUBLE PRECISION ALFA, T, Y(*), YDOT(*)
                 ALFA = Y(N+1)
                 YDOT(1) = 1.D0 + ALFA*(Y(2) - Y(1)) - Y(1)*Y(3)
                 YDOT(2) = ALFA*(Y(1) - Y(2)) - Y(2)*Y(3)
                 YDOT(3) = 1.D0 - Y(3)*(Y(1) + Y(2))
                 END
 
   IV.  OTHER COMMUNICATION TO THE USER  ...............................
 
     A. The solver communicates to the user through the parameters
        above.  In addition it writes diagnostic messages through the
        standard error handling program XERMSG.  A complete description
        of XERMSG is given in "Guide to the SLATEC Common Mathematical
        Library" by Kirby W. Fong et al..  At installations which do not
        have this error handling package the short but serviceable
        routine, XERMSG, available with this package, can be used.  That
        program uses the file named OUTPUT to transmit messages.
 
     B. The number of evaluations of the right hand side can be found
        in the WORK array in the location determined by:
             LENW - (N + 50) + 4
 
   V.  REMARKS  ........................................................
 
     For other information, see Section IV of the writeup for DDRIV3.
 
 ***REFERENCES  C. W. Gear, Numerical Initial Value Problems in
                  Ordinary Differential Equations, Prentice-Hall, 1971.
 ***ROUTINES CALLED  DDRIV3, XERMSG
 ***REVISION HISTORY  (YYMMDD)
    790601  DATE WRITTEN
    900329  Initial submission to SLATEC.
    END PROLOGUE
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DDRIV2

      SUBROUTINE DDRIV2 (N, T, Y, F, TOUT, MSTATE, NROOT, EPS, EWT,
     8   MINT, WORK, LENW, IWORK, LENIW, G, IERFLG)
 ***BEGIN PROLOGUE  DDRIV2
 ***PURPOSE  The function of DDRIV2 is to solve N ordinary differential
             equations of the form dY(I)/dT = F(Y(I),T), given the
             initial conditions Y(I) = YI.  The program has options to
             allow the solution of both stiff and non-stiff differential
             equations.  DDRIV2 uses double precision arithmetic.
 ***LIBRARY   SLATEC (SDRIVE)
 ***CATEGORY  I1A2, I1A1B
 ***TYPE      DOUBLE PRECISION (SDRIV2-S, DDRIV2-D, CDRIV2-C)
 ***KEYWORDS  DOUBLE PRECISION, GEAR'S METHOD, INITIAL VALUE PROBLEMS,
              ODE, ORDINARY DIFFERENTIAL EQUATIONS, SDRIVE, STIFF
 ***AUTHOR  Kahaner, D. K., (NIST)
              National Institute of Standards and Technology
              Gaithersburg, MD  20899
            Sutherland, C. D., (LANL)
              Mail Stop D466
              Los Alamos National Laboratory
              Los Alamos, NM  87545
 ***DESCRIPTION
 
   I.  PARAMETERS  .....................................................
 
        (REMEMBER--To run DDRIV2 correctly in double precision, ALL
        non-integer arguments in the call sequence, including
        arrays, MUST be declared double precision.)
 
     The user should use parameter names in the call sequence of DDRIV2
     for those quantities whose value may be altered by DDRIV2.  The
     parameters in the call sequence are:
 
     N      = (Input) The number of differential equations.
 
     T      = The independent variable.  On input for the first call, T
              is the initial point.  On output, T is the point at which
              the solution is given.
 
     Y      = The vector of dependent variables.  Y is used as input on
              the first call, to set the initial values.  On output, Y
              is the computed solution vector.  This array Y is passed
              in the call sequence of the user-provided routines F and
              G.  Thus parameters required by F and G can be stored in
              this array in components N+1 and above.  (Note: Changes
              by the user to the first N components of this array will
              take effect only after a restart, i.e., after setting
              MSTATE to +1(-1).)
 
     F      = A subroutine supplied by the user.  The name must be
              declared EXTERNAL in the user's calling program.  This
              subroutine is of the form:
                    SUBROUTINE F (N, T, Y, YDOT)
                    DOUBLE PRECISION Y(*), YDOT(*)
                      .
                      .
                    YDOT(1) = ...
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                      .
                      .
                    YDOT(N) = ...
                    END (Sample)
              This computes YDOT = F(Y,T), the right hand side of the
              differential equations.  Here Y is a vector of length at
              least N.  The actual length of Y is determined by the
              user's declaration in the program which calls DDRIV2.
              Thus the dimensioning of Y in F, while required by FORTRAN
              convention, does not actually allocate any storage.  When
              this subroutine is called, the first N components of Y are
              intermediate approximations to the solution components.
              The user should not alter these values.  Here YDOT is a
              vector of length N.  The user should only compute YDOT(I)
              for I from 1 to N.  Normally a return from F passes
              control back to  DDRIV2.  However, if the user would like
              to abort the calculation, i.e., return control to the
              program which calls DDRIV2, he should set N to zero.
              DDRIV2 will signal this by returning a value of MSTATE
              equal to +6(-6).  Altering the value of N in F has no
              effect on the value of N in the call sequence of DDRIV2.
 
     TOUT   = (Input) The point at which the solution is desired.
 
     MSTATE = An integer describing the status of integration.  The user
              must initialize MSTATE to +1 or -1.  If MSTATE is
              positive, the routine will integrate past TOUT and
              interpolate the solution.  This is the most efficient
              mode.  If MSTATE is negative, the routine will adjust its
              internal step to reach TOUT exactly (useful if a
              singularity exists beyond TOUT.)  The meaning of the
              magnitude of MSTATE:
                1  (Input) Means the first call to the routine.  This
                   value must be set by the user.  On all subsequent
                   calls the value of MSTATE should be tested by the
                   user.  Unless DDRIV2 is to be reinitialized, only the
                   sign of MSTATE may be changed by the user.  (As a
                   convenience to the user who may wish to put out the
                   initial conditions, DDRIV2 can be called with
                   MSTATE=+1(-1), and TOUT=T.  In this case the program
                   will return with MSTATE unchanged, i.e.,
                   MSTATE=+1(-1).)
                2  (Output) Means a successful integration.  If a normal
                   continuation is desired (i.e., a further integration
                   in the same direction), simply advance TOUT and call
                   again.  All other parameters are automatically set.
                3  (Output)(Unsuccessful) Means the integrator has taken
                   1000 steps without reaching TOUT.  The user can
                   continue the integration by simply calling DDRIV2
                   again.  Other than an error in problem setup, the
                   most likely cause for this condition is trying to
                   integrate a stiff set of equations with the non-stiff
                   integrator option. (See description of MINT below.)
                4  (Output)(Unsuccessful) Means too much accuracy has
                   been requested.  EPS has been increased to a value
                   the program estimates is appropriate.  The user can
                   continue the integration by simply calling DDRIV2
                   again.
                5  (Output) A root was found at a point less than TOUT.
                   The user can continue the integration toward TOUT by
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                   simply calling DDRIV2 again.
                6  (Output)(Unsuccessful) N has been set to zero in
                   SUBROUTINE F.
                7  (Output)(Unsuccessful) N has been set to zero in
                   FUNCTION G.  See description of G below.
                8  (Output)(Successful) For MSTATE negative, T is beyond
                   TOUT.  The solution was obtained by interpolation.
                   The user can continue the integration by simply
                   advancing TOUT and calling DDRIV2 again.
                9  (Output)(Unsuccessful) The solution could not be
                   obtained.  The value of IERFLG (see description
                   below) for a "Recoverable" situation indicates the
                   type of difficulty encountered: either an illegal
                   value for a parameter or an inability to continue the
                   solution.  For this condition the user should take
                   corrective action and reset MSTATE to +1(-1) before
                   calling DDRIV2 again.  Otherwise the program will
                   terminate the run.
 
     NROOT  = (Input) The number of equations whose roots are desired.
              If NROOT is zero, the root search is not active.  This
              option is useful for obtaining output at points which are
              not known in advance, but depend upon the solution, e.g.,
              when some solution component takes on a specified value.
              The root search is carried out using the user-written
              function G (see description of G below.)  DDRIV2 attempts
              to find the value of T at which one of the equations
              changes sign.  DDRIV2 can find at most one root per
              equation per internal integration step, and will then
              return the solution either at TOUT or at a root, whichever
              occurs first in the direction of integration.  The initial
              point is never reported as a root.  The index of the
              equation whose root is being reported is stored in the
              sixth element of IWORK.
              NOTE: NROOT is never altered by this program.
 
     EPS    = On input, the requested relative accuracy in all solution
              components.  EPS = 0 is allowed.  On output, the adjusted
              relative accuracy if the input value was too small.  The
              value of EPS should be set as large as is reasonable,
              because the amount of work done by DDRIV2 increases as
              EPS decreases.
 
     EWT    = (Input) Problem zero, i.e., the smallest physically
              meaningful value for the solution.  This is used inter-
              nally to compute an array YWT(I) = MAX(ABS(Y(I)), EWT).
              One step error estimates divided by YWT(I) are kept less
              than EPS.  Setting EWT to zero provides pure relative
              error control.  However, setting EWT smaller than
              necessary can adversely affect the running time.
 
     MINT   = (Input) The integration method flag.
                MINT = 1  Means the Adams methods, and is used for
                          non-stiff problems.
                MINT = 2  Means the stiff methods of Gear (i.e., the
                          backward differentiation formulas), and is
                          used for stiff problems.
                MINT = 3  Means the program dynamically selects the
                          Adams methods when the problem is non-stiff
                          and the Gear methods when the problem is

SLATEC3 (DACOSH through DS2Y) - 215



                          stiff.
              MINT may not be changed without restarting, i.e., setting
              the magnitude of MSTATE to 1.
 
     WORK
     LENW   = (Input)
              WORK is an array of LENW double precision words used
              internally for temporary storage.  The user must allocate
              space for this array in the calling program by a statement
              such as
                        DOUBLE PRECISION WORK(...)
              The length of WORK should be at least
                16*N + 2*NROOT + 250         if MINT is 1, or
                N*N + 10*N + 2*NROOT + 250   if MINT is 2, or
                N*N + 17*N + 2*NROOT + 250   if MINT is 3,
              and LENW should be set to the value used.  The contents of
              WORK should not be disturbed between calls to DDRIV2.
 
     IWORK
     LENIW  = (Input)
              IWORK is an integer array of length LENIW used internally
              for temporary storage.  The user must allocate space for
              this array in the calling program by a statement such as
                        INTEGER IWORK(...)
              The length of IWORK should be at least
                50      if MINT is 1, or
                N+50    if MINT is 2 or 3,
              and LENIW should be set to the value used.  The contents
              of IWORK should not be disturbed between calls to DDRIV2.
 
     G      = A double precision FORTRAN function supplied by the user
              if NROOT is not 0.  In this case, the name must be
              declared EXTERNAL in the user's calling program.  G is
              repeatedly called with different values of IROOT to
              obtain the value of each of the NROOT equations for which
              a root is desired.  G is of the form:
                    DOUBLE PRECISION FUNCTION G (N, T, Y, IROOT)
                    DOUBLE PRECISION Y(*)
                    GO TO (10, ...), IROOT
               10   G = ...
                      .
                      .
                    END (Sample)
              Here, Y is a vector of length at least N, whose first N
              components are the solution components at the point T.
              The user should not alter these values.  The actual length
              of Y is determined by the user's declaration in the
              program which calls DDRIV2.  Thus the dimensioning of Y in
              G, while required by FORTRAN convention, does not actually
              allocate any storage.  Normally a return from G passes
              control back to  DDRIV2.  However, if the user would like
              to abort the calculation, i.e., return control to the
              program which calls DDRIV2, he should set N to zero.
              DDRIV2 will signal this by returning a value of MSTATE
              equal to +7(-7).  In this case, the index of the equation
              being evaluated is stored in the sixth element of IWORK.
              Altering the value of N in G has no effect on the value of
              N in the call sequence of DDRIV2.
 
     IERFLG = An error flag.  The error number associated with a
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              diagnostic message (see Section II-A below) is the same as
              the corresponding value of IERFLG.  The meaning of IERFLG:
                0  The routine completed successfully. (No message is
                   issued.)
                3  (Warning) The number of steps required to reach TOUT
                   exceeds MXSTEP.
                4  (Warning) The value of EPS is too small.
               11  (Warning) For MSTATE negative, T is beyond TOUT.
                   The solution was obtained by interpolation.
               15  (Warning) The integration step size is below the
                   roundoff level of T.  (The program issues this
                   message as a warning but does not return control to
                   the user.)
               22  (Recoverable) N is not positive.
               23  (Recoverable) MINT is less than 1 or greater than 3 .
               26  (Recoverable) The magnitude of MSTATE is either 0 or
                   greater than 9 .
               27  (Recoverable) EPS is less than zero.
               32  (Recoverable) Insufficient storage has been allocated
                   for the WORK array.
               33  (Recoverable) Insufficient storage has been allocated
                   for the IWORK array.
               41  (Recoverable) The integration step size has gone
                   to zero.
               42  (Recoverable) The integration step size has been
                   reduced about 50 times without advancing the
                   solution.  The problem setup may not be correct.
              999  (Fatal) The magnitude of MSTATE is 9 .
 
   II.  OTHER COMMUNICATION TO THE USER  ...............................
 
     A. The solver communicates to the user through the parameters
        above.  In addition it writes diagnostic messages through the
        standard error handling program XERMSG.  A complete description
        of XERMSG is given in "Guide to the SLATEC Common Mathematical
        Library" by Kirby W. Fong et al..  At installations which do not
        have this error handling package the short but serviceable
        routine, XERMSG, available with this package, can be used.  That
        program uses the file named OUTPUT to transmit messages.
 
     B. The first three elements of WORK and the first five elements of
        IWORK will contain the following statistical data:
          AVGH     The average step size used.
          HUSED    The step size last used (successfully).
          AVGORD   The average order used.
          IMXERR   The index of the element of the solution vector that
                   contributed most to the last error test.
          NQUSED   The order last used (successfully).
          NSTEP    The number of steps taken since last initialization.
          NFE      The number of evaluations of the right hand side.
          NJE      The number of evaluations of the Jacobian matrix.
 
   III.  REMARKS  ......................................................
 
     A. On any return from DDRIV2 all information necessary to continue
        the calculation is contained in the call sequence parameters,
        including the work arrays.  Thus it is possible to suspend one
        problem, integrate another, and then return to the first.
 
     B. If this package is to be used in an overlay situation, the user
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        must declare in the primary overlay the variables in the call
        sequence to DDRIV2.
 
     C. When the routine G is not required, difficulties associated with
        an unsatisfied external can be avoided by using the name of the
        routine which calculates the right hand side of the differential
        equations in place of G in the call sequence of DDRIV2.
 
   IV.  USAGE  .........................................................
 
                PROGRAM SAMPLE
                EXTERNAL F
                PARAMETER(MINT = 1, NROOT = 0, N = ...,
               8          LENW = 16*N + 2*NROOT + 250, LENIW = 50)
          C                                 N is the number of equations
                DOUBLE PRECISION EPS, EWT, T, TOUT, WORK(LENW), Y(N)
                INTEGER IWORK(LENIW)
                OPEN(FILE='TAPE6', UNIT=6, STATUS='NEW')
          C                                                Initial point
                T = 0.
          C                                       Set initial conditions
                DO 10 I = 1,N
           10     Y(I) = ...
                TOUT = T
                EWT = ...
                MSTATE = 1
                EPS = ...
           20   CALL DDRIV2 (N, T, Y, F, TOUT, MSTATE, NROOT, EPS, EWT,
               8             MINT, WORK, LENW, IWORK, LENIW, F, IERFLG)
          C                                 Next to last argument is not
          C                                    F if rootfinding is used.
                IF (MSTATE .GT. 2) STOP
                WRITE(6, 100) TOUT, (Y(I), I=1,N)
                TOUT = TOUT + 1.
                IF (TOUT .LE. 10.) GO TO 20
           100  FORMAT(...)
                END (Sample)
 
 ***REFERENCES  C. W. Gear, Numerical Initial Value Problems in
                  Ordinary Differential Equations, Prentice-Hall, 1971.
 ***ROUTINES CALLED  DDRIV3, XERMSG
 ***REVISION HISTORY  (YYMMDD)
    790601  DATE WRITTEN
    900329  Initial submission to SLATEC.
    END PROLOGUE
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DDRIV3

      SUBROUTINE DDRIV3 (N, T, Y, F, NSTATE, TOUT, NTASK, NROOT,
     8     EPS, EWT, IERROR, MINT, MITER, IMPL, ML, MU, MXORD, HMAX,
     8   LENW, IWORK, LENIW, JACOBN, FA, NDE, MXSTEP, G, USERS, IERFLG)
 ***BEGIN PROLOGUE  DDRIV3
 ***PURPOSE  The function of DDRIV3 is to solve N ordinary differential
             equations of the form dY(I)/dT = F(Y(I),T), given the
             initial conditions Y(I) = YI.  The program has options to
             allow the solution of both stiff and non-stiff differential
             equations.  Other important options are available.  DDRIV3
             uses double precision arithmetic.
 ***LIBRARY   SLATEC (SDRIVE)
 ***CATEGORY  I1A2, I1A1B
 ***TYPE      DOUBLE PRECISION (SDRIV3-S, DDRIV3-D, CDRIV3-C)
 ***KEYWORDS  DOUBLE PRECISION, GEAR'S METHOD, INITIAL VALUE PROBLEMS,
              ODE, ORDINARY DIFFERENTIAL EQUATIONS, SDRIVE, STIFF
 ***AUTHOR  Kahaner, D. K., (NIST)
              National Institute of Standards and Technology
              Gaithersburg, MD  20899
            Sutherland, C. D., (LANL)
              Mail Stop D466
              Los Alamos National Laboratory
              Los Alamos, NM  87545
 ***DESCRIPTION
 
   I.  ABSTRACT  .......................................................
 
     The primary function of DDRIV3 is to solve N ordinary differential
     equations of the form dY(I)/dT = F(Y(I),T), given the initial
     conditions Y(I) = YI.  The program has options to allow the
     solution of both stiff and non-stiff differential equations.  In
     addition, DDRIV3 may be used to solve:
       1. The initial value problem, A*dY(I)/dT = F(Y(I),T), where A is
          a non-singular matrix depending on Y and T.
       2. The hybrid differential/algebraic initial value problem,
          A*dY(I)/dT = F(Y(I),T), where A is a vector (whose values may
          depend upon Y and T) some of whose components will be zero
          corresponding to those equations which are algebraic rather
          than differential.
     DDRIV3 is to be called once for each output point of T.
 
   II.  PARAMETERS  ....................................................
        (REMEMBER--To run DDRIV3 correctly in double precision, ALL
        non-integer arguments in the call sequence, including
        arrays, MUST be declared double precision.)
 
     The user should use parameter names in the call sequence of DDRIV3
     for those quantities whose value may be altered by DDRIV3.  The
     parameters in the call sequence are:
 
     N      = (Input) The number of dependent functions whose solution
              is desired.  N must not be altered during a problem.
 
     T      = The independent variable.  On input for the first call, T
              is the initial point.  On output, T is the point at which
              the solution is given.
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     Y      = The vector of dependent variables.  Y is used as input on
              the first call, to set the initial values.  On output, Y
              is the computed solution vector.  This array Y is passed
              in the call sequence of the user-provided routines F,
              JACOBN, FA, USERS, and G.  Thus parameters required by
              those routines can be stored in this array in components
              N+1 and above.  (Note: Changes by the user to the first
              N components of this array will take effect only after a
              restart, i.e., after setting NSTATE to 1 .)
 
     F      = A subroutine supplied by the user.  The name must be
              declared EXTERNAL in the user's calling program.  This
              subroutine is of the form:
                    SUBROUTINE F (N, T, Y, YDOT)
                    DOUBLE PRECISION Y(*), YDOT(*)
                      .
                      .
                    YDOT(1) = ...
                      .
                      .
                    YDOT(N) = ...
                    END (Sample)
              This computes YDOT = F(Y,T), the right hand side of the
              differential equations.  Here Y is a vector of length at
              least N.  The actual length of Y is determined by the
              user's declaration in the program which calls DDRIV3.
              Thus the dimensioning of Y in F, while required by FORTRAN
              convention, does not actually allocate any storage.  When
              this subroutine is called, the first N components of Y are
              intermediate approximations to the solution components.
              The user should not alter these values.  Here YDOT is a
              vector of length N.  The user should only compute YDOT(I)
              for I from 1 to N.  Normally a return from F passes
              control back to  DDRIV3.  However, if the user would like
              to abort the calculation, i.e., return control to the
              program which calls DDRIV3, he should set N to zero.
              DDRIV3 will signal this by returning a value of NSTATE
              equal to 6 .  Altering the value of N in F has no effect
              on the value of N in the call sequence of DDRIV3.
 
     NSTATE = An integer describing the status of integration.  The
              meaning of NSTATE is as follows:
                1  (Input) Means the first call to the routine.  This
                   value must be set by the user.  On all subsequent
                   calls the value of NSTATE should be tested by the
                   user, but must not be altered.  (As a convenience to
                   the user who may wish to put out the initial
                   conditions, DDRIV3 can be called with NSTATE=1, and
                   TOUT=T.  In this case the program will return with
                   NSTATE unchanged, i.e., NSTATE=1.)
                2  (Output) Means a successful integration.  If a normal
                   continuation is desired (i.e., a further integration
                   in the same direction), simply advance TOUT and call
                   again.  All other parameters are automatically set.
                3  (Output)(Unsuccessful) Means the integrator has taken
                   MXSTEP steps without reaching TOUT.  The user can
                   continue the integration by simply calling DDRIV3
                   again.
                4  (Output)(Unsuccessful) Means too much accuracy has
                   been requested.  EPS has been increased to a value
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                   the program estimates is appropriate.  The user can
                   continue the integration by simply calling DDRIV3
                   again.
                5  (Output) A root was found at a point less than TOUT.
                   The user can continue the integration toward TOUT by
                   simply calling DDRIV3 again.
                6  (Output)(Unsuccessful) N has been set to zero in
                   SUBROUTINE F.
                7  (Output)(Unsuccessful) N has been set to zero in
                   FUNCTION G.  See description of G below.
                8  (Output)(Unsuccessful) N has been set to zero in
                   SUBROUTINE JACOBN.  See description of JACOBN below.
                9  (Output)(Unsuccessful) N has been set to zero in
                   SUBROUTINE FA.  See description of FA below.
               10  (Output)(Unsuccessful) N has been set to zero in
                   SUBROUTINE USERS.  See description of USERS below.
               11  (Output)(Successful) For NTASK = 2 or 3, T is beyond
                   TOUT.  The solution was obtained by interpolation.
                   The user can continue the integration by simply
                   advancing TOUT and calling DDRIV3 again.
               12  (Output)(Unsuccessful) The solution could not be
                   obtained.  The value of IERFLG (see description
                   below) for a "Recoverable" situation indicates the
                   type of difficulty encountered: either an illegal
                   value for a parameter or an inability to continue the
                   solution.  For this condition the user should take
                   corrective action and reset NSTATE to 1 before
                   calling DDRIV3 again.  Otherwise the program will
                   terminate the run.
 
     TOUT   = (Input) The point at which the solution is desired.  The
              position of TOUT relative to T on the first call
              determines the direction of integration.
 
     NTASK  = (Input) An index specifying the manner of returning the
              solution, according to the following:
                NTASK = 1  Means DDRIV3 will integrate past TOUT and
                           interpolate the solution.  This is the most
                           efficient mode.
                NTASK = 2  Means DDRIV3 will return the solution after
                           each internal integration step, or at TOUT,
                           whichever comes first.  In the latter case,
                           the program integrates exactly to TOUT.
                NTASK = 3  Means DDRIV3 will adjust its internal step to
                           reach TOUT exactly (useful if a singularity
                           exists beyond TOUT.)
 
     NROOT  = (Input) The number of equations whose roots are desired.
              If NROOT is zero, the root search is not active.  This
              option is useful for obtaining output at points which are
              not known in advance, but depend upon the solution, e.g.,
              when some solution component takes on a specified value.
              The root search is carried out using the user-written
              function G (see description of G below.)  DDRIV3 attempts
              to find the value of T at which one of the equations
              changes sign.  DDRIV3 can find at most one root per
              equation per internal integration step, and will then
              return the solution either at TOUT or at a root, whichever
              occurs first in the direction of integration.  The initial
              point is never reported as a root.  The index of the
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              equation whose root is being reported is stored in the
              sixth element of IWORK.
              NOTE: NROOT is never altered by this program.
 
     EPS    = On input, the requested relative accuracy in all solution
              components.  EPS = 0 is allowed.  On output, the adjusted
              relative accuracy if the input value was too small.  The
              value of EPS should be set as large as is reasonable,
              because the amount of work done by DDRIV3 increases as EPS
              decreases.
 
     EWT    = (Input) Problem zero, i.e., the smallest, nonzero,
              physically meaningful value for the solution.  (Array,
              possibly of length one.  See following description of
              IERROR.)  Setting EWT smaller than necessary can adversely
              affect the running time.
 
     IERROR = (Input) Error control indicator.  A value of 3 is
              suggested for most problems.  Other choices and detailed
              explanations of EWT and IERROR are given below for those
              who may need extra flexibility.
 
              These last three input quantities EPS, EWT and IERROR
              control the accuracy of the computed solution.  EWT and
              IERROR are used internally to compute an array YWT.  One
              step error estimates divided by YWT(I) are kept less than
              EPS in root mean square norm.
                  IERROR (Set by the user) =
                  1  Means YWT(I) = 1. (Absolute error control)
                                    EWT is ignored.
                  2  Means YWT(I) = ABS(Y(I)),  (Relative error control)
                                    EWT is ignored.
                  3  Means YWT(I) = MAX(ABS(Y(I)), EWT(1)).
                  4  Means YWT(I) = MAX(ABS(Y(I)), EWT(I)).
                     This choice is useful when the solution components
                     have differing scales.
                  5  Means YWT(I) = EWT(I).
              If IERROR is 3, EWT need only be dimensioned one.
              If IERROR is 4 or 5, the user must dimension EWT at least
              N, and set its values.
 
     MINT   = (Input) The integration method indicator.
                MINT = 1  Means the Adams methods, and is used for
                          non-stiff problems.
                MINT = 2  Means the stiff methods of Gear (i.e., the
                          backward differentiation formulas), and is
                          used for stiff problems.
                MINT = 3  Means the program dynamically selects the
                          Adams methods when the problem is non-stiff
                          and the Gear methods when the problem is
                          stiff.  When using the Adams methods, the
                          program uses a value of MITER=0; when using
                          the Gear methods, the program uses the value
                          of MITER provided by the user.  Only a value
                          of IMPL = 0 and a value of MITER = 1, 2, 4, or
                          5 is allowed for this option.  The user may
                          not alter the value of MINT or MITER without
                          restarting, i.e., setting NSTATE to 1.
 
     MITER  = (Input) The iteration method indicator.
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                MITER = 0  Means functional iteration.  This value is
                           suggested for non-stiff problems.
                MITER = 1  Means chord method with analytic Jacobian.
                           In this case, the user supplies subroutine
                           JACOBN (see description below).
                MITER = 2  Means chord method with Jacobian calculated
                           internally by finite differences.
                MITER = 3  Means chord method with corrections computed
                           by the user-written routine USERS (see
                           description of USERS below.)  This option
                           allows all matrix algebra and storage
                           decisions to be made by the user.  When using
                           a value of MITER = 3, the subroutine FA is
                           not required, even if IMPL is not 0.  For
                           further information on using this option, see
                           Section IV-E below.
                MITER = 4  Means the same as MITER = 1 but the A and
                           Jacobian matrices are assumed to be banded.
                MITER = 5  Means the same as MITER = 2 but the A and
                           Jacobian matrices are assumed to be banded.
 
     IMPL   = (Input) The implicit method indicator.
                IMPL = 0    Means solving dY(I)/dT = F(Y(I),T).
                IMPL = 1    Means solving A*dY(I)/dT = F(Y(I),T), non-
                            singular A (see description of FA below.)
                            Only MINT = 1 or 2, and MITER = 1, 2, 3, 4,
                            or 5 are allowed for this option.
                IMPL = 2,3  Means solving certain systems of hybrid
                            differential/algebraic equations (see
                            description of FA below.)  Only MINT = 2 and
                            MITER = 1, 2, 3, 4, or 5, are allowed for
                            this option.
                The value of IMPL must not be changed during a problem.
 
     ML     = (Input) The lower half-bandwidth in the case of a banded
              A or Jacobian matrix.  (I.e., maximum(R-C) for nonzero
              A(R,C).)
 
     MU     = (Input) The upper half-bandwidth in the case of a banded
              A or Jacobian matrix.  (I.e., maximum(C-R).)
 
     MXORD  = (Input) The maximum order desired. This is .LE. 12 for
              the Adams methods and .LE. 5 for the Gear methods.  Normal
              value is 12 and 5, respectively.  If MINT is 3, the
              maximum order used will be MIN(MXORD, 12) when using the
              Adams methods, and MIN(MXORD, 5) when using the Gear
              methods.  MXORD must not be altered during a problem.
 
     HMAX   = (Input) The maximum magnitude of the step size that will
              be used for the problem.  This is useful for ensuring that
              important details are not missed.  If this is not the
              case, a large value, such as the interval length, is
              suggested.
 
     WORK
     LENW   = (Input)
              WORK is an array of LENW double precision words used
              internally for temporary storage.  The user must allocate
              space for this array in the calling program by a statement
              such as
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                        DOUBLE PRECISION WORK(...)
              The following table gives the required minimum value for
              the length of WORK, depending on the value of IMPL and
              MITER.  LENW should be set to the value used.  The
              contents of WORK should not be disturbed between calls to
              DDRIV3.
 
       IMPL =   0            1               2             3
               ---------------------------------------------------------
  MITER =  0   (MXORD+4)*N   Not allowed     Not allowed   Not allowed
               + 2*NROOT
               + 250
 
          1,2  N*N +         2*N*N +         N*N +         N*(N + NDE)
               (MXORD+5)*N   (MXORD+5)*N     (MXORD+6)*N   + (MXORD+5)*N
               + 2*NROOT     + 2*NROOT       + 2*NROOT     + 2*NROOT
               + 250         + 250           + 250         + 250
 
           3   (MXORD+4)*N   (MXORD+4)*N     (MXORD+4)*N   (MXORD+4)*N
               + 2*NROOT     + 2*NROOT       + 2*NROOT     + 2*NROOT
               + 250         + 250           + 250         + 250
 
          4,5  (2*ML+MU+1)   2*(2*ML+MU+1)   (2*ML+MU+1)   (2*ML+MU+1)*
               *N +          *N +            *N +          (N+NDE) +
               (MXORD+5)*N   (MXORD+5)*N     (MXORD+6)*N   + (MXORD+5)*N
               + 2*NROOT     + 2*NROOT       + 2*NROOT     + 2*NROOT
               + 250         + 250           + 250         + 250
               ---------------------------------------------------------
 
     IWORK
     LENIW  = (Input)
              IWORK is an integer array of length LENIW used internally
              for temporary storage.  The user must allocate space for
              this array in the calling program by a statement such as
                        INTEGER IWORK(...)
              The length of IWORK should be at least
                50      if MITER is 0 or 3, or
                N+50    if MITER is 1, 2, 4, or 5, or MINT is 3,
              and LENIW should be set to the value used.  The contents
              of IWORK should not be disturbed between calls to DDRIV3.
 
     JACOBN = A subroutine supplied by the user, if MITER is 1 or 4.
              If this is the case, the name must be declared EXTERNAL in
              the user's calling program.  Given a system of N
              differential equations, it is meaningful to speak about
              the partial derivative of the I-th right hand side with
              respect to the J-th dependent variable.  In general there
              are N*N such quantities.  Often however the equations can
              be ordered so that the I-th differential equation only
              involves dependent variables with index near I, e.g., I+1,
              I-2.  Such a system is called banded.  If, for all I, the
              I-th equation depends on at most the variables
                Y(I-ML), Y(I-ML+1), ... , Y(I), Y(I+1), ... , Y(I+MU)
              then we call ML+MU+1 the bandwidth of the system.  In a
              banded system many of the partial derivatives above are
              automatically zero.  For the cases MITER = 1, 2, 4, and 5,
              some of these partials are needed.  For the cases
              MITER = 2 and 5 the necessary derivatives are
              approximated numerically by DDRIV3, and we only ask the
              user to tell DDRIV3 the value of ML and MU if the system
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              is banded.  For the cases MITER = 1 and 4 the user must
              derive these partials algebraically and encode them in
              subroutine JACOBN.  By computing these derivatives the
              user can often save 20-30 per cent of the computing time.
              Usually, however, the accuracy is not much affected and
              most users will probably forego this option.  The optional
              user-written subroutine JACOBN has the form:
                    SUBROUTINE JACOBN (N, T, Y, DFDY, MATDIM, ML, MU)
                    DOUBLE PRECISION Y(*), DFDY(MATDIM,*)
                      .
                      .
                      Calculate values of DFDY
                      .
                      .
                    END (Sample)
              Here Y is a vector of length at least N.  The actual
              length of Y is determined by the user's declaration in the
              program which calls DDRIV3.  Thus the dimensioning of Y in
              JACOBN, while required by FORTRAN convention, does not
              actually allocate any storage.  When this subroutine is
              called, the first N components of Y are intermediate
              approximations to the solution components.  The user
              should not alter these values.  If the system is not
              banded (MITER=1), the partials of the I-th equation with
              respect to the J-th dependent function are to be stored in
              DFDY(I,J).  Thus partials of the I-th equation are stored
              in the I-th row of DFDY.  If the system is banded
              (MITER=4), then the partials of the I-th equation with
              respect to Y(J) are to be stored in DFDY(K,J), where
              K=I-J+MU+1 .  Normally a return from JACOBN passes control
              back to DDRIV3.  However, if the user would like to abort
              the calculation, i.e., return control to the program which
              calls DDRIV3, he should set N to zero.  DDRIV3 will signal
              this by returning a value of NSTATE equal to +8(-8).
              Altering the value of N in JACOBN has no effect on the
              value of N in the call sequence of DDRIV3.
 
     FA     = A subroutine supplied by the user if IMPL is not zero, and
              MITER is not 3.  If so, the name must be declared EXTERNAL
              in the user's calling program.  This subroutine computes
              the array A, where A*dY(I)/dT = F(Y(I),T).
              There are three cases:
 
                IMPL=1.
                Subroutine FA is of the form:
                    SUBROUTINE FA (N, T, Y, A, MATDIM, ML, MU, NDE)
                    DOUBLE PRECISION Y(*), A(MATDIM,*)
                      .
                      .
                      Calculate ALL values of A
                      .
                      .
                    END (Sample)
                In this case A is assumed to be a nonsingular matrix,
                with the same structure as DFDY (see JACOBN description
                above).  Programming considerations prevent complete
                generality.  If MITER is 1 or 2, A is assumed to be full
                and the user must compute and store all values of
                A(I,J), I,J=1, ... ,N.  If MITER is 4 or 5, A is assumed
                to be banded with lower and upper half bandwidth ML and

SLATEC3 (DACOSH through DS2Y) - 225



                MU.  The left hand side of the I-th equation is a linear
                combination of dY(I-ML)/dT, dY(I-ML+1)/dT, ... ,
                dY(I)/dT, ... , dY(I+MU-1)/dT, dY(I+MU)/dT.  Thus in the
                I-th equation, the coefficient of dY(J)/dT is to be
                stored in A(K,J), where K=I-J+MU+1.
                NOTE: The array A will be altered between calls to FA.
 
                IMPL=2.
                Subroutine FA is of the form:
                    SUBROUTINE FA (N, T, Y, A, MATDIM, ML, MU, NDE)
                    DOUBLE PRECISION Y(*), A(*)
                      .
                      .
                      Calculate non-zero values of A(1),...,A(NDE)
                      .
                      .
                    END (Sample)
                In this case it is assumed that the system is ordered by
                the user so that the differential equations appear
                first, and the algebraic equations appear last.  The
                algebraic equations must be written in the form:
                0 = F(Y(I),T).  When using this option it is up to the
                user to provide initial values for the Y(I) that satisfy
                the algebraic equations as well as possible.  It is
                further assumed that A is a vector of length NDE.  All
                of the components of A, which may depend on T, Y(I),
                etc., must be set by the user to non-zero values.
 
                IMPL=3.
                Subroutine FA is of the form:
                    SUBROUTINE FA (N, T, Y, A, MATDIM, ML, MU, NDE)
                    DOUBLE PRECISION Y(*), A(MATDIM,*)
                      .
                      .
                      Calculate ALL values of A
                      .
                      .
                    END (Sample)
                In this case A is assumed to be a nonsingular NDE by NDE
                matrix with the same structure as DFDY (see JACOBN
                description above).  Programming considerations prevent
                complete generality.  If MITER is 1 or 2, A is assumed
                to be full and the user must compute and store all
                values of A(I,J), I,J=1, ... ,NDE.  If MITER is 4 or 5,
                A is assumed to be banded with lower and upper half
                bandwidths ML and MU.  The left hand side of the I-th
                equation is a linear combination of dY(I-ML)/dT,
                dY(I-ML+1)/dT, ... , dY(I)/dT, ... , dY(I+MU-1)/dT,
                dY(I+MU)/dT.  Thus in the I-th equation, the coefficient
                of dY(J)/dT is to be stored in A(K,J), where K=I-J+MU+1.
                It is assumed that the system is ordered by the user so
                that the differential equations appear first, and the
                algebraic equations appear last.  The algebraic
                equations must be written in the form 0 = F(Y(I),T).
                When using this option it is up to the user to provide
                initial values for the Y(I) that satisfy the algebraic
                equations as well as possible.
                NOTE: For IMPL = 3, the array A will be altered between
                calls to FA.
              Here Y is a vector of length at least N.  The actual
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              length of Y is determined by the user's declaration in the
              program which calls DDRIV3.  Thus the dimensioning of Y in
              FA, while required by FORTRAN convention, does not
              actually allocate any storage.  When this subroutine is
              called, the first N components of Y are intermediate
              approximations to the solution components.  The user
              should not alter these values.  FA is always called
              immediately after calling F, with the same values of T
              and Y.  Normally a return from FA passes control back to
              DDRIV3.  However, if the user would like to abort the
              calculation, i.e., return control to the program which
              calls DDRIV3, he should set N to zero.  DDRIV3 will signal
              this by returning a value of NSTATE equal to +9(-9).
              Altering the value of N in FA has no effect on the value
              of N in the call sequence of DDRIV3.
 
     NDE    = (Input) The number of differential equations.  This is
              required only for IMPL = 2 or 3, with NDE .LT. N.
 
     MXSTEP = (Input) The maximum number of internal steps allowed on
              one call to DDRIV3.
 
     G      = A double precision FORTRAN function supplied by the user
              if NROOT is not 0.  In this case, the name must be
              declared EXTERNAL in the user's calling program.  G is
              repeatedly called with different values of IROOT to obtain
              the value of each of the NROOT equations for which a root
              is desired.  G is of the form:
                    DOUBLE PRECISION FUNCTION G (N, T, Y, IROOT)
                    DOUBLE PRECISION Y(*)
                    GO TO (10, ...), IROOT
               10   G = ...
                      .
                      .
                    END (Sample)
              Here, Y is a vector of length at least N, whose first N
              components are the solution components at the point T.
              The user should not alter these values.  The actual length
              of Y is determined by the user's declaration in the
              program which calls DDRIV3.  Thus the dimensioning of Y in
              G, while required by FORTRAN convention, does not actually
              allocate any storage.  Normally a return from G passes
              control back to  DDRIV3.  However, if the user would like
              to abort the calculation, i.e., return control to the
              program which calls DDRIV3, he should set N to zero.
              DDRIV3 will signal this by returning a value of NSTATE
              equal to +7(-7).  In this case, the index of the equation
              being evaluated is stored in the sixth element of IWORK.
              Altering the value of N in G has no effect on the value of
              N in the call sequence of DDRIV3.
 
     USERS  = A subroutine supplied by the user, if MITER is 3.
              If this is the case, the name must be declared EXTERNAL in
              the user's calling program.  The routine USERS is called
              by DDRIV3 when certain linear systems must be solved.  The
              user may choose any method to form, store and solve these
              systems in order to obtain the solution result that is
              returned to DDRIV3.  In particular, this allows sparse
              matrix methods to be used.  The call sequence for this
              routine is:
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                 SUBROUTINE USERS (Y, YH, YWT, SAVE1, SAVE2, T, H, EL,
                8                  IMPL, N, NDE, IFLAG)
                 DOUBLE PRECISION Y(*), YH(*), YWT(*), SAVE1(*),
                8     SAVE2(*), T, H, EL
 
              The input variable IFLAG indicates what action is to be
              taken.  Subroutine USERS should perform the following
              operations, depending on the value of IFLAG and IMPL.
 
                IFLAG = 0
                  IMPL = 0.  USERS is not called.
                  IMPL = 1, 2 or 3.  Solve the system A*X = SAVE2,
                    returning the result in SAVE2.  The array SAVE1 can
                    be used as a work array.  For IMPL = 1, there are N
                    components to the system, and for IMPL = 2 or 3,
                    there are NDE components to the system.
 
                IFLAG = 1
                  IMPL = 0.  Compute, decompose and store the matrix
                    (I - H*EL*J), where I is the identity matrix and J
                    is the Jacobian matrix of the right hand side.  The
                    array SAVE1 can be used as a work array.
                  IMPL = 1, 2 or 3. Compute, decompose and store the
                    matrix (A - H*EL*J).  The array SAVE1 can be used as
                    a work array.
 
                IFLAG = 2
                  IMPL = 0.   Solve the system
                      (I - H*EL*J)*X = H*SAVE2 - YH - SAVE1,
                    returning the result in SAVE2.
                  IMPL = 1, 2 or 3.  Solve the system
                    (A - H*EL*J)*X = H*SAVE2 - A*(YH + SAVE1)
                    returning the result in SAVE2.
                  The array SAVE1 should not be altered.
              If IFLAG is 0 and IMPL is 1 or 2 and the matrix A is
              singular, or if IFLAG is 1 and one of the matrices
              (I - H*EL*J), (A - H*EL*J) is singular, the INTEGER
              variable IFLAG is to be set to -1 before RETURNing.
              Normally a return from USERS passes control back to
              DDRIV3.  However, if the user would like to abort the
              calculation, i.e., return control to the program which
              calls DDRIV3, he should set N to zero.  DDRIV3 will signal
              this by returning a value of NSTATE equal to +10(-10).
              Altering the value of N in USERS has no effect on the
              value of N in the call sequence of DDRIV3.
 
     IERFLG = An error flag.  The error number associated with a
              diagnostic message (see Section III-A below) is the same
              as the corresponding value of IERFLG.  The meaning of
              IERFLG:
                0  The routine completed successfully. (No message is
                   issued.)
                3  (Warning) The number of steps required to reach TOUT
                   exceeds MXSTEP.
                4  (Warning) The value of EPS is too small.
               11  (Warning) For NTASK = 2 or 3, T is beyond TOUT.
                   The solution was obtained by interpolation.
               15  (Warning) The integration step size is below the
                   roundoff level of T.  (The program issues this
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                   message as a warning but does not return control to
                   the user.)
               22  (Recoverable) N is not positive.
               23  (Recoverable) MINT is less than 1 or greater than 3 .
               24  (Recoverable) MITER is less than 0 or greater than
                   5 .
               25  (Recoverable) IMPL is less than 0 or greater than 3 .
               26  (Recoverable) The value of NSTATE is less than 1 or
                   greater than 12 .
               27  (Recoverable) EPS is less than zero.
               28  (Recoverable) MXORD is not positive.
               29  (Recoverable) For MINT = 3, either MITER = 0 or 3, or
                   IMPL = 0 .
               30  (Recoverable) For MITER = 0, IMPL is not 0 .
               31  (Recoverable) For MINT = 1, IMPL is 2 or 3 .
               32  (Recoverable) Insufficient storage has been allocated
                   for the WORK array.
               33  (Recoverable) Insufficient storage has been allocated
                   for the IWORK array.
               41  (Recoverable) The integration step size has gone
                   to zero.
               42  (Recoverable) The integration step size has been
                   reduced about 50 times without advancing the
                   solution.  The problem setup may not be correct.
               43  (Recoverable)  For IMPL greater than 0, the matrix A
                   is singular.
              999  (Fatal) The value of NSTATE is 12 .
 
   III.  OTHER COMMUNICATION TO THE USER  ..............................
 
     A. The solver communicates to the user through the parameters
        above.  In addition it writes diagnostic messages through the
        standard error handling program XERMSG.  A complete description
        of XERMSG is given in "Guide to the SLATEC Common Mathematical
        Library" by Kirby W. Fong et al..  At installations which do not
        have this error handling package the short but serviceable
        routine, XERMSG, available with this package, can be used.  That
        program uses the file named OUTPUT to transmit messages.
 
     B. The first three elements of WORK and the first five elements of
        IWORK will contain the following statistical data:
          AVGH     The average step size used.
          HUSED    The step size last used (successfully).
          AVGORD   The average order used.
          IMXERR   The index of the element of the solution vector that
                   contributed most to the last error test.
          NQUSED   The order last used (successfully).
          NSTEP    The number of steps taken since last initialization.
          NFE      The number of evaluations of the right hand side.
          NJE      The number of evaluations of the Jacobian matrix.
 
   IV.  REMARKS  .......................................................
 
     A. Other routines used:
          DDNTP, DDZRO, DDSTP, DDNTL, DDPST, DDCOR, DDCST,
          DDPSC, and DDSCL;
          DGEFA, DGESL, DGBFA, DGBSL, and DNRM2 (from LINPACK)
          D1MACH (from the Bell Laboratories Machine Constants Package)
          XERMSG (from the SLATEC Common Math Library)
        The last seven routines above, not having been written by the
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        present authors, are not explicitly part of this package.
 
     B. On any return from DDRIV3 all information necessary to continue
        the calculation is contained in the call sequence parameters,
        including the work arrays.  Thus it is possible to suspend one
        problem, integrate another, and then return to the first.
 
     C. If this package is to be used in an overlay situation, the user
        must declare in the primary overlay the variables in the call
        sequence to DDRIV3.
 
     D. Changing parameters during an integration.
        The value of NROOT, EPS, EWT, IERROR, MINT, MITER, or HMAX may
        be altered by the user between calls to DDRIV3.  For example, if
        too much accuracy has been requested (the program returns with
        NSTATE = 4 and an increased value of EPS) the user may wish to
        increase EPS further.  In general, prudence is necessary when
        making changes in parameters since such changes are not
        implemented until the next integration step, which is not
        necessarily the next call to DDRIV3.  This can happen if the
        program has already integrated to a point which is beyond the
        new point TOUT.
 
     E. As the price for complete control of matrix algebra, the DDRIV3
        USERS option puts all responsibility for Jacobian matrix
        evaluation on the user.  It is often useful to approximate
        numerically all or part of the Jacobian matrix.  However this
        must be done carefully.  The FORTRAN sequence below illustrates
        the method we recommend.  It can be inserted directly into
        subroutine USERS to approximate Jacobian elements in rows I1
        to I2 and columns J1 to J2.
               DOUBLE PRECISION DFDY(N,N), EPSJ, H, R, D1MACH,
              8     SAVE1(N), SAVE2(N), T, UROUND, Y(N), YJ, YWT(N)
               UROUND = D1MACH(4)
               EPSJ = SQRT(UROUND)
               DO 30 J = J1,J2
                 R = EPSJ*MAX(ABS(YWT(J)), ABS(Y(J)))
                 IF (R .EQ. 0.D0) R = YWT(J)
                 YJ = Y(J)
                 Y(J) = Y(J) + R
                 CALL F (N, T, Y, SAVE1)
                 IF (N .EQ. 0) RETURN
                 Y(J) = YJ
                 DO 20 I = I1,I2
          20       DFDY(I,J) = (SAVE1(I) - SAVE2(I))/R
          30     CONTINUE
        Many problems give rise to structured sparse Jacobians, e.g.,
        block banded.  It is possible to approximate them with fewer
        function evaluations than the above procedure uses; see Curtis,
        Powell and Reid, J. Inst. Maths Applics, (1974), Vol. 13,
        pp. 117-119.
 
     F. When any of the routines JACOBN, FA, G, or USERS, is not
        required, difficulties associated with unsatisfied externals can
        be avoided by using the name of the routine which calculates the
        right hand side of the differential equations in place of the
        corresponding name in the call sequence of DDRIV3.
 
 ***REFERENCES  C. W. Gear, Numerical Initial Value Problems in
                  Ordinary Differential Equations, Prentice-Hall, 1971.
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 ***ROUTINES CALLED  D1MACH, DDNTP, DDSTP, DDZRO, DGBFA, DGBSL, DGEFA,
                     DGESL, DNRM2, XERMSG
 ***REVISION HISTORY  (YYMMDD)
    790601  DATE WRITTEN
    900329  Initial submission to SLATEC.
    END PROLOGUE
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DE1

      DOUBLE PRECISION FUNCTION DE1 (X)
 ***BEGIN PROLOGUE  DE1
 ***PURPOSE  Compute the exponential integral E1(X).
 ***LIBRARY   SLATEC (FNLIB)
 ***CATEGORY  C5
 ***TYPE      DOUBLE PRECISION (E1-S, DE1-D)
 ***KEYWORDS  E1 FUNCTION, EXPONENTIAL INTEGRAL, FNLIB,
              SPECIAL FUNCTIONS
 ***AUTHOR  Fullerton, W., (LANL)
 ***DESCRIPTION
 
  DE1 calculates the double precision exponential integral, E1(X), for
  positive double precision argument X and the Cauchy principal value
  for negative X.  If principal values are used everywhere, then, for
  all X,
 
     E1(X) = -Ei(-X)
  or
     Ei(X) = -E1(-X).
 
 
  Series for AE10       on the interval -3.12500E-02 to  0.
                                         with weighted error   4.62E-32
                                          log weighted error  31.34
                                significant figures required  29.70
                                     decimal places required  32.18
 
 
  Series for AE11       on the interval -1.25000E-01 to -3.12500E-02
                                         with weighted error   2.22E-32
                                          log weighted error  31.65
                                significant figures required  30.75
                                     decimal places required  32.54
 
 
  Series for AE12       on the interval -2.50000E-01 to -1.25000E-01
                                         with weighted error   5.19E-32
                                          log weighted error  31.28
                                significant figures required  30.82
                                     decimal places required  32.09
 
 
  Series for E11        on the interval -4.00000E+00 to -1.00000E+00
                                         with weighted error   8.49E-34
                                          log weighted error  33.07
                                significant figures required  34.13
                                     decimal places required  33.80
 
 
  Series for E12        on the interval -1.00000E+00 to  1.00000E+00
                                         with weighted error   8.08E-33
                                          log weighted error  32.09
                         approx significant figures required  30.4
                                     decimal places required  32.79
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  Series for AE13       on the interval  2.50000E-01 to  1.00000E+00
                                         with weighted error   6.65E-32
                                          log weighted error  31.18
                                significant figures required  30.69
                                     decimal places required  32.03
 
 
  Series for AE14       on the interval  0.          to  2.50000E-01
                                         with weighted error   5.07E-32
                                          log weighted error  31.30
                                significant figures required  30.40
                                     decimal places required  32.20
 
 ***REFERENCES  (NONE)
 ***ROUTINES CALLED  D1MACH, DCSEVL, INITDS, XERMSG
 ***REVISION HISTORY  (YYMMDD)
    770701  DATE WRITTEN
    890531  Changed all specific intrinsics to generic.  (WRB)
    891115  Modified prologue description.  (WRB)
    891115  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    900315  CALLs to XERROR changed to CALLs to XERMSG.  (THJ)
    920618  Removed space from variable names.  (RWC, WRB)
    END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 233



DEABM

      SUBROUTINE DEABM (F, NEQ, T, Y, TOUT, INFO, RTOL, ATOL, IDID,
     +   RWORK, LRW, IWORK, LIW, RPAR, IPAR)
 ***BEGIN PROLOGUE  DEABM
 ***PURPOSE  Solve an initial value problem in ordinary differential
             equations using an Adams-Bashforth method.
 ***LIBRARY   SLATEC (DEPAC)
 ***CATEGORY  I1A1B
 ***TYPE      SINGLE PRECISION (DEABM-S, DDEABM-D)
 ***KEYWORDS  ADAMS-BASHFORTH METHOD, DEPAC, INITIAL VALUE PROBLEMS,
              ODE, ORDINARY DIFFERENTIAL EQUATIONS, PREDICTOR-CORRECTOR
 ***AUTHOR  Shampine, L. F., (SNLA)
            Watts, H. A., (SNLA)
 ***DESCRIPTION
 
    This is the Adams code in the package of differential equation
    solvers DEPAC, consisting of the codes DERKF, DEABM, and DEBDF.
    Design of the package was by L. F. Shampine and H. A. Watts.
    It is documented in
         SAND79-2374 , DEPAC - Design of a User Oriented Package of ODE
                               Solvers.
    DEABM is a driver for a modification of the code ODE written by
              L. F. Shampine and M. K. Gordon
              Sandia Laboratories
              Albuquerque, New Mexico 87185
 
  **********************************************************************
  **             DEPAC PACKAGE OVERVIEW           **
  **************************************************
 
         You have a choice of three differential equation solvers from
         DEPAC.  The following brief descriptions are meant to aid you
         in choosing the most appropriate code for your problem.
 
         DERKF is a fifth order Runge-Kutta code.  It is the simplest of
         the three choices, both algorithmically and in the use of the
         code.  DERKF is primarily designed to solve non-stiff and mild-
         ly stiff differential equations when derivative evaluations are
         not expensive.  It should generally not be used to get high
         accuracy results nor answers at a great many specific points.
         Because DERKF has very low overhead costs, it will usually
         result in the least expensive integration when solving
         problems requiring a modest amount of accuracy and having
         equations that are not costly to evaluate.  DERKF attempts to
         discover when it is not suitable for the task posed.
 
         DEABM is a variable order (one through twelve) Adams code.
         Its complexity lies somewhere between that of DERKF and DEBDF.
         DEABM is primarily designed to solve non-stiff and mildly stiff
         differential equations when derivative evaluations are
         expensive, high accuracy results are needed or answers at
         many specific points are required.  DEABM attempts to discover
         when it is not suitable for the task posed.
 
         DEBDF is a variable order (one through five) backward
         differentiation formula code.  It is the most complicated of
         the three choices.  DEBDF is primarily designed to solve stiff
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         differential equations at crude to moderate tolerances.
         If the problem is very stiff at all, DERKF and DEABM will be
         quite inefficient compared to DEBDF.  However, DEBDF will be
         inefficient compared to DERKF and DEABM on non-stiff problems
         because it uses much more storage, has a much larger overhead,
         and the low order formulas will not give high accuracies
         efficiently.
 
         The concept of stiffness cannot be described in a few words.
         If you do not know the problem to be stiff, try either DERKF
         or DEABM.  Both of these codes will inform you of stiffness
         when the cost of solving such problems becomes important.
 
  **********************************************************************
  ** ABSTRACT **
  **************
 
    Subroutine DEABM uses the Adams-Bashforth-Moulton predictor-
    corrector formulas of orders one through twelve to integrate a
    system of NEQ first order ordinary differential equations of the
    form
                          DU/DX = F(X,U)
    when the vector Y(*) of initial values for U(*) at X=T is given. The
    subroutine integrates from T to TOUT.  It is easy to continue the
    integration to get results at additional TOUT.  This is the interval
    mode of operation.  It is also easy for the routine to return with
    the solution at each intermediate step on the way to TOUT.  This is
    the intermediate-output mode of operation.
 
    DEABM uses subprograms DES, STEPS, SINTRP, HSTART, HVNRM, R1MACH and
    the error handling routine XERMSG.  The only machine dependent
    parameters to be assigned appear in R1MACH.
 
  **********************************************************************
  ** DESCRIPTION OF THE ARGUMENTS TO DEABM (AN OVERVIEW) **
  *********************************************************
 
    The parameters are
 
       F -- This is the name of a subroutine which you provide to
              define the differential equations.
 
       NEQ -- This is the number of (first order) differential
              equations to be integrated.
 
       T -- This is a value of the independent variable.
 
       Y(*) -- This array contains the solution components at T.
 
       TOUT -- This is a point at which a solution is desired.
 
       INFO(*) -- The basic task of the code is to integrate the
              differential equations from T to TOUT and return an
              answer at TOUT.  INFO(*) is an integer array which is used
              to communicate exactly how you want this task to be
              carried out.
 
       RTOL, ATOL -- These quantities represent relative and absolute
              error tolerances which you provide to indicate how
              accurately you wish the solution to be computed.  You may

SLATEC3 (DACOSH through DS2Y) - 235



              choose them to be both scalars or else both vectors.
 
       IDID -- This scalar quantity is an indicator reporting what
              the code did.  You must monitor this integer variable to
              decide what action to take next.
 
       RWORK(*), LRW -- RWORK(*) is a real work array of length LRW
              which provides the code with needed storage space.
 
       IWORK(*), LIW -- IWORK(*) is an integer work array of length LIW
              which provides the code with needed storage space and an
              across call flag.
 
       RPAR, IPAR -- These are real and integer parameter arrays which
              you can use for communication between your calling
              program and the F subroutine.
 
   Quantities which are used as input items are
              NEQ, T, Y(*), TOUT, INFO(*),
              RTOL, ATOL, RWORK(1), LRW and LIW.
 
   Quantities which may be altered by the code are
              T, Y(*), INFO(1), RTOL, ATOL,
              IDID, RWORK(*) and IWORK(*).
 
  **********************************************************************
  ** INPUT -- WHAT TO DO ON THE FIRST CALL TO DEABM **
  ****************************************************
 
    The first call of the code is defined to be the start of each new
    problem.  Read through the descriptions of all the following items,
    provide sufficient storage space for designated arrays, set
    appropriate variables for the initialization of the problem, and
    give information about how you want the problem to be solved.
 
 
       F -- Provide a subroutine of the form
                                F(X,U,UPRIME,RPAR,IPAR)
              to define the system of first order differential equations
              which is to be solved.  For the given values of X and the
              vector  U(*)=(U(1),U(2),...,U(NEQ)) , the subroutine must
              evaluate the NEQ components of the system of differential
              equations  DU/DX = F(X,U)  and store the derivatives in
              array UPRIME(*), that is,  UPRIME(I) = * DU(I)/DX *  for
              equations I=1,...,NEQ.
 
              Subroutine F must not alter X or U(*).  You must declare
              the name F in an external statement in your program that
              calls DEABM.  You must dimension U and UPRIME in F.
 
              RPAR and IPAR are real and integer parameter arrays which
              you can use for communication between your calling program
              and subroutine F.  They are not used or altered by DEABM.
              If you do not need RPAR or IPAR, ignore these parameters
              by treating them as dummy arguments.  If you do choose to
              use them, dimension them in your calling program and in F
              as arrays of appropriate length.
 
       NEQ -- Set it to the number of differential equations.
              (NEQ .GE. 1)

SLATEC3 (DACOSH through DS2Y) - 236



 
       T -- Set it to the initial point of the integration.
              You must use a program variable for T because the code
              changes its value.
 
       Y(*) -- Set this vector to the initial values of the NEQ solution
              components at the initial point.  You must dimension Y at
              least NEQ in your calling program.
 
       TOUT -- Set it to the first point at which a solution
              is desired.  You can take TOUT = T, in which case the code
              will evaluate the derivative of the solution at T and
              return.  Integration either forward in T  (TOUT .GT.  T)
              or backward in T  (TOUT .LT.  T)  is permitted.
 
              The code advances the solution from T to TOUT using
              step sizes which are automatically selected so as to
              achieve the desired accuracy.  If you wish, the code will
              return with the solution and its derivative following
              each intermediate step (intermediate-output mode) so that
              you can monitor them, but you still must provide TOUT in
              accord with the basic aim of the code.
 
              The first step taken by the code is a critical one
              because it must reflect how fast the solution changes near
              the initial point.  The code automatically selects an
              initial step size which is practically always suitable for
              the problem.  By using the fact that the code will not
              step past TOUT in the first step, you could, if necessary,
              restrict the length of the initial step size.
 
              For some problems it may not be permissible to integrate
              past a point TSTOP because a discontinuity occurs there
              or the solution or its derivative is not defined beyond
              TSTOP.  When you have declared a TSTOP point (see INFO(4)
              and RWORK(1)), you have told the code not to integrate
              past TSTOP.  In this case any TOUT beyond TSTOP is invalid
              input.
 
       INFO(*) -- Use the INFO array to give the code more details about
              how you want your problem solved.  This array should be
              dimensioned of length 15 to accommodate other members of
              DEPAC or possible future extensions, though DEABM uses
              only the first four entries.  You must respond to all of
              the following items which are arranged as questions.  The
              simplest use of the code corresponds to answering all
              questions as YES ,i.e. setting all entries of INFO to 0.
 
         INFO(1) -- This parameter enables the code to initialize
              itself.  You must set it to indicate the start of every
              new problem.
 
             **** Is this the first call for this problem ...
                   YES -- Set INFO(1) = 0
                    NO -- Not applicable here.
                          See below for continuation calls.  ****
 
         INFO(2) -- How much accuracy you want of your solution
                is specified by the error tolerances RTOL and ATOL.
                The simplest use is to take them both to be scalars.
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                To obtain more flexibility, they can both be vectors.
                The code must be told your choice.
 
             **** Are both error tolerances RTOL, ATOL scalars ...
                   YES -- Set INFO(2) = 0
                          and input scalars for both RTOL and ATOL
                    NO -- Set INFO(2) = 1
                          and input arrays for both RTOL and ATOL ****
 
         INFO(3) -- The code integrates from T in the direction
                of TOUT by steps.  If you wish, it will return the
                computed solution and derivative at the next
                intermediate step (the intermediate-output mode) or
                TOUT, whichever comes first.  This is a good way to
                proceed if you want to see the behavior of the solution.
                If you must have solutions at a great many specific
                TOUT points, this code will compute them efficiently.
 
             **** Do you want the solution only at
                  TOUT (and not at the next intermediate step) ...
                   YES -- Set INFO(3) = 0
                    NO -- Set INFO(3) = 1 ****
 
         INFO(4) -- To handle solutions at a great many specific
                values TOUT efficiently, this code may integrate past
                TOUT and interpolate to obtain the result at TOUT.
                Sometimes it is not possible to integrate beyond some
                point TSTOP because the equation changes there or it is
                not defined past TSTOP.  Then you must tell the code
                not to go past.
 
             **** Can the integration be carried out without any
                  restrictions on the independent variable T ...
                   YES -- Set INFO(4)=0
                    NO -- Set INFO(4)=1
                          and define the stopping point TSTOP by
                          setting RWORK(1)=TSTOP ****
 
       RTOL, ATOL -- You must assign relative (RTOL) and absolute (ATOL)
              error tolerances to tell the code how accurately you want
              the solution to be computed.  They must be defined as
              program variables because the code may change them.  You
              have two choices --
                   both RTOL and ATOL are scalars. (INFO(2)=0)
                   both RTOL and ATOL are vectors. (INFO(2)=1)
              In either case all components must be non-negative.
 
              The tolerances are used by the code in a local error test
              at each step which requires roughly that
                      ABS(LOCAL ERROR) .LE. RTOL*ABS(Y)+ATOL
              for each vector component.
              (More specifically, a Euclidean norm is used to measure
              the size of vectors, and the error test uses the magnitude
              of the solution at the beginning of the step.)
 
              The true (global) error is the difference between the true
              solution of the initial value problem and the computed
              approximation.  Practically all present day codes,
              including this one, control the local error at each step
              and do not even attempt to control the global error
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              directly.  Roughly speaking, they produce a solution Y(T)
              which satisfies the differential equations with a
              residual R(T),    DY(T)/DT = F(T,Y(T)) + R(T)   ,
              and, almost always, R(T) is bounded by the error
              tolerances.  Usually, but not always, the true accuracy of
              the computed Y is comparable to the error tolerances. This
              code will usually, but not always, deliver a more accurate
              solution if you reduce the tolerances and integrate again.
              By comparing two such solutions you can get a fairly
              reliable idea of the true error in the solution at the
              bigger tolerances.
 
              Setting ATOL=0.0 results in a pure relative error test on
              that component.  Setting RTOL=0.0 results in a pure abso-
              lute error test on that component.  A mixed test with non-
              zero RTOL and ATOL corresponds roughly to a relative error
              test when the solution component is much bigger than ATOL
              and to an absolute error test when the solution component
              is smaller than the threshold ATOL.
 
              Proper selection of the absolute error control parameters
              ATOL  requires you to have some idea of the scale of the
              solution components.  To acquire this information may mean
              that you will have to solve the problem more than once.
              In the absence of scale information, you should ask for
              some relative accuracy in all the components (by setting
              RTOL values non-zero) and perhaps impose extremely small
              absolute error tolerances to protect against the danger of
              a solution component becoming zero.
 
              The code will not attempt to compute a solution at an
              accuracy unreasonable for the machine being used.  It will
              advise you if you ask for too much accuracy and inform
              you as to the maximum accuracy it believes possible.
 
       RWORK(*) -- Dimension this real work array of length LRW in your
              calling program.
 
       RWORK(1) -- If you have set INFO(4)=0, you can ignore this
              optional input parameter.  Otherwise you must define a
              stopping point TSTOP by setting   RWORK(1) = TSTOP.
              (for some problems it may not be permissible to integrate
              past a point TSTOP because a discontinuity occurs there
              or the solution or its derivative is not defined beyond
              TSTOP.)
 
       LRW -- Set it to the declared length of the RWORK array.
              You must have  LRW .GE. 130+21*NEQ
 
       IWORK(*) -- Dimension this integer work array of length LIW in
              your calling program.
 
       LIW -- Set it to the declared length of the IWORK array.
              You must have  LIW .GE. 51
 
       RPAR, IPAR -- These are parameter arrays, of real and integer
              type, respectively.  You can use them for communication
              between your program that calls DEABM and the  F
              subroutine.  They are not used or altered by DEABM.  If
              you do not need RPAR or IPAR, ignore these parameters by
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              treating them as dummy arguments.  If you do choose to use
              them, dimension them in your calling program and in F as
              arrays of appropriate length.
 
  **********************************************************************
  ** OUTPUT -- AFTER ANY RETURN FROM DEABM **
  *******************************************
 
    The principal aim of the code is to return a computed solution at
    TOUT, although it is also possible to obtain intermediate results
    along the way.  To find out whether the code achieved its goal
    or if the integration process was interrupted before the task was
    completed, you must check the IDID parameter.
 
 
       T -- The solution was successfully advanced to the
              output value of T.
 
       Y(*) -- Contains the computed solution approximation at T.
              You may also be interested in the approximate derivative
              of the solution at T.  It is contained in
              RWORK(21),...,RWORK(20+NEQ).
 
       IDID -- Reports what the code did
 
                          *** Task Completed ***
                    reported by positive values of IDID
 
              IDID = 1 -- A step was successfully taken in the
                        intermediate-output mode.  The code has not
                        yet reached TOUT.
 
              IDID = 2 -- The integration to TOUT was successfully
                        completed (T=TOUT) by stepping exactly to TOUT.
 
              IDID = 3 -- The integration to TOUT was successfully
                        completed (T=TOUT) by stepping past TOUT.
                        Y(*) is obtained by interpolation.
 
                          *** Task Interrupted ***
                    reported by negative values of IDID
 
              IDID = -1 -- A large amount of work has been expended.
                        (500 steps attempted)
 
              IDID = -2 -- The error tolerances are too stringent.
 
              IDID = -3 -- The local error test cannot be satisfied
                        because you specified a zero component in ATOL
                        and the corresponding computed solution
                        component is zero.  Thus, a pure relative error
                        test is impossible for this component.
 
              IDID = -4 -- The problem appears to be stiff.
 
              IDID = -5,-6,-7,..,-32  -- Not applicable for this code
                        but used by other members of DEPAC or possible
                        future extensions.
 
                          *** Task Terminated ***
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                    reported by the value of IDID=-33
 
              IDID = -33 -- The code has encountered trouble from which
                        it cannot recover.  A message is printed
                        explaining the trouble and control is returned
                        to the calling program.  For example, this
                        occurs when invalid input is detected.
 
       RTOL, ATOL -- These quantities remain unchanged except when
              IDID = -2.  In this case, the error tolerances have been
              increased by the code to values which are estimated to be
              appropriate for continuing the integration.  However, the
              reported solution at T was obtained using the input values
              of RTOL and ATOL.
 
       RWORK, IWORK -- Contain information which is usually of no
              interest to the user but necessary for subsequent calls.
              However, you may find use for
 
              RWORK(11)--Which contains the step size H to be
                         attempted on the next step.
 
              RWORK(12)--If the tolerances have been increased by the
                         code (IDID = -2) , they were multiplied by the
                         value in RWORK(12).
 
              RWORK(13)--Which contains the current value of the
                         independent variable, i.e.  the farthest point
                         integration has reached.  This will be dif-
                         ferent from T only when interpolation has been
                         performed (IDID=3).
 
              RWORK(20+I)--Which contains the approximate derivative of
                         the solution component Y(I).  In DEABM, it is
                         obtained by calling subroutine F to evaluate
                         the differential equation using T and Y(*) when
                         IDID=1 or 2, and by interpolation when IDID=3.
 
  **********************************************************************
  ** INPUT -- WHAT TO DO TO CONTINUE THE INTEGRATION **
  **             (CALLS AFTER THE FIRST)             **
  *****************************************************
 
         This code is organized so that subsequent calls to continue the
         integration involve little (if any) additional effort on your
         part.  You must monitor the IDID parameter in order to
         determine what to do next.
 
         Recalling that the principal task of the code is to integrate
         from T to TOUT (the interval mode), usually all you will need
         to do is specify a new TOUT upon reaching the current TOUT.
 
         Do not alter any quantity not specifically permitted below,
         in particular do not alter NEQ, T, Y(*), RWORK(*), IWORK(*) or
         the differential equation in subroutine F.  Any such alteration
         constitutes a new problem and must be treated as such, i.e.
         you must start afresh.
 
         You cannot change from vector to scalar error control or vice
         versa (INFO(2)) but you can change the size of the entries of
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         RTOL, ATOL.  Increasing a tolerance makes the equation easier
         to integrate.  Decreasing a tolerance will make the equation
         harder to integrate and should generally be avoided.
 
         You can switch from the intermediate-output mode to the
         interval mode (INFO(3)) or vice versa at any time.
 
         If it has been necessary to prevent the integration from going
         past a point TSTOP (INFO(4), RWORK(1)), keep in mind that the
         code will not integrate to any TOUT beyond the currently
         specified TSTOP.  Once TSTOP has been reached you must change
         the value of TSTOP or set INFO(4)=0.  You may change INFO(4)
         or TSTOP at any time but you must supply the value of TSTOP in
         RWORK(1) whenever you set INFO(4)=1.
 
         The parameter INFO(1) is used by the code to indicate the
         beginning of a new problem and to indicate whether integration
         is to be continued.  You must input the value  INFO(1) = 0
         when starting a new problem.  You must input the value
         INFO(1) = 1  if you wish to continue after an interrupted task.
         Do not set  INFO(1) = 0  on a continuation call unless you
         want the code to restart at the current T.
 
                          *** Following a Completed Task ***
          If
              IDID = 1, call the code again to continue the integration
                      another step in the direction of TOUT.
 
              IDID = 2 or 3, define a new TOUT and call the code again.
                      TOUT must be different from T.  You cannot change
                      the direction of integration without restarting.
 
                          *** Following an Interrupted Task ***
                      To show the code that you realize the task was
                      interrupted and that you want to continue, you
                      must take appropriate action and reset INFO(1) = 1
          If
              IDID = -1, the code has attempted 500 steps.
                      If you want to continue, set INFO(1) = 1 and
                      call the code again.  An additional 500 steps
                      will be allowed.
 
              IDID = -2, the error tolerances RTOL, ATOL have been
                      increased to values the code estimates appropriate
                      for continuing.  You may want to change them
                      yourself.  If you are sure you want to continue
                      with relaxed error tolerances, set INFO(1)=1 and
                      call the code again.
 
              IDID = -3, a solution component is zero and you set the
                      corresponding component of ATOL to zero.  If you
                      are sure you want to continue, you must first
                      alter the error criterion to use positive values
                      for those components of ATOL corresponding to zero
                      solution components, then set INFO(1)=1 and call
                      the code again.
 
              IDID = -4, the problem appears to be stiff.  It is very
                      inefficient to solve such problems with DEABM. The
                      code DEBDF in DEPAC handles this task efficiently.

SLATEC3 (DACOSH through DS2Y) - 242



                      If you are absolutely sure you want to continue
                      with DEABM, set INFO(1)=1 and call the code again.
 
              IDID = -5,-6,-7,..,-32  --- cannot occur with this code
                      but used by other members of DEPAC or possible
                      future extensions.
 
                          *** Following a Terminated Task ***
          If
              IDID = -33, you cannot continue the solution of this
                      problem.  An attempt to do so will result in your
                      run being terminated.
 
  **********************************************************************
 
 ***REFERENCES  L. F. Shampine and H. A. Watts, DEPAC - design of a user
                  oriented package of ODE solvers, Report SAND79-2374,
                  Sandia Laboratories, 1979.
 ***ROUTINES CALLED  DES, XERMSG
 ***REVISION HISTORY  (YYMMDD)
    800501  DATE WRITTEN
    890831  Modified array declarations.  (WRB)
    891024  Changed references from VNORM to HVNRM.  (WRB)
    891024  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    900510  Convert XERRWV calls to XERMSG calls.  (RWC)
    920501  Reformatted the REFERENCES section.  (WRB)
    END PROLOGUE
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DEBDF

      SUBROUTINE DEBDF (F, NEQ, T, Y, TOUT, INFO, RTOL, ATOL, IDID,
     +   RWORK, LRW, IWORK, LIW, RPAR, IPAR, JAC)
 ***BEGIN PROLOGUE  DEBDF
 ***PURPOSE  Solve an initial value problem in ordinary differential
             equations using backward differentiation formulas.  It is
             intended primarily for stiff problems.
 ***LIBRARY   SLATEC (DEPAC)
 ***CATEGORY  I1A2
 ***TYPE      SINGLE PRECISION (DEBDF-S, DDEBDF-D)
 ***KEYWORDS  BACKWARD DIFFERENTIATION FORMULAS, DEPAC,
              INITIAL VALUE PROBLEMS, ODE,
              ORDINARY DIFFERENTIAL EQUATIONS, STIFF
 ***AUTHOR  Shampine, L. F., (SNLA)
            Watts, H. A., (SNLA)
 ***DESCRIPTION
 
    This is the backward differentiation code in the package of
    differential equation solvers DEPAC, consisting of the codes
    DERKF, DEABM, and DEBDF.  Design of the package was by
    L. F. Shampine and H. A. Watts.  It is documented in
         SAND-79-2374 , DEPAC - Design of a User Oriented Package of ODE
                               Solvers.
    DEBDF is a driver for a modification of the code LSODE written by
              A. C. Hindmarsh
              Lawrence Livermore Laboratory
              Livermore, California 94550
 
  **********************************************************************
  **             DEPAC PACKAGE OVERVIEW           **
  **********************************************************************
 
         You have a choice of three differential equation solvers from
         DEPAC.  The following brief descriptions are meant to aid you
         in choosing the most appropriate code for your problem.
 
         DERKF is a fifth order Runge-Kutta code.  It is the simplest of
         the three choices, both algorithmically and in the use of the
         code.  DERKF is primarily designed to solve non-stiff and mild-
         ly stiff differential equations when derivative evaluations are
         not expensive.  It should generally not be used to get high
         accuracy results nor answers at a great many specific points.
         Because DERKF has very low overhead costs, it will usually
         result in the least expensive integration when solving
         problems requiring a modest amount of accuracy and having
         equations that are not costly to evaluate.  DERKF attempts to
         discover when it is not suitable for the task posed.
 
         DEABM is a variable order (one through twelve) Adams code.
         Its complexity lies somewhere between that of DERKF and DEBDF.
         DEABM is primarily designed to solve non-stiff and mildly
         stiff differential equations when derivative evaluations are
         expensive, high accuracy results are needed or answers at
         many specific points are required.  DEABM attempts to discover
         when it is not suitable for the task posed.
 
         DEBDF is a variable order (one through five) backward
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         differentiation formula code.  It is the most complicated of
         the three choices.  DEBDF is primarily designed to solve stiff
         differential equations at crude to moderate tolerances.
         If the problem is very stiff at all, DERKF and DEABM will be
         quite inefficient compared to DEBDF.  However, DEBDF will be
         inefficient compared to DERKF and DEABM on non-stiff problems
         because it uses much more storage, has a much larger overhead,
         and the low order formulas will not give high accuracies
         efficiently.
 
         The concept of stiffness cannot be described in a few words.
         If you do not know the problem to be stiff, try either DERKF
         or DEABM.  Both of these codes will inform you of stiffness
         when the cost of solving such problems becomes important.
 
  **********************************************************************
  ** ABSTRACT **
  **********************************************************************
 
    Subroutine DEBDF uses the backward differentiation formulas of
    orders one through five to integrate a system of NEQ first order
    ordinary differential equations of the form
                          DU/DX = F(X,U)
    when the vector Y(*) of initial values for U(*) at X=T is given. The
    subroutine integrates from T to TOUT.  It is easy to continue the
    integration to get results at additional TOUT.  This is the interval
    mode of operation.  It is also easy for the routine to return with
    The solution at each intermediate step on the way to TOUT.  This is
    the intermediate-output mode of operation.
 
  **********************************************************************
  ** DESCRIPTION OF THE ARGUMENTS TO DEBDF (AN OVERVIEW) **
  **********************************************************************
 
    The Parameters are:
 
       F -- This is the name of a subroutine which you provide to
              define the differential equations.
 
       NEQ -- This is the number of (first order) differential
              equations to be integrated.
 
       T -- This is a value of the independent variable.
 
       Y(*) -- This array contains the solution components at T.
 
       TOUT -- This is a point at which a solution is desired.
 
       INFO(*) -- The basic task of the code is to integrate the
              differential equations from T to TOUT and return an
              answer at TOUT.  INFO(*) is an INTEGER array which is used
              to communicate exactly how you want this task to be
              carried out.
 
       RTOL, ATOL -- These quantities
              represent relative and absolute error tolerances which you
              provide to indicate how accurately you wish the solution
              to be computed.  You may choose them to be both scalars
              or else both vectors.
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       IDID -- This scalar quantity is an indicator reporting what
              the code did.  You must monitor this INTEGER variable to
              decide what action to take next.
 
       RWORK(*), LRW -- RWORK(*) is a REAL work array of
              length LRW which provides the code with needed storage
              space.
 
       IWORK(*), LIW -- IWORK(*) is an INTEGER work array of length LIW
              which provides the code with needed storage space and an
              across call flag.
 
       RPAR, IPAR -- These are REAL and INTEGER parameter
              arrays which you can use for communication between your
              calling program and the F subroutine (and the JAC
              subroutine).
 
       JAC -- This is the name of a subroutine which you may choose to
              provide for defining the Jacobian matrix of partial
              derivatives DF/DU.
 
   Quantities which are used as input items are
              NEQ, T, Y(*), TOUT, INFO(*),
              RTOL, ATOL, RWORK(1), LRW,
              IWORK(1), IWORK(2), and LIW.
 
   Quantities which may be altered by the code are
              T, Y(*), INFO(1), RTOL, ATOL,
              IDID, RWORK(*) and IWORK(*).
 
  **********************************************************************
  * INPUT -- What To Do On The First Call To DEBDF *
  **********************************************************************
 
    The first call of the code is defined to be the start of each new
    problem.  Read through the descriptions of all the following items,
    provide sufficient storage space for designated arrays, set
    appropriate variables for the initialization of the problem, and
    give information about how you want the problem to be solved.
 
 
       F -- provide a subroutine of the form
                                F(X,U,UPRIME,RPAR,IPAR)
              to define the system of first order differential equations
              which is to be solved. For the given values of X and the
              vector  U(*)=(U(1),U(2),...,U(NEQ)) , the subroutine must
              evaluate the NEQ components of the system of differential
              equations  DU/DX=F(X,U)  and store the derivatives in the
              array UPRIME(*), that is,  UPRIME(I) = * DU(I)/DX *  for
              equations I=1,...,NEQ.
 
              Subroutine F must not alter X or U(*).  You must declare
              the name F in an external statement in your program that
              calls DEBDF.  You must dimension U and UPRIME in F.
 
              RPAR and IPAR are REAL and INTEGER parameter arrays which
              you can use for communication between your calling program
              and subroutine F.  They are not used or altered by DEBDF.
              If you do not need RPAR or IPAR, ignore these parameters
              by treating them as dummy arguments.  If you do choose to
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              use them, dimension them in your calling program and in F
              as arrays of appropriate length.
 
       NEQ -- Set it to the number of differential equations.
              (NEQ .GE. 1)
 
       T -- Set it to the initial point of the integration.
              You must use a program variable for T because the code
              changes its value.
 
       Y(*) -- Set this vector to the initial values of the NEQ solution
              components at the initial point.  You must dimension Y at
              least NEQ in your calling program.
 
       TOUT -- Set it to the first point at which a solution is desired.
              You can take TOUT = T, in which case the code
              will evaluate the derivative of the solution at T and
              return.  Integration either forward in T  (TOUT .GT. T)
              or backward in T  (TOUT .LT. T)  is permitted.
 
              The code advances the solution from T to TOUT using
              step sizes which are automatically selected so as to
              achieve the desired accuracy.  If you wish, the code will
              return with the solution and its derivative following
              each intermediate step (intermediate-output mode) so that
              you can monitor them, but you still must provide TOUT in
              accord with the basic aim of the code.
 
              The first step taken by the code is a critical one
              because it must reflect how fast the solution changes near
              the initial point.  The code automatically selects an
              initial step size which is practically always suitable for
              the problem.  By using the fact that the code will not
              step past TOUT in the first step, you could, if necessary,
              restrict the length of the initial step size.
 
              For some problems it may not be permissible to integrate
              past a point TSTOP because a discontinuity occurs there
              or the solution or its derivative is not defined beyond
              TSTOP.  When you have declared a TSTOP point (see INFO(4)
              and RWORK(1)), you have told the code not to integrate
              past TSTOP.  In this case any TOUT beyond TSTOP is invalid
              input.
 
       INFO(*) -- Use the INFO array to give the code more details about
              how you want your problem solved.  This array should be
              dimensioned of length 15 to accommodate other members of
              DEPAC or possible future extensions, though DEBDF uses
              only the first six entries.  You must respond to all of
              the following items which are arranged as questions.  The
              simplest use of the code corresponds to answering all
              questions as YES ,i.e. setting all entries of INFO to 0.
 
         INFO(1) -- This parameter enables the code to initialize
                itself.  You must set it to indicate the start of every
                new problem.
 
             **** Is this the first call for this problem ...
                   YES -- Set INFO(1) = 0
                    NO -- Not applicable here.
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                          See below for continuation calls.  ****
 
         INFO(2) -- How much accuracy you want of your solution
                is specified by the error tolerances RTOL and ATOL.
                The simplest use is to take them both to be scalars.
                To obtain more flexibility, they can both be vectors.
                The code must be told your choice.
 
             **** Are both error tolerances RTOL, ATOL scalars ...
                   YES -- Set INFO(2) = 0
                          and input scalars for both RTOL and ATOL
                    NO -- Set INFO(2) = 1
                          and input arrays for both RTOL and ATOL ****
 
         INFO(3) -- The code integrates from T in the direction
                of TOUT by steps.  If you wish, it will return the
                computed solution and derivative at the next
                intermediate step (the intermediate-output mode) or
                TOUT, whichever comes first.  This is a good way to
                proceed if you want to see the behavior of the solution.
                If you must have solutions at a great many specific
                TOUT points, this code will compute them efficiently.
 
             **** Do you want the solution only at
                  TOUT (and NOT at the next intermediate step) ...
                   YES -- Set INFO(3) = 0
                    NO -- Set INFO(3) = 1 ****
 
         INFO(4) -- To handle solutions at a great many specific
                values TOUT efficiently, this code may integrate past
                TOUT and interpolate to obtain the result at TOUT.
                Sometimes it is not possible to integrate beyond some
                point TSTOP because the equation changes there or it is
                not defined past TSTOP.  Then you must tell the code
                not to go past.
 
             **** Can the integration be carried out without any
                  restrictions on the independent variable T ...
                   YES -- Set INFO(4)=0
                    NO -- Set INFO(4)=1
                          and define the stopping point TSTOP by
                          setting RWORK(1)=TSTOP ****
 
         INFO(5) -- To solve stiff problems it is necessary to use the
                Jacobian matrix of partial derivatives of the system
                of differential equations.  If you do not provide a
                subroutine to evaluate it analytically (see the
                description of the item JAC in the call list), it will
                be approximated by numerical differencing in this code.
                Although it is less trouble for you to have the code
                compute partial derivatives by numerical differencing,
                the solution will be more reliable if you provide the
                derivatives via JAC.  Sometimes numerical differencing
                is cheaper than evaluating derivatives in JAC and
                sometimes it is not - this depends on your problem.
 
                If your problem is linear, i.e. has the form
                DU/DX = F(X,U) = J(X)*U + G(X)   for some matrix J(X)
                and vector G(X), the Jacobian matrix  DF/DU = J(X).
                Since you must provide a subroutine to evaluate F(X,U)
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                analytically, it is little extra trouble to provide
                subroutine JAC for evaluating J(X) analytically.
                Furthermore, in such cases, numerical differencing is
                much more expensive than analytic evaluation.
 
             **** Do you want the code to evaluate the partial
                  derivatives automatically by numerical differences ...
                   YES -- Set INFO(5)=0
                    NO -- Set INFO(5)=1
                          and provide subroutine JAC for evaluating the
                          Jacobian matrix ****
 
         INFO(6) -- DEBDF will perform much better if the Jacobian
                matrix is banded and the code is told this.  In this
                case, the storage needed will be greatly reduced,
                numerical differencing will be performed more cheaply,
                and a number of important algorithms will execute much
                faster.  The differential equation is said to have
                half-bandwidths ML (lower) and MU (upper) if equation I
                involves only unknowns Y(J) with
                               I-ML .LE. J .LE. I+MU
                for all I=1,2,...,NEQ.  Thus, ML and MU are the widths
                of the lower and upper parts of the band, respectively,
                with the main diagonal being excluded.  If you do not
                indicate that the equation has a banded Jacobian,
                the code works with a full matrix of NEQ**2 elements
                (stored in the conventional way).  Computations with
                banded matrices cost less time and storage than with
                full matrices if  2*ML+MU .LT. NEQ.  If you tell the
                code that the Jacobian matrix has a banded structure and
                you want to provide subroutine JAC to compute the
                partial derivatives, then you must be careful to store
                the elements of the Jacobian matrix in the special form
                indicated in the description of JAC.
 
             **** Do you want to solve the problem using a full
                  (dense) Jacobian matrix (and not a special banded
                  structure) ...
                   YES -- Set INFO(6)=0
                    NO -- Set INFO(6)=1
                          and provide the lower (ML) and upper (MU)
                          bandwidths by setting
                          IWORK(1)=ML
                          IWORK(2)=MU ****
 
       RTOL, ATOL -- You must assign relative (RTOL) and absolute (ATOL)
              error tolerances to tell the code how accurately you want
              the solution to be computed.  They must be defined as
              program variables because the code may change them.  You
              have two choices --
                   Both RTOL and ATOL are scalars. (INFO(2)=0)
                   Both RTOL and ATOL are vectors. (INFO(2)=1)
              In either case all components must be non-negative.
 
              The tolerances are used by the code in a local error test
              at each step which requires roughly that
                      ABS(LOCAL ERROR) .LE. RTOL*ABS(Y)+ATOL
              for each vector component.
              (More specifically, a root-mean-square norm is used to
              measure the size of vectors, and the error test uses the
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              magnitude of the solution at the beginning of the step.)
 
              The true (global) error is the difference between the true
              solution of the initial value problem and the computed
              approximation.  Practically all present day codes,
              including this one, control the local error at each step
              and do not even attempt to control the global error
              directly.  Roughly speaking, they produce a solution Y(T)
              which satisfies the differential equations with a
              residual R(T),    DY(T)/DT = F(T,Y(T)) + R(T)   ,
              and, almost always, R(T) is bounded by the error
              tolerances.  Usually, but not always, the true accuracy of
              the computed Y is comparable to the error tolerances. This
              code will usually, but not always, deliver a more accurate
              solution if you reduce the tolerances and integrate again.
              By comparing two such solutions you can get a fairly
              reliable idea of the true error in the solution at the
              bigger tolerances.
 
              Setting ATOL=0. results in a pure relative error test on
              that component.  Setting RTOL=0. results in a pure abso-
              lute error test on that component.  A mixed test with non-
              zero RTOL and ATOL corresponds roughly to a relative error
              test when the solution component is much bigger than ATOL
              and to an absolute error test when the solution component
              is smaller than the threshold ATOL.
 
              Proper selection of the absolute error control parameters
              ATOL  requires you to have some idea of the scale of the
              solution components.  To acquire this information may mean
              that you will have to solve the problem more than once. In
              the absence of scale information, you should ask for some
              relative accuracy in all the components (by setting  RTOL
              values non-zero) and perhaps impose extremely small
              absolute error tolerances to protect against the danger of
              a solution component becoming zero.
 
              The code will not attempt to compute a solution at an
              accuracy unreasonable for the machine being used.  It will
              advise you if you ask for too much accuracy and inform
              you as to the maximum accuracy it believes possible.
 
       RWORK(*) -- Dimension this REAL work array of length LRW in your
              calling program.
 
       RWORK(1) -- If you have set INFO(4)=0, you can ignore this
              optional input parameter.  Otherwise you must define a
              stopping point TSTOP by setting   RWORK(1) = TSTOP.
              (For some problems it may not be permissible to integrate
              past a point TSTOP because a discontinuity occurs there
              or the solution or its derivative is not defined beyond
              TSTOP.)
 
       LRW -- Set it to the declared length of the RWORK array.
              You must have
                   LRW .GE. 250+10*NEQ+NEQ**2
              for the full (dense) Jacobian case (when INFO(6)=0),  or
                   LRW .GE. 250+10*NEQ+(2*ML+MU+1)*NEQ
              for the banded Jacobian case (when INFO(6)=1).
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       IWORK(*) -- Dimension this INTEGER work array of length LIW in
              your calling program.
 
       IWORK(1), IWORK(2) -- If you have set INFO(6)=0, you can ignore
              these optional input parameters. Otherwise you must define
              the half-bandwidths ML (lower) and MU (upper) of the
              Jacobian matrix by setting    IWORK(1) = ML   and
              IWORK(2) = MU.  (The code will work with a full matrix
              of NEQ**2 elements unless it is told that the problem has
              a banded Jacobian, in which case the code will work with
              a matrix containing at most  (2*ML+MU+1)*NEQ  elements.)
 
       LIW -- Set it to the declared length of the IWORK array.
              You must have LIW .GE. 56+NEQ.
 
       RPAR, IPAR -- These are parameter arrays, of REAL and INTEGER
              type, respectively.  You can use them for communication
              between your program that calls DEBDF and the  F
              subroutine (and the JAC subroutine).  They are not used or
              altered by DEBDF.  If you do not need RPAR or IPAR, ignore
              these parameters by treating them as dummy arguments.  If
              you do choose to use them, dimension them in your calling
              program and in F (and in JAC) as arrays of appropriate
              length.
 
       JAC -- If you have set INFO(5)=0, you can ignore this parameter
              by treating it as a dummy argument. (For some compilers
              you may have to write a dummy subroutine named  JAC  in
              order to avoid problems associated with missing external
              routine names.)  Otherwise, you must provide a subroutine
              of the form
                           JAC(X,U,PD,NROWPD,RPAR,IPAR)
              to define the Jacobian matrix of partial derivatives DF/DU
              of the system of differential equations   DU/DX = F(X,U).
              For the given values of X and the vector
              U(*)=(U(1),U(2),...,U(NEQ)), the subroutine must evaluate
              the non-zero partial derivatives  DF(I)/DU(J)  for each
              differential equation I=1,...,NEQ and each solution
              component J=1,...,NEQ , and store these values in the
              matrix PD.  The elements of PD are set to zero before each
              call to JAC so only non-zero elements need to be defined.
 
              Subroutine JAC must not alter X, U(*), or NROWPD.  You
              must declare the name JAC in an EXTERNAL statement in your
              program that calls DEBDF.  NROWPD is the row dimension of
              the PD matrix and is assigned by the code.  Therefore you
              must dimension PD in JAC according to
                               DIMENSION PD(NROWPD,1)
              You must also dimension U in JAC.
 
              The way you must store the elements into the PD matrix
              depends on the structure of the Jacobian which you
              indicated by INFO(6).
              *** INFO(6)=0 -- Full (Dense) Jacobian ***
                  When you evaluate the (non-zero) partial derivative
                  of equation I with respect to variable J, you must
                  store it in PD according to
                                 PD(I,J) = * DF(I)/DU(J) *
              *** INFO(6)=1 -- Banded Jacobian with ML Lower and MU
                  Upper Diagonal Bands (refer to INFO(6) description of
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                  ML and MU) ***
                  When you evaluate the (non-zero) partial derivative
                  of equation I with respect to variable J, you must
                  store it in PD according to
                                 IROW = I - J + ML + MU + 1
                                 PD(IROW,J) = * DF(I)/DU(J) *
 
              RPAR and IPAR are REAL and INTEGER parameter
              arrays which you can use for communication between your
              calling program and your Jacobian subroutine JAC.  They
              are not altered by DEBDF.  If you do not need RPAR or
              IPAR, ignore these parameters by treating them as dummy
              arguments.  If you do choose to use them, dimension them
              in your calling program and in JAC as arrays of
              appropriate length.
 
  **********************************************************************
  * OUTPUT -- After any return from DDEBDF *
  **********************************************************************
 
    The principal aim of the code is to return a computed solution at
    TOUT, although it is also possible to obtain intermediate results
    along the way.  To find out whether the code achieved its goal
    or if the integration process was interrupted before the task was
    completed, you must check the IDID parameter.
 
 
       T -- The solution was successfully advanced to the
              output value of T.
 
       Y(*) -- Contains the computed solution approximation at T.
              You may also be interested in the approximate derivative
              of the solution at T.  It is contained in
              RWORK(21),...,RWORK(20+NEQ).
 
       IDID -- Reports what the code did
 
                          *** Task Completed ***
                    Reported by positive values of IDID
 
              IDID = 1 -- A step was successfully taken in the
                        intermediate-output mode.  The code has not
                        yet reached TOUT.
 
              IDID = 2 -- The integration to TOUT was successfully
                        completed (T=TOUT) by stepping exactly to TOUT.
 
              IDID = 3 -- The integration to TOUT was successfully
                        completed (T=TOUT) by stepping past TOUT.
                        Y(*) is obtained by interpolation.
 
                          *** Task Interrupted ***
                    Reported by negative values of IDID
 
              IDID = -1 -- A large amount of work has been expended.
                        (500 steps attempted)
 
              IDID = -2 -- The error tolerances are too stringent.
 
              IDID = -3 -- The local error test cannot be satisfied
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                        because you specified a zero component in ATOL
                        and the corresponding computed solution
                        component is zero.  Thus, a pure relative error
                        test is impossible for this component.
 
              IDID = -4,-5  -- Not applicable for this code but used
                        by other members of DEPAC.
 
              IDID = -6 -- DEBDF had repeated convergence test failures
                        on the last attempted step.
 
              IDID = -7 -- DEBDF had repeated error test failures on
                        the last attempted step.
 
              IDID = -8,..,-32  -- Not applicable for this code but
                        used by other members of DEPAC or possible
                        future extensions.
 
                          *** Task Terminated ***
                    Reported by the value of IDID=-33
 
              IDID = -33 -- The code has encountered trouble from which
                        it cannot recover.  A message is printed
                        explaining the trouble and control is returned
                        to the calling program.  For example, this
                        occurs when invalid input is detected.
 
       RTOL, ATOL -- These quantities remain unchanged except when
              IDID = -2.  In this case, the error tolerances have been
              increased by the code to values which are estimated to be
              appropriate for continuing the integration.  However, the
              reported solution at T was obtained using the input values
              of RTOL and ATOL.
 
       RWORK, IWORK -- Contain information which is usually of no
              interest to the user but necessary for subsequent calls.
              However, you may find use for
 
              RWORK(11)--which contains the step size H to be
                         attempted on the next step.
 
              RWORK(12)--If the tolerances have been increased by the
                         code (IDID = -2) , they were multiplied by the
                         value in RWORK(12).
 
              RWORK(13)--which contains the current value of the
                         independent variable, i.e. the farthest point
                         integration has reached.  This will be
                         different from T only when interpolation has
                         been performed (IDID=3).
 
              RWORK(20+I)--which contains the approximate derivative
                         of the solution component Y(I).  In DEBDF, it
                         is never obtained by calling subroutine F to
                         evaluate the differential equation using T and
                         Y(*), except at the initial point of
                         integration.
 
  **********************************************************************
  ** INPUT -- What To Do To Continue The Integration **
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  **             (calls after the first)             **
  **********************************************************************
 
         This code is organized so that subsequent calls to continue the
         integration involve little (if any) additional effort on your
         part. You must monitor the IDID parameter in order to determine
         what to do next.
 
         Recalling that the principal task of the code is to integrate
         from T to TOUT (the interval mode), usually all you will need
         to do is specify a new TOUT upon reaching the current TOUT.
 
         Do not alter any quantity not specifically permitted below,
         in particular do not alter NEQ, T, Y(*), RWORK(*), IWORK(*) or
         the differential equation in subroutine F.  Any such alteration
         constitutes a new problem and must be treated as such, i.e.
         you must start afresh.
 
         You cannot change from vector to scalar error control or vice
         versa (INFO(2)) but you can change the size of the entries of
         RTOL, ATOL.  Increasing a tolerance makes the equation easier
         to integrate.  Decreasing a tolerance will make the equation
         harder to integrate and should generally be avoided.
 
         You can switch from the intermediate-output mode to the
         interval mode (INFO(3)) or vice versa at any time.
 
         If it has been necessary to prevent the integration from going
         past a point TSTOP (INFO(4), RWORK(1)), keep in mind that the
         code will not integrate to any TOUT beyond the currently
         specified TSTOP.  Once TSTOP has been reached you must change
         the value of TSTOP or set INFO(4)=0.  You may change INFO(4)
         or TSTOP at any time but you must supply the value of TSTOP in
         RWORK(1) whenever you set INFO(4)=1.
 
         Do not change INFO(5), INFO(6), IWORK(1), or IWORK(2)
         unless you are going to restart the code.
 
         The parameter INFO(1) is used by the code to indicate the
         beginning of a new problem and to indicate whether integration
         is to be continued.  You must input the value  INFO(1) = 0
         when starting a new problem.  You must input the value
         INFO(1) = 1  if you wish to continue after an interrupted task.
         Do not set  INFO(1) = 0  on a continuation call unless you
         want the code to restart at the current T.
 
                          *** Following a Completed Task ***
          If
              IDID = 1, call the code again to continue the integration
                      another step in the direction of TOUT.
 
              IDID = 2 or 3, define a new TOUT and call the code again.
                      TOUT must be different from T.  You cannot change
                      the direction of integration without restarting.
 
                          *** Following an Interrupted Task ***
                      To show the code that you realize the task was
                      interrupted and that you want to continue, you
                      must take appropriate action and reset INFO(1) = 1
          If
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              IDID = -1, the code has attempted 500 steps.
                      If you want to continue, set INFO(1) = 1 and
                      call the code again.  An additional 500 steps
                      will be allowed.
 
              IDID = -2, the error tolerances RTOL, ATOL have been
                      increased to values the code estimates appropriate
                      for continuing.  You may want to change them
                      yourself.  If you are sure you want to continue
                      with relaxed error tolerances, set INFO(1)=1 and
                      call the code again.
 
              IDID = -3, a solution component is zero and you set the
                      corresponding component of ATOL to zero.  If you
                      are sure you want to continue, you must first
                      alter the error criterion to use positive values
                      for those components of ATOL corresponding to zero
                      solution components, then set INFO(1)=1 and call
                      the code again.
 
              IDID = -4,-5  --- cannot occur with this code but used
                      by other members of DEPAC.
 
              IDID = -6, repeated convergence test failures occurred
                      on the last attempted step in DEBDF.  An inaccu-
                      rate Jacobian may be the problem.  If you are
                      absolutely certain you want to continue, restart
                      the integration at the current T by setting
                      INFO(1)=0 and call the code again.
 
              IDID = -7, repeated error test failures occurred on the
                      last attempted step in DEBDF.  A singularity in
                      the solution may be present.  You should re-
                      examine the problem being solved.  If you are
                      absolutely certain you want to continue, restart
                      the integration at the current T by setting
                      INFO(1)=0 and call the code again.
 
              IDID = -8,..,-32  --- cannot occur with this code but
                      used by other members of DEPAC or possible future
                      extensions.
 
                          *** Following a Terminated Task ***
          If
              IDID = -33, you cannot continue the solution of this
                      problem.  An attempt to do so will result in your
                      run being terminated.
 
  **********************************************************************
 
          ***** Warning *****
 
      If DEBDF is to be used in an overlay situation, you must save and
      restore certain items used internally by DEBDF  (values in the
      common block DEBDF1).  This can be accomplished as follows.
 
      To save the necessary values upon return from DEBDF, simply call
         SVCO(RWORK(22+NEQ),IWORK(21+NEQ)).
 
      To restore the necessary values before the next call to DEBDF,
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      simply call    RSCO(RWORK(22+NEQ),IWORK(21+NEQ)).
 
 ***REFERENCES  L. F. Shampine and H. A. Watts, DEPAC - design of a user
                  oriented package of ODE solvers, Report SAND79-2374,
                  Sandia Laboratories, 1979.
 ***ROUTINES CALLED  LSOD, XERMSG
 ***COMMON BLOCKS    DEBDF1
 ***REVISION HISTORY  (YYMMDD)
    800901  DATE WRITTEN
    890831  Modified array declarations.  (WRB)
    891024  Changed references from VNORM to HVNRM.  (WRB)
    891024  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    900326  Removed duplicate information from DESCRIPTION section.
            (WRB)
    900510  Convert XERRWV calls to XERMSG calls, change Prologue
            comments to agree with DDEBDF.  (RWC)
    920501  Reformatted the REFERENCES section.  (WRB)
    END PROLOGUE
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DEFC

      SUBROUTINE DEFC (NDATA, XDATA, YDATA, SDDATA, NORD, NBKPT, BKPT,
     +   MDEIN, MDEOUT, COEFF, LW, W)
 ***BEGIN PROLOGUE  DEFC
 ***PURPOSE  Fit a piecewise polynomial curve to discrete data.
             The piecewise polynomials are represented as B-splines.
             The fitting is done in a weighted least squares sense.
 ***LIBRARY   SLATEC
 ***CATEGORY  K1A1A1, K1A2A, L8A3
 ***TYPE      DOUBLE PRECISION (EFC-S, DEFC-D)
 ***KEYWORDS  B-SPLINE, CONSTRAINED LEAST SQUARES, CURVE FITTING
 ***AUTHOR  Hanson, R. J., (SNLA)
 ***DESCRIPTION
 
       This subprogram fits a piecewise polynomial curve
       to discrete data.  The piecewise polynomials are
       represented as B-splines.
       The fitting is done in a weighted least squares sense.
 
       The data can be processed in groups of modest size.
       The size of the group is chosen by the user.  This feature
       may be necessary for purposes of using constrained curve fitting
       with subprogram DFC( ) on a very large data set.
 
       For a description of the B-splines and usage instructions to
       evaluate them, see
 
       C. W. de Boor, Package for Calculating with B-Splines.
                      SIAM J. Numer. Anal., p. 441, (June, 1977).
 
       For further discussion of (constrained) curve fitting using
       B-splines, see
 
       R. J. Hanson, Constrained Least Squares Curve Fitting
                    to Discrete Data Using B-Splines, a User's
                    Guide. Sandia Labs. Tech. Rept. SAND-78-1291,
                    December, (1978).
 
   Input.. All TYPE REAL variables are DOUBLE PRECISION
       NDATA,XDATA(*),
       YDATA(*),
       SDDATA(*)
                          The NDATA discrete (X,Y) pairs and the Y value
                          standard deviation or uncertainty, SD, are in
                          the respective arrays XDATA(*), YDATA(*), and
                          SDDATA(*).  No sorting of XDATA(*) is
                          required.  Any non-negative value of NDATA is
                          allowed.  A negative value of NDATA is an
                          error.  A zero value for any entry of
                          SDDATA(*) will weight that data point as 1.
                          Otherwise the weight of that data point is
                          the reciprocal of this entry.
 
       NORD,NBKPT,
       BKPT(*)
                          The NBKPT knots of the B-spline of order NORD
                          are in the array BKPT(*).  Normally the
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                          problem data interval will be included between
                          the limits BKPT(NORD) and BKPT(NBKPT-NORD+1).
                          The additional end knots BKPT(I),I=1,...,
                          NORD-1 and I=NBKPT-NORD+2,...,NBKPT, are
                          required to compute the functions used to fit
                          the data.  No sorting of BKPT(*) is required.
                          Internal to DEFC( ) the extreme end knots may
                          be reduced and increased respectively to
                          accommodate any data values that are exterior
                          to the given knot values.  The contents of
                          BKPT(*) is not changed.
 
                          NORD must be in the range 1 .LE. NORD .LE. 20.
                          The value of NBKPT must satisfy the condition
                          NBKPT .GE. 2*NORD.
                          Other values are considered errors.
 
                          (The order of the spline is one more than the
                          degree of the piecewise polynomial defined on
                          each interval.  This is consistent with the
                          B-spline package convention.  For example,
                          NORD=4 when we are using piecewise cubics.)
 
         MDEIN
                          An integer flag, with one of two possible
                          values (1 or 2), that directs the subprogram
                          action with regard to new data points provided
                          by the user.
 
                          =1  The first time that DEFC( ) has been
                          entered.  There are NDATA points to process.
 
                          =2  This is another entry to DEFC().  The sub-
                          program DEFC( ) has been entered with MDEIN=1
                          exactly once before for this problem.  There
                          are NDATA new additional points to merge and
                          process with any previous points.
                          (When using DEFC( ) with MDEIN=2 it is import-
                          ant that the set of knots remain fixed at the
                          same values for all entries to DEFC( ).)
        LW
                          The amount of working storage actually
                          allocated for the working array W(*).
                          This quantity is compared with the
                          actual amount of storage needed in DEFC( ).
                          Insufficient storage allocated for W(*) is
                          an error.  This feature was included in DEFC
                          because misreading the storage formula
                          for W(*) might very well lead to subtle
                          and hard-to-find programming bugs.
 
                          The length of the array W(*) must satisfy
 
                          LW .GE. (NBKPT-NORD+3)*(NORD+1)+
                                  (NBKPT+1)*(NORD+1)+
                                2*MAX(NDATA,NBKPT)+NBKPT+NORD**2
 
   Output.. All TYPE REAL variables are DOUBLE PRECISION
       MDEOUT
                          An output flag that indicates the status
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                          of the curve fit.
 
                          =-1  A usage error of DEFC( ) occurred.  The
                          offending condition is noted with the SLATEC
                          library error processor, XERMSG( ).  In case
                          the working array W(*) is not long enough, the
                          minimal acceptable length is printed.
 
                          =1  The B-spline coefficients for the fitted
                          curve have been returned in array COEFF(*).
 
                          =2  Not enough data has been processed to
                          determine the B-spline coefficients.
                          The user has one of two options.  Continue
                          to process more data until a unique set
                          of coefficients is obtained, or use the
                          subprogram DFC( ) to obtain a specific
                          set of coefficients.  The user should read
                          the usage instructions for DFC( ) for further
                          details if this second option is chosen.
       COEFF(*)
                          If the output value of MDEOUT=1, this array
                          contains the unknowns obtained from the least
                          squares fitting process.  These N=NBKPT-NORD
                          parameters are the B-spline coefficients.
                          For MDEOUT=2, not enough data was processed to
                          uniquely determine the B-spline coefficients.
                          In this case, and also when MDEOUT=-1, all
                          values of COEFF(*) are set to zero.
 
                          If the user is not satisfied with the fitted
                          curve returned by DEFC( ), the constrained
                          least squares curve fitting subprogram DFC( )
                          may be required.  The work done within DEFC( )
                          to accumulate the data can be utilized by
                          the user, if so desired.  This involves
                          saving the first (NBKPT-NORD+3)*(NORD+1)
                          entries of W(*) and providing this data
                          to DFC( ) with the "old problem" designation.
                          The user should read the usage instructions
                          for subprogram DFC( ) for further details.
 
   Working Array.. All TYPE REAL variables are DOUBLE PRECISION
       W(*)
                          This array is typed DOUBLE PRECISION.
                          Its length is  specified as an input parameter
                          in LW as noted above.  The contents of W(*)
                          must not be modified by the user between calls
                          to DEFC( ) with values of MDEIN=1,2,2,... .
                          The first (NBKPT-NORD+3)*(NORD+1) entries of
                          W(*) are acceptable as direct input to DFC( )
                          for an "old problem" only when MDEOUT=1 or 2.
 
   Evaluating the
   Fitted Curve..
                          To evaluate derivative number IDER at XVAL,
                          use the function subprogram DBVALU( ).
 
                          F = DBVALU(BKPT,COEFF,NBKPT-NORD,NORD,IDER,
                                       XVAL,INBV,WORKB)
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                          The output of this subprogram will not be
                          defined unless an output value of MDEOUT=1
                          was obtained from DEFC( ), XVAL is in the data
                          interval, and IDER is nonnegative and .LT.
                          NORD.
 
                          The first time DBVALU( ) is called, INBV=1
                          must be specified.  This value of INBV is the
                          overwritten by DBVALU( ).  The array WORKB(*)
                          must be of length at least 3*NORD, and must
                          not be the same as the W(*) array used in the
                          call to DEFC( ).
 
                          DBVALU( ) expects the breakpoint array BKPT(*)
                          to be sorted.
 
 ***REFERENCES  R. J. Hanson, Constrained least squares curve fitting
                  to discrete data using B-splines, a users guide,
                  Report SAND78-1291, Sandia Laboratories, December
                  1978.
 ***ROUTINES CALLED  DEFCMN
 ***REVISION HISTORY  (YYMMDD)
    800801  DATE WRITTEN
    890531  Changed all specific intrinsics to generic.  (WRB)
    890531  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    900510  Change Prologue comments to refer to XERMSG.  (RWC)
    900607  Editorial changes to Prologue to make Prologues for EFC,
            DEFC, FC, and DFC look as much the same as possible.  (RWC)
    920501  Reformatted the REFERENCES section.  (WRB)
    END PROLOGUE
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DEI

      DOUBLE PRECISION FUNCTION DEI (X)
 ***BEGIN PROLOGUE  DEI
 ***PURPOSE  Compute the exponential integral Ei(X).
 ***LIBRARY   SLATEC (FNLIB)
 ***CATEGORY  C5
 ***TYPE      DOUBLE PRECISION (EI-S, DEI-D)
 ***KEYWORDS  EI FUNCTION, EXPONENTIAL INTEGRAL, FNLIB,
              SPECIAL FUNCTIONS
 ***AUTHOR  Fullerton, W., (LANL)
 ***DESCRIPTION
 
  DEI calculates the double precision exponential integral, Ei(X), for
  positive double precision argument X and the Cauchy principal value
  for negative X.  If principal values are used everywhere, then, for
  all X,
 
     Ei(X) = -E1(-X)
  or
     E1(X) = -Ei(-X).
 
 ***REFERENCES  (NONE)
 ***ROUTINES CALLED  DE1
 ***REVISION HISTORY  (YYMMDD)
    770701  DATE WRITTEN
    891115  Modified prologue description.  (WRB)
    891115  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 261



DERF

      DOUBLE PRECISION FUNCTION DERF (X)
 ***BEGIN PROLOGUE  DERF
 ***PURPOSE  Compute the error function.
 ***LIBRARY   SLATEC (FNLIB)
 ***CATEGORY  C8A, L5A1E
 ***TYPE      DOUBLE PRECISION (ERF-S, DERF-D)
 ***KEYWORDS  ERF, ERROR FUNCTION, FNLIB, SPECIAL FUNCTIONS
 ***AUTHOR  Fullerton, W., (LANL)
 ***DESCRIPTION
 
  DERF(X) calculates the double precision error function for double
  precision argument X.
 
  Series for ERF        on the interval  0.          to  1.00000E+00
                                         with weighted error   1.28E-32
                                          log weighted error  31.89
                                significant figures required  31.05
                                     decimal places required  32.55
 
 ***REFERENCES  (NONE)
 ***ROUTINES CALLED  D1MACH, DCSEVL, DERFC, INITDS
 ***REVISION HISTORY  (YYMMDD)
    770701  DATE WRITTEN
    890531  Changed all specific intrinsics to generic.  (WRB)
    890531  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    900727  Added EXTERNAL statement.  (WRB)
    920618  Removed space from variable name.  (RWC, WRB)
    END PROLOGUE
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DERFC

      DOUBLE PRECISION FUNCTION DERFC (X)
 ***BEGIN PROLOGUE  DERFC
 ***PURPOSE  Compute the complementary error function.
 ***LIBRARY   SLATEC (FNLIB)
 ***CATEGORY  C8A, L5A1E
 ***TYPE      DOUBLE PRECISION (ERFC-S, DERFC-D)
 ***KEYWORDS  COMPLEMENTARY ERROR FUNCTION, ERFC, FNLIB,
              SPECIAL FUNCTIONS
 ***AUTHOR  Fullerton, W., (LANL)
 ***DESCRIPTION
 
  DERFC(X) calculates the double precision complementary error function
  for double precision argument X.
 
  Series for ERF        on the interval  0.          to  1.00000E+00
                                         with weighted Error   1.28E-32
                                          log weighted Error  31.89
                                significant figures required  31.05
                                     decimal places required  32.55
 
  Series for ERC2       on the interval  2.50000E-01 to  1.00000E+00
                                         with weighted Error   2.67E-32
                                          log weighted Error  31.57
                                significant figures required  30.31
                                     decimal places required  32.42
 
  Series for ERFC       on the interval  0.          to  2.50000E-01
                                         with weighted error   1.53E-31
                                          log weighted error  30.82
                                significant figures required  29.47
                                     decimal places required  31.70
 
 ***REFERENCES  (NONE)
 ***ROUTINES CALLED  D1MACH, DCSEVL, INITDS, XERMSG
 ***REVISION HISTORY  (YYMMDD)
    770701  DATE WRITTEN
    890531  Changed all specific intrinsics to generic.  (WRB)
    890531  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    900315  CALLs to XERROR changed to CALLs to XERMSG.  (THJ)
    920618  Removed space from variable names.  (RWC, WRB)
    END PROLOGUE
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DERKF

      SUBROUTINE DERKF (F, NEQ, T, Y, TOUT, INFO, RTOL, ATOL, IDID,
     +   RWORK, LRW, IWORK, LIW, RPAR, IPAR)
 ***BEGIN PROLOGUE  DERKF
 ***PURPOSE  Solve an initial value problem in ordinary differential
             equations using a Runge-Kutta-Fehlberg scheme.
 ***LIBRARY   SLATEC (DEPAC)
 ***CATEGORY  I1A1A
 ***TYPE      SINGLE PRECISION (DERKF-S, DDERKF-D)
 ***KEYWORDS  DEPAC, INITIAL VALUE PROBLEMS, ODE,
              ORDINARY DIFFERENTIAL EQUATIONS, RKF,
              RUNGE-KUTTA-FEHLBERG METHODS
 ***AUTHOR  Watts, H. A., (SNLA)
            Shampine, L. F., (SNLA)
 ***DESCRIPTION
 
    This is the Runge-Kutta code in the package of differential equation
    solvers DEPAC, consisting of the codes DERKF, DEABM, and DEBDF.
    Design of the package was by L. F. Shampine and H. A. Watts.
    It is documented in
         SAND-79-2374 , DEPAC - Design of a User Oriented Package of ODE
                               Solvers.
    DERKF is a driver for a modification of the code RKF45 written by
              H. A. Watts and L. F. Shampine
              Sandia Laboratories
              Albuquerque, New Mexico 87185
 
  **********************************************************************
  **             DEPAC PACKAGE OVERVIEW           **
  **********************************************************************
 
         You have a choice of three differential equation solvers from
         DEPAC.  The following brief descriptions are meant to aid you
         in choosing the most appropriate code for your problem.
 
         DERKF is a fifth order Runge-Kutta code.  It is the simplest of
         the three choices, both algorithmically and in the use of the
         code.  DERKF is primarily designed to solve non-stiff and mild-
         ly stiff differential equations when derivative evaluations are
         not expensive.  It should generally not be used to get high
         accuracy results nor answers at a great many specific points.
         Because DERKF has very low overhead costs, it will usually
         result in the least expensive integration when solving
         problems requiring a modest amount of accuracy and having
         equations that are not costly to evaluate.  DERKF attempts to
         discover when it is not suitable for the task posed.
 
         DEABM is a variable order (one through twelve) Adams code.  Its
         complexity lies somewhere between that of DERKF and DEBDF.
         DEABM is primarily designed to solve non-stiff and mildly
         stiff differential equations when derivative evaluations are
         expensive, high accuracy results are needed or answers at
         many specific points are required.  DEABM attempts to discover
         when it is not suitable for the task posed.
 
         DEBDF is a variable order (one through five) backward
         differentiation formula code.  It is the most complicated of
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         the three choices.  DEBDF is primarily designed to solve stiff
         differential equations at crude to moderate tolerances.
         If the problem is very stiff at all, DERKF and DEABM will be
         quite inefficient compared to DEBDF.  However, DEBDF will be
         inefficient compared to DERKF and DEABM on non-stiff problems
         because it uses much more storage, has a much larger overhead,
         and the low order formulas will not give high accuracies
         efficiently.
 
         The concept of stiffness cannot be described in a few words.
         If you do not know the problem to be stiff, try either DERKF
         or DEABM.  Both of these codes will inform you of stiffness
         when the cost of solving such problems becomes important.
 
  **********************************************************************
  ** ABSTRACT **
  **********************************************************************
 
    Subroutine DERKF uses a Runge-Kutta-Fehlberg (4,5) method to
    integrate a system of NEQ first order ordinary differential
    equations of the form
                          DU/DX = F(X,U)
    when the vector Y(*) of initial values for U(*) at X=T is given.
    The subroutine integrates from T to TOUT. It is easy to continue the
    integration to get results at additional TOUT.  This is the interval
    mode of operation.  It is also easy for the routine to return with
    the solution at each intermediate step on the way to TOUT.  This is
    the intermediate-output mode of operation.
 
    DERKF uses subprograms DERKFS, DEFEHL, HSTART, HVNRM, R1MACH, and
    the error handling routine XERMSG.  The only machine dependent
    parameters to be assigned appear in R1MACH.
 
  **********************************************************************
  ** DESCRIPTION OF THE ARGUMENTS TO DERKF (AN OVERVIEW) **
  **********************************************************************
 
    The Parameters are:
 
       F -- This is the name of a subroutine which you provide to
              define the differential equations.
 
       NEQ -- This is the number of (first order) differential
              equations to be integrated.
 
       T -- This is a value of the independent variable.
 
       Y(*) -- This array contains the solution components at T.
 
       TOUT -- This is a point at which a solution is desired.
 
       INFO(*) -- The basic task of the code is to integrate the
              differential equations from T to TOUT and return an
              answer at TOUT.  INFO(*) is an INTEGER array which is used
              to communicate exactly how you want this task to be
              carried out.
 
       RTOL, ATOL -- These quantities represent relative and absolute
              error tolerances which you provide to indicate how
              accurately you wish the solution to be computed.  You may
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              choose them to be both scalars or else both vectors.
 
       IDID -- This scalar quantity is an indicator reporting what
              the code did.  You must monitor this INTEGER variable to
              decide what action to take next.
 
       RWORK(*), LRW -- RWORK(*) is a REAL work array of length LRW
              which provides the code with needed storage space.
 
       IWORK(*), LIW -- IWORK(*) is an INTEGER work array of length LIW
              which provides the code with needed storage space and an
              across call flag.
 
       RPAR, IPAR -- These are REAL and INTEGER parameter arrays which
              you can use for communication between your calling
              program and the F subroutine.
 
   Quantities which are used as input items are
              NEQ, T, Y(*), TOUT, INFO(*),
              RTOL, ATOL, LRW and LIW.
 
   Quantities which may be altered by the code are
              T, Y(*), INFO(1), RTOL, ATOL,
              IDID, RWORK(*) and IWORK(*).
 
  **********************************************************************
  ** INPUT -- What to do On The First Call To DERKF **
  **********************************************************************
 
    The first call of the code is defined to be the start of each new
    problem.  Read through the descriptions of all the following items,
    provide sufficient storage space for designated arrays, set
    appropriate variables for the initialization of the problem, and
    give information about how you want the problem to be solved.
 
 
       F -- Provide a subroutine of the form
                                F(X,U,UPRIME,RPAR,IPAR)
              to define the system of first order differential equations
              which is to be solved.  For the given values of X and the
              vector  U(*)=(U(1),U(2),...,U(NEQ)) , the subroutine must
              evaluate the NEQ components of the system of differential
              equations  DU/DX=F(X,U)  and store the derivatives in the
              array UPRIME(*), that is,  UPRIME(I) = * DU(I)/DX *  for
              equations I=1,...,NEQ.
 
              Subroutine F must not alter X or U(*).  You must declare
              the name F in an external statement in your program that
              calls DERKF.  You must dimension U and UPRIME in F.
 
              RPAR and IPAR are REAL and INTEGER parameter arrays which
              you can use for communication between your calling program
              and subroutine F.  They are not used or altered by DERKF.
              If you do not need RPAR or IPAR, ignore these parameters
              by treating them as dummy arguments.  If you do choose to
              use them, dimension them in your calling program and in F
              as arrays of appropriate length.
 
       NEQ -- Set it to the number of differential equations.
              (NEQ .GE. 1)
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       T -- Set it to the initial point of the integration.
              You must use a program variable for T because the code
              changes its value.
 
       Y(*) -- Set this vector to the initial values of the NEQ solution
              components at the initial point.  You must dimension Y at
              least NEQ in your calling program.
 
       TOUT -- Set it to the first point at which a solution
              is desired.  You can take TOUT = T, in which case the code
              will evaluate the derivative of the solution at T and
              return.  Integration either forward in T  (TOUT .GT. T) or
              backward in T  (TOUT .LT. T)  is permitted.
 
              The code advances the solution from T to TOUT using
              step sizes which are automatically selected so as to
              achieve the desired accuracy.  If you wish, the code will
              return with the solution and its derivative following
              each intermediate step (intermediate-output mode) so that
              you can monitor them, but you still must provide TOUT in
              accord with the basic aim of the code.
 
              The first step taken by the code is a critical one
              because it must reflect how fast the solution changes near
              the initial point.  The code automatically selects an
              initial step size which is practically always suitable for
              the problem.  By using the fact that the code will not
              step past TOUT in the first step, you could, if necessary,
              restrict the length of the initial step size.
 
              For some problems it may not be permissible to integrate
              past a point TSTOP because a discontinuity occurs there
              or the solution or its derivative is not defined beyond
              TSTOP.  Since DERKF will never step past a TOUT point,
              you need only make sure that no TOUT lies beyond TSTOP.
 
       INFO(*) -- Use the INFO array to give the code more details about
              how you want your problem solved.  This array should be
              dimensioned of length 15 to accommodate other members of
              DEPAC or possible future extensions, though DERKF uses
              only the first three entries.  You must respond to all of
              the following items which are arranged as questions.  The
              simplest use of the code corresponds to answering all
              questions as YES ,i.e. setting all entries of INFO to 0.
 
         INFO(1) -- This parameter enables the code to initialize
                itself.  You must set it to indicate the start of every
                new problem.
 
             **** Is this the first call for this problem ...
                   YES -- Set INFO(1) = 0
                    NO -- Not applicable here.
                          See below for continuation calls.  ****
 
         INFO(2) -- How much accuracy you want of your solution
                is specified by the error tolerances RTOL and ATOL.
                The simplest use is to take them both to be scalars.
                To obtain more flexibility, they can both be vectors.
                The code must be told your choice.
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             **** Are both error tolerances RTOL, ATOL scalars ...
                   YES -- Set INFO(2) = 0
                          and input scalars for both RTOL and ATOL
                    NO -- Set INFO(2) = 1
                          and input arrays for both RTOL and ATOL ****
 
         INFO(3) -- The code integrates from T in the direction
                of TOUT by steps.  If you wish, it will return the
                computed solution and derivative at the next
                intermediate step (the intermediate-output mode).
                This is a good way to proceed if you want to see the
                behavior of the solution.  If you must have solutions at
                a great many specific TOUT points, this code is
                INEFFICIENT.  The code DEABM in DEPAC handles this task
                more efficiently.
 
             **** Do you want the solution only at
                  TOUT (and not at the next intermediate step) ...
                   YES -- Set INFO(3) = 0
                    NO -- Set INFO(3) = 1 ****
 
       RTOL, ATOL -- You must assign relative (RTOL) and absolute (ATOL)
              error tolerances to tell the code how accurately you want
              the solution to be computed.  They must be defined as
              program variables because the code may change them.  You
              have two choices --
                   Both RTOL and ATOL are scalars. (INFO(2)=0)
                   Both RTOL and ATOL are vectors. (INFO(2)=1)
              In either case all components must be non-negative.
 
              The tolerances are used by the code in a local error test
              at each step which requires roughly that
                      ABS(LOCAL ERROR) .LE. RTOL*ABS(Y)+ATOL
              for each vector component.
              (More specifically, a maximum norm is used to measure
              the size of vectors, and the error test uses the average
              of the magnitude of the solution at the beginning and end
              of the step.)
 
              The true (global) error is the difference between the true
              solution of the initial value problem and the computed
              approximation.  Practically all present day codes,
              including this one, control the local error at each step
              and do not even attempt to control the global error
              directly.  Roughly speaking, they produce a solution Y(T)
              which satisfies the differential equations with a
              residual R(T),    DY(T)/DT = F(T,Y(T)) + R(T)   ,
              and, almost always, R(T) is bounded by the error
              tolerances.  Usually, but not always, the true accuracy of
              the computed Y is comparable to the error tolerances. This
              code will usually, but not always, deliver a more accurate
              solution if you reduce the tolerances and integrate again.
              By comparing two such solutions you can get a fairly
              reliable idea of the true error in the solution at the
              bigger tolerances.
 
              Setting ATOL=0. results in a pure relative error test on
              that component.  Setting RTOL=0. yields a pure absolute
              error test on that component.  A mixed test with non-zero

SLATEC3 (DACOSH through DS2Y) - 268



              RTOL and ATOL corresponds roughly to a relative error
              test when the solution component is much bigger than ATOL
              and to an absolute error test when the solution component
              is smaller than the threshold ATOL.
 
              Proper selection of the absolute error control parameters
              ATOL  requires you to have some idea of the scale of the
              solution components.  To acquire this information may mean
              that you will have to solve the problem more than once. In
              the absence of scale information, you should ask for some
              relative accuracy in all the components (by setting  RTOL
              values non-zero) and perhaps impose extremely small
              absolute error tolerances to protect against the danger of
              a solution component becoming zero.
 
              The code will not attempt to compute a solution at an
              accuracy unreasonable for the machine being used.  It will
              advise you if you ask for too much accuracy and inform
              you as to the maximum accuracy it believes possible.
              If you want relative accuracies smaller than about
              10**(-8), you should not ordinarily use DERKF.  The code
              DEABM in DEPAC obtains stringent accuracies more
              efficiently.
 
       RWORK(*) -- Dimension this REAL work array of length LRW in your
              calling program.
 
       LRW -- Set it to the declared length of the RWORK array.
              You must have  LRW .GE. 33+7*NEQ
 
       IWORK(*) -- Dimension this INTEGER work array of length LIW in
              your calling program.
 
       LIW -- Set it to the declared length of the IWORK array.
              You must have  LIW .GE. 34
 
       RPAR, IPAR -- These are parameter arrays, of REAL and INTEGER
              type, respectively.  You can use them for communication
              between your program that calls DERKF and the  F
              subroutine.  They are not used or altered by DERKF.  If
              you do not need RPAR or IPAR, ignore these parameters by
              treating them as dummy arguments.  If you do choose to use
              them, dimension them in your calling program and in F as
              arrays of appropriate length.
 
  **********************************************************************
  ** OUTPUT -- After any return from DERKF **
  **********************************************************************
 
    The principal aim of the code is to return a computed solution at
    TOUT, although it is also possible to obtain intermediate results
    along the way.  To find out whether the code achieved its goal
    or if the integration process was interrupted before the task was
    completed, you must check the IDID parameter.
 
 
       T -- The solution was successfully advanced to the
              output value of T.
 
       Y(*) -- Contains the computed solution approximation at T.
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              You may also be interested in the approximate derivative
              of the solution at T.  It is contained in
              RWORK(21),...,RWORK(20+NEQ).
 
       IDID -- Reports what the code did
 
                          *** Task Completed ***
                    Reported by positive values of IDID
 
              IDID = 1 -- A step was successfully taken in the
                        intermediate-output mode.  The code has not
                        yet reached TOUT.
 
              IDID = 2 -- The integration to TOUT was successfully
                        completed (T=TOUT) by stepping exactly to TOUT.
 
                          *** Task Interrupted ***
                    Reported by negative values of IDID
 
              IDID = -1 -- A large amount of work has been expended.
                        (500 steps attempted)
 
              IDID = -2 -- The error tolerances are too stringent.
 
              IDID = -3 -- The local error test cannot be satisfied
                        because you specified a zero component in ATOL
                        and the corresponding computed solution
                        component is zero.  Thus, a pure relative error
                        test is impossible for this component.
 
              IDID = -4 -- The problem appears to be stiff.
 
              IDID = -5 -- DERKF is being used very inefficiently
                        because the natural step size is being
                        restricted by too frequent output.
 
              IDID = -6,-7,..,-32  -- Not applicable for this code but
                        used by other members of DEPAC or possible
                        future extensions.
 
                          *** Task Terminated ***
                    Reported by the value of IDID=-33
 
              IDID = -33 -- The code has encountered trouble from which
                        it cannot recover.  A message is printed
                        explaining the trouble and control is returned
                        to the calling program.  For example, this
                        occurs when invalid input is detected.
 
       RTOL, ATOL -- These quantities remain unchanged except when
              IDID = -2.  In this case, the error tolerances have been
              increased by the code to values which are estimated to be
              appropriate for continuing the integration.  However, the
              reported solution at T was obtained using the input values
              of RTOL and ATOL.
 
       RWORK, IWORK -- Contain information which is usually of no
              interest to the user but necessary for subsequent calls.
              However, you may find use for
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              RWORK(11)--which contains the step size H to be
                         attempted on the next step.
 
              RWORK(12)--If the tolerances have been increased by the
                         code (IDID = -2) , they were multiplied by the
                         value in RWORK(12).
 
              RWORK(20+I)--which contains the approximate derivative
                         of the solution component Y(I).  In DERKF, it
                         is always obtained by calling subroutine F to
                         evaluate the differential equation using T and
                         Y(*).
 
  **********************************************************************
  ** INPUT -- What To Do To Continue The Integration **
  **             (calls after the first)             **
  **********************************************************************
 
         This code is organized so that subsequent calls to continue the
         integration involve little (if any) additional effort on your
         part.  You must monitor the IDID parameter to determine
         what to do next.
 
         Recalling that the principal task of the code is to integrate
         from T to TOUT (the interval mode), usually all you will need
         to do is specify a new TOUT upon reaching the current TOUT.
 
         Do not alter any quantity not specifically permitted below,
         in particular do not alter NEQ, T, Y(*), RWORK(*), IWORK(*) or
         the differential equation in subroutine F.  Any such alteration
         constitutes a new problem and must be treated as such, i.e.
         you must start afresh.
 
         You cannot change from vector to scalar error control or vice
         versa (INFO(2)) but you can change the size of the entries of
         RTOL, ATOL.  Increasing a tolerance makes the equation easier
         to integrate.  Decreasing a tolerance will make the equation
         harder to integrate and should generally be avoided.
 
         You can switch from the intermediate-output mode to the
         interval mode (INFO(3)) or vice versa at any time.
 
         The parameter INFO(1) is used by the code to indicate the
         beginning of a new problem and to indicate whether integration
         is to be continued.  You must input the value  INFO(1) = 0
         when starting a new problem.  You must input the value
         INFO(1) = 1  if you wish to continue after an interrupted task.
         Do not set  INFO(1) = 0  on a continuation call unless you
         want the code to restart at the current T.
 
                          *** Following a Completed Task ***
          If
              IDID = 1, call the code again to continue the integration
                      another step in the direction of TOUT.
 
              IDID = 2, define a new TOUT and call the code again.
                      TOUT must be different from T.  You cannot change
                      the direction of integration without restarting.
 
                          *** Following an Interrupted Task ***
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                      To show the code that you realize the task was
                      interrupted and that you want to continue, you
                      must take appropriate action and reset INFO(1) = 1
          If
              IDID = -1, the code has attempted 500 steps.
                      If you want to continue, set INFO(1) = 1 and
                      call the code again.  An additional 500 steps
                      will be allowed.
 
              IDID = -2, the error tolerances RTOL, ATOL have been
                      increased to values the code estimates appropriate
                      for continuing.  You may want to change them
                      yourself.  If you are sure you want to continue
                      with relaxed error tolerances, set INFO(1)=1 and
                      call the code again.
 
              IDID = -3, a solution component is zero and you set the
                      corresponding component of ATOL to zero.  If you
                      are sure you want to continue, you must first
                      alter the error criterion to use positive values
                      for those components of ATOL corresponding to zero
                      solution components, then set INFO(1)=1 and call
                      the code again.
 
              IDID = -4, the problem appears to be stiff.  It is very
                      inefficient to solve such problems with DERKF.
                      Code DEBDF in DEPAC handles this task efficiently.
                      If you are absolutely sure you want to continue
                      with DERKF, set INFO(1)=1 and call the code again.
 
              IDID = -5, you are using DERKF very inefficiently by
                      choosing output points TOUT so close together that
                      the step size is repeatedly forced to be rather
                      smaller than necessary.  If you are willing to
                      accept solutions at the steps chosen by the code,
                      a good way to proceed is to use the intermediate
                      output mode (setting INFO(3)=1).  If you must have
                      solutions at so many specific TOUT points, the
                      code DEABM in DEPAC handles this task
                      efficiently.  If you want to continue with DERKF,
                      set INFO(1)=1 and call the code again.
 
              IDID = -6,-7,..,-32  --- cannot occur with this code but
                      used by other members of DEPAC or possible future
                      extensions.
 
                          *** Following a Terminated Task ***
          If
              IDID = -33, you cannot continue the solution of this
                      problem.  An attempt to do so will result in your
                      run being terminated.
 
  **********************************************************************
  *Long Description:
 
  **********************************************************************
  **             DEPAC Package Overview           **
  **********************************************************************
 
  ....   You have a choice of three differential equation solvers from
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  ....   DEPAC. The following brief descriptions are meant to aid you in
  ....   choosing the most appropriate code for your problem.
 
  ....   DERKF is a fifth order Runge-Kutta code. It is the simplest of
  ....   the three choices, both algorithmically and in the use of the
  ....   code. DERKF is primarily designed to solve non-stiff and
  ....   mildly stiff differential equations when derivative evaluations
  ....   are not expensive. It should generally not be used to get high
  ....   accuracy results nor answers at a great many specific points.
  ....   Because DERKF has very low overhead costs, it will usually
  ....   result in the least expensive integration when solving
  ....   problems requiring a modest amount of accuracy and having
  ....   equations that are not costly to evaluate. DERKF attempts to
  ....   discover when it is not suitable for the task posed.
 
  ....   DEABM is a variable order (one through twelve) Adams code.
  ....   Its complexity lies somewhere between that of DERKF and
  ....   DEBDF.  DEABM is primarily designed to solve non-stiff and
  ....   mildly stiff differential equations when derivative evaluations
  ....   are expensive, high accuracy results are needed or answers at
  ....   many specific points are required. DEABM attempts to discover
  ....   when it is not suitable for the task posed.
 
  ....   DEBDF is a variable order (one through five) backward
  ....   differentiation formula code. it is the most complicated of
  ....   the three choices. DEBDF is primarily designed to solve stiff
  ....   differential equations at crude to moderate tolerances.
  ....   If the problem is very stiff at all, DERKF and DEABM will be
  ....   quite inefficient compared to DEBDF. However, DEBDF will be
  ....   inefficient compared to DERKF and DEABM on non-stiff problems
  ....   because it uses much more storage, has a much larger overhead,
  ....   and the low order formulas will not give high accuracies
  ....   efficiently.
 
  ....   The concept of stiffness cannot be described in a few words.
  ....   If you do not know the problem to be stiff, try either DERKF
  ....   or DEABM. Both of these codes will inform you of stiffness
  ....   when the cost of solving such problems becomes important.
 
  *********************************************************************
 
 ***REFERENCES  L. F. Shampine and H. A. Watts, DEPAC - design of a user
                  oriented package of ODE solvers, Report SAND79-2374,
                  Sandia Laboratories, 1979.
                L. F. Shampine and H. A. Watts, Practical solution of
                  ordinary differential equations by Runge-Kutta
                  methods, Report SAND76-0585, Sandia Laboratories,
                  1976.
 ***ROUTINES CALLED  DERKFS, XERMSG
 ***REVISION HISTORY  (YYMMDD)
    800501  DATE WRITTEN
    890831  Modified array declarations.  (WRB)
    891024  Changed references from VNORM to HVNRM.  (WRB)
    891024  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    900510  Convert XERRWV calls to XERMSG calls, change Prologue
            comments to agree with DDERKF.  (RWC)
    920501  Reformatted the REFERENCES section.  (WRB)
    END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 273



DEXINT

      SUBROUTINE DEXINT (X, N, KODE, M, TOL, EN, NZ, IERR)
 ***BEGIN PROLOGUE  DEXINT
 ***PURPOSE  Compute an M member sequence of exponential integrals
             E(N+K,X), K=0,1,...,M-1 for N .GE. 1 and X .GE. 0.
 ***LIBRARY   SLATEC
 ***CATEGORY  C5
 ***TYPE      DOUBLE PRECISION (EXINT-S, DEXINT-D)
 ***KEYWORDS  EXPONENTIAL INTEGRAL, SPECIAL FUNCTIONS
 ***AUTHOR  Amos, D. E., (SNLA)
 ***DESCRIPTION
 
          DEXINT computes M member sequences of exponential integrals
          E(N+K,X), K=0,1,...,M-1 for N .GE. 1 and X .GE. 0.  The
          exponential integral is defined by
 
          E(N,X)=integral on (1,infinity) of EXP(-XT)/T**N
 
          where X=0.0 and N=1 cannot occur simultaneously.  Formulas
          and notation are found in the NBS Handbook of Mathematical
          Functions (ref. 1).
 
          The power series is implemented for X .LE. XCUT and the
          confluent hypergeometric representation
 
                      E(A,X) = EXP(-X)*(X**(A-1))*U(A,A,X)
 
          is computed for X .GT. XCUT.  Since sequences are computed in
          a stable fashion by recurring away from X, A is selected as
          the integer closest to X within the constraint N .LE. A .LE.
          N+M-1.  For the U computation, A is further modified to be the
          nearest even integer.  Indices are carried forward or
          backward by the two term recursion relation
 
                      K*E(K+1,X) + X*E(K,X) = EXP(-X)
 
          once E(A,X) is computed.  The U function is computed by means
          of the backward recursive Miller algorithm applied to the
          three term contiguous relation for U(A+K,A,X), K=0,1,...
          This produces accurate ratios and determines U(A+K,A,X), and
          hence E(A,X), to within a multiplicative constant C.
          Another contiguous relation applied to C*U(A,A,X) and
          C*U(A+1,A,X) gets C*U(A+1,A+1,X), a quantity proportional to
          E(A+1,X).  The normalizing constant C is obtained from the
          two term recursion relation above with K=A.
 
          The maximum number of significant digits obtainable
          is the smaller of 14 and the number of digits carried in
          double precision arithmetic.
 
      Description of Arguments
 
          Input     * X and TOL are double precision *
            X       X .GT. 0.0 for N=1 and  X .GE. 0.0 for N .GE. 2
            N       order of the first member of the sequence, N .GE. 1
                    (X=0.0 and N=1 is an error)
            KODE    a selection parameter for scaled values
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                    KODE=1   returns        E(N+K,X), K=0,1,...,M-1.
                        =2   returns EXP(X)*E(N+K,X), K=0,1,...,M-1.
            M       number of exponential integrals in the sequence,
                    M .GE. 1
            TOL     relative accuracy wanted, ETOL .LE. TOL .LE. 0.1
                    ETOL is the larger of double precision unit
                    roundoff = D1MACH(4) and 1.0D-18
 
          Output    * EN is a double precision vector *
            EN      a vector of dimension at least M containing values
                    EN(K) = E(N+K-1,X) or EXP(X)*E(N+K-1,X), K=1,M
                    depending on KODE
            NZ      underflow indicator
                    NZ=0   a normal return
                    NZ=M   X exceeds XLIM and an underflow occurs.
                           EN(K)=0.0D0 , K=1,M returned on KODE=1
            IERR    error flag
                    IERR=0, normal return, computation completed
                    IERR=1, input error,   no computation
                    IERR=2, error,         no computation
                            algorithm termination condition not met
 
 ***REFERENCES  M. Abramowitz and I. A. Stegun, Handbook of
                  Mathematical Functions, NBS AMS Series 55, U.S. Dept.
                  of Commerce, 1955.
                D. E. Amos, Computation of exponential integrals, ACM
                  Transactions on Mathematical Software 6, (1980),
                  pp. 365-377 and pp. 420-428.
 ***ROUTINES CALLED  D1MACH, DPSIXN, I1MACH
 ***REVISION HISTORY  (YYMMDD)
    800501  DATE WRITTEN
    890531  Changed all specific intrinsics to generic.  (WRB)
    890531  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    900315  CALLs to XERROR changed to CALLs to XERMSG.  (THJ)
    900326  Removed duplicate information from DESCRIPTION section.
            (WRB)
    910408  Updated the REFERENCES section.  (WRB)
    920207  Updated with code with a revision date of 880811 from
            D. Amos.  Included correction of argument list.  (WRB)
    920501  Reformatted the REFERENCES section.  (WRB)
    END PROLOGUE
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DEXPRL

      DOUBLE PRECISION FUNCTION DEXPRL (X)
 ***BEGIN PROLOGUE  DEXPRL
 ***PURPOSE  Calculate the relative error exponential (EXP(X)-1)/X.
 ***LIBRARY   SLATEC (FNLIB)
 ***CATEGORY  C4B
 ***TYPE      DOUBLE PRECISION (EXPREL-S, DEXPRL-D, CEXPRL-C)
 ***KEYWORDS  ELEMENTARY FUNCTIONS, EXPONENTIAL, FIRST ORDER, FNLIB
 ***AUTHOR  Fullerton, W., (LANL)
 ***DESCRIPTION
 
  Evaluate  EXPREL(X) = (EXP(X) - 1.0) / X.   For small ABS(X) the
  Taylor series is used.  If X is negative the reflection formula
          EXPREL(X) = EXP(X) * EXPREL(ABS(X))
  may be used.  This reflection formula will be of use when the
  evaluation for small ABS(X) is done by Chebyshev series rather than
  Taylor series.
 
 ***REFERENCES  (NONE)
 ***ROUTINES CALLED  D1MACH
 ***REVISION HISTORY  (YYMMDD)
    770801  DATE WRITTEN
    890531  Changed all specific intrinsics to generic.  (WRB)
    890911  Removed unnecessary intrinsics.  (WRB)
    890911  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    END PROLOGUE
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DFAC

      DOUBLE PRECISION FUNCTION DFAC (N)
 ***BEGIN PROLOGUE  DFAC
 ***PURPOSE  Compute the factorial function.
 ***LIBRARY   SLATEC (FNLIB)
 ***CATEGORY  C1
 ***TYPE      DOUBLE PRECISION (FAC-S, DFAC-D)
 ***KEYWORDS  FACTORIAL, FNLIB, SPECIAL FUNCTIONS
 ***AUTHOR  Fullerton, W., (LANL)
 ***DESCRIPTION
 
  DFAC(N) calculates the double precision factorial for integer
  argument N.
 
 ***REFERENCES  (NONE)
 ***ROUTINES CALLED  D9LGMC, DGAMLM, XERMSG
 ***REVISION HISTORY  (YYMMDD)
    770601  DATE WRITTEN
    890531  Changed all specific intrinsics to generic.  (WRB)
    890531  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    900315  CALLs to XERROR changed to CALLs to XERMSG.  (THJ)
    END PROLOGUE
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DFC

      SUBROUTINE DFC (NDATA, XDATA, YDATA, SDDATA, NORD, NBKPT, BKPT,
     +   NCONST, XCONST, YCONST, NDERIV, MODE, COEFF, W, IW)
 ***BEGIN PROLOGUE  DFC
 ***PURPOSE  Fit a piecewise polynomial curve to discrete data.
             The piecewise polynomials are represented as B-splines.
             The fitting is done in a weighted least squares sense.
             Equality and inequality constraints can be imposed on the
             fitted curve.
 ***LIBRARY   SLATEC
 ***CATEGORY  K1A1A1, K1A2A, L8A3
 ***TYPE      DOUBLE PRECISION (FC-S, DFC-D)
 ***KEYWORDS  B-SPLINE, CONSTRAINED LEAST SQUARES, CURVE FITTING,
              WEIGHTED LEAST SQUARES
 ***AUTHOR  Hanson, R. J., (SNLA)
 ***DESCRIPTION
 
       This subprogram fits a piecewise polynomial curve
       to discrete data.  The piecewise polynomials are
       represented as B-splines.
       The fitting is done in a weighted least squares sense.
       Equality and inequality constraints can be imposed on the
       fitted curve.
 
       For a description of the B-splines and usage instructions to
       evaluate them, see
 
       C. W. de Boor, Package for Calculating with B-Splines.
                      SIAM J. Numer. Anal., p. 441, (June, 1977).
 
       For further documentation and discussion of constrained
       curve fitting using B-splines, see
 
       R. J. Hanson, Constrained Least Squares Curve Fitting
                    to Discrete Data Using B-Splines, a User's
                    Guide. Sandia Labs. Tech. Rept. SAND-78-1291,
                    December, (1978).
 
   Input.. All TYPE REAL variables are DOUBLE PRECISION
       NDATA,XDATA(*),
       YDATA(*),
       SDDATA(*)
                          The NDATA discrete (X,Y) pairs and the Y value
                          standard deviation or uncertainty, SD, are in
                          the respective arrays XDATA(*), YDATA(*), and
                          SDDATA(*).  No sorting of XDATA(*) is
                          required.  Any non-negative value of NDATA is
                          allowed.  A negative value of NDATA is an
                          error.  A zero value for any entry of
                          SDDATA(*) will weight that data point as 1.
                          Otherwise the weight of that data point is
                          the reciprocal of this entry.
 
       NORD,NBKPT,
       BKPT(*)
                          The NBKPT knots of the B-spline of order NORD
                          are in the array BKPT(*).  Normally the
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                          problem data interval will be included between
                          the limits BKPT(NORD) and BKPT(NBKPT-NORD+1).
                          The additional end knots BKPT(I),I=1,...,
                          NORD-1 and I=NBKPT-NORD+2,...,NBKPT, are
                          required to compute the functions used to fit
                          the data.  No sorting of BKPT(*) is required.
                          Internal to DFC( ) the extreme end knots may
                          be reduced and increased respectively to
                          accommodate any data values that are exterior
                          to the given knot values.  The contents of
                          BKPT(*) is not changed.
 
                          NORD must be in the range 1 .LE. NORD .LE. 20.
                          The value of NBKPT must satisfy the condition
                          NBKPT .GE. 2*NORD.
                          Other values are considered errors.
 
                          (The order of the spline is one more than the
                          degree of the piecewise polynomial defined on
                          each interval.  This is consistent with the
                          B-spline package convention.  For example,
                          NORD=4 when we are using piecewise cubics.)
 
       NCONST,XCONST(*),
       YCONST(*),NDERIV(*)
                          The number of conditions that constrain the
                          B-spline is NCONST.  A constraint is specified
                          by an (X,Y) pair in the arrays XCONST(*) and
                          YCONST(*), and by the type of constraint and
                          derivative value encoded in the array
                          NDERIV(*).  No sorting of XCONST(*) is
                          required.  The value of NDERIV(*) is
                          determined as follows.  Suppose the I-th
                          constraint applies to the J-th derivative
                          of the B-spline.  (Any non-negative value of
                          J < NORD is permitted.  In particular the
                          value J=0 refers to the B-spline itself.)
                          For this I-th constraint, set
                           XCONST(I)=X,
                           YCONST(I)=Y, and
                           NDERIV(I)=ITYPE+4*J, where
 
                           ITYPE = 0,      if (J-th deriv. at X) .LE. Y.
                                 = 1,      if (J-th deriv. at X) .GE. Y.
                                 = 2,      if (J-th deriv. at X) .EQ. Y.
                                 = 3,      if (J-th deriv. at X) .EQ.
                                              (J-th deriv. at Y).
                           (A value of NDERIV(I)=-1 will cause this
                           constraint to be ignored.  This subprogram
                           feature is often useful when temporarily
                           suppressing a constraint while still
                           retaining the source code of the calling
                           program.)
 
         MODE
                          An input flag that directs the least squares
                          solution method used by DFC( ).
 
                          The variance function, referred to below,
                          defines the square of the probable error of
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                          the fitted curve at any point, XVAL.
                          This feature of DFC( ) allows one to use the
                          square root of this variance function to
                          determine a probable error band around the
                          fitted curve.
 
                          =1  a new problem.  No variance function.
 
                          =2  a new problem.  Want variance function.
 
                          =3  an old problem.  No variance function.
 
                          =4  an old problem.  Want variance function.
 
                          Any value of MODE other than 1-4 is an error.
 
                          The user with a new problem can skip directly
                          to the description of the input parameters
                          IW(1), IW(2).
 
                          If the user correctly specifies the new or old
                          problem status, the subprogram DFC( ) will
                          perform more efficiently.
                          By an old problem it is meant that subprogram
                          DFC( ) was last called with this same set of
                          knots, data points and weights.
 
                          Another often useful deployment of this old
                          problem designation can occur when one has
                          previously obtained a Q-R orthogonal
                          decomposition of the matrix resulting from
                          B-spline fitting of data (without constraints)
                          at the breakpoints BKPT(I), I=1,...,NBKPT.
                          For example, this matrix could be the result
                          of sequential accumulation of the least
                          squares equations for a very large data set.
                          The user writes this code in a manner
                          convenient for the application.  For the
                          discussion here let
 
                                       N=NBKPT-NORD, and K=N+3
 
                          Let us assume that an equivalent least squares
                          system
 
                                       RC=D
 
                          has been obtained.  Here R is an N+1 by N
                          matrix and D is a vector with N+1 components.
                          The last row of R is zero.  The matrix R is
                          upper triangular and banded.  At most NORD of
                          the diagonals are nonzero.
                          The contents of R and D can be copied to the
                          working array W(*) as follows.
 
                          The I-th diagonal of R, which has N-I+1
                          elements, is copied to W(*) starting at
 
                                       W((I-1)*K+1),
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                          for I=1,...,NORD.
                          The vector D is copied to W(*) starting at
 
                                       W(NORD*K+1)
 
                          The input value used for NDATA is arbitrary
                          when an old problem is designated.  Because
                          of the feature of DFC( ) that checks the
                          working storage array lengths, a value not
                          exceeding NBKPT should be used.  For example,
                          use NDATA=0.
 
                          (The constraints or variance function request
                          can change in each call to DFC( ).)  A new
                          problem is anything other than an old problem.
 
       IW(1),IW(2)
                          The amounts of working storage actually
                          allocated for the working arrays W(*) and
                          IW(*).  These quantities are compared with the
                          actual amounts of storage needed in DFC( ).
                          Insufficient storage allocated for either
                          W(*) or IW(*) is an error.  This feature was
                          included in DFC( ) because misreading the
                          storage formulas for W(*) and IW(*) might very
                          well lead to subtle and hard-to-find
                          programming bugs.
 
                          The length of W(*) must be at least
 
                            NB=(NBKPT-NORD+3)*(NORD+1)+
                                2*MAX(NDATA,NBKPT)+NBKPT+NORD**2
 
                          Whenever possible the code uses banded matrix
                          processors DBNDAC( ) and DBNDSL( ).  These
                          are utilized if there are no constraints,
                          no variance function is required, and there
                          is sufficient data to uniquely determine the
                          B-spline coefficients.  If the band processors
                          cannot be used to determine the solution,
                          then the constrained least squares code DLSEI
                          is used.  In this case the subprogram requires
                          an additional block of storage in W(*).  For
                          the discussion here define the integers NEQCON
                          and NINCON respectively as the number of
                          equality (ITYPE=2,3) and inequality
                          (ITYPE=0,1) constraints imposed on the fitted
                          curve.  Define
 
                            L=NBKPT-NORD+1
 
                          and note that
 
                            NCONST=NEQCON+NINCON.
 
                          When the subprogram DFC( ) uses DLSEI( ) the
                          length of the working array W(*) must be at
                          least
 
                            LW=NB+(L+NCONST)*L+
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                               2*(NEQCON+L)+(NINCON+L)+(NINCON+2)*(L+6)
 
                          The length of the array IW(*) must be at least
 
                            IW1=NINCON+2*L
 
                          in any case.
 
   Output.. All TYPE REAL variables are DOUBLE PRECISION
       MODE
                          An output flag that indicates the status
                          of the constrained curve fit.
 
                          =-1  a usage error of DFC( ) occurred.  The
                               offending condition is noted with the
                               SLATEC library error processor, XERMSG.
                               In case the working arrays W(*) or IW(*)
                               are not long enough, the minimal
                               acceptable length is printed.
 
                          = 0  successful constrained curve fit.
 
                          = 1  the requested equality constraints
                               are contradictory.
 
                          = 2  the requested inequality constraints
                               are contradictory.
 
                          = 3  both equality and inequality constraints
                               are contradictory.
 
       COEFF(*)
                          If the output value of MODE=0 or 1, this array
                          contains the unknowns obtained from the least
                          squares fitting process.  These N=NBKPT-NORD
                          parameters are the B-spline coefficients.
                          For MODE=1, the equality constraints are
                          contradictory.  To make the fitting process
                          more robust, the equality constraints are
                          satisfied in a least squares sense.  In this
                          case the array COEFF(*) contains B-spline
                          coefficients for this extended concept of a
                          solution.  If MODE=-1,2 or 3 on output, the
                          array COEFF(*) is undefined.
 
   Working Arrays.. All Type REAL variables are DOUBLE PRECISION
       W(*),IW(*)
                          These arrays are respectively typed DOUBLE
                          PRECISION and INTEGER.
                          Their required lengths are specified as input
                          parameters in IW(1), IW(2) noted above.  The
                          contents of W(*) must not be modified by the
                          user if the variance function is desired.
 
   Evaluating the
   Variance Function..
                          To evaluate the variance function (assuming
                          that the uncertainties of the Y values were
                          provided to DFC( ) and an input value of
                          MODE=2 or 4 was used), use the function
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                          subprogram DCV( )
 
                            VAR=DCV(XVAL,NDATA,NCONST,NORD,NBKPT,
                                   BKPT,W)
 
                          Here XVAL is the point where the variance is
                          desired.  The other arguments have the same
                          meaning as in the usage of DFC( ).
 
                          For those users employing the old problem
                          designation, let MDATA be the number of data
                          points in the problem.  (This may be different
                          from NDATA if the old problem designation
                          feature was used.)  The value, VAR, should be
                          multiplied by the quantity
 
                          DBLE(MAX(NDATA-N,1))/DBLE(MAX(MDATA-N,1))
 
                          The output of this subprogram is not defined
                          if an input value of MODE=1 or 3 was used in
                          FC( ) or if an output value of MODE=-1, 2, or
                          3 was obtained.  The variance function, except
                          for the scaling factor noted above, is given
                          by
 
                            VAR=(transpose of B(XVAL))*C*B(XVAL)
 
                          The vector B(XVAL) is the B-spline basis
                          function values at X=XVAL.
                          The covariance matrix, C, of the solution
                          coefficients accounts only for the least
                          squares equations and the explicitly stated
                          equality constraints.  This fact must be
                          considered when interpreting the variance
                          function from a data fitting problem that has
                          inequality constraints on the fitted curve.
 
   Evaluating the
   Fitted Curve..
                          To evaluate derivative number IDER at XVAL,
                          use the function subprogram DBVALU( )
 
                            F = DBVALU(BKPT,COEFF,NBKPT-NORD,NORD,IDER,
                                       XVAL,INBV,WORKB)
 
                          The output of this subprogram will not be
                          defined unless an output value of MODE=0 or 1
                          was obtained from DFC( ), XVAL is in the data
                          interval, and IDER is nonnegative and .LT.
                          NORD.
 
                          The first time DBVALU( ) is called, INBV=1
                          must be specified.  This value of INBV is the
                          overwritten by DBVALU( ).  The array WORKB(*)
                          must be of length at least 3*NORD, and must
                          not be the same as the W(*) array used in
                          the call to DFC( ).
 
                          DBVALU( ) expects the breakpoint array BKPT(*)
                          to be sorted.
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 ***REFERENCES  R. J. Hanson, Constrained least squares curve fitting
                  to discrete data using B-splines, a users guide,
                  Report SAND78-1291, Sandia Laboratories, December
                  1978.
 ***ROUTINES CALLED  DFCMN
 ***REVISION HISTORY  (YYMMDD)
    780801  DATE WRITTEN
    890531  Changed all specific intrinsics to generic.  (WRB)
    891006  Cosmetic changes to prologue.  (WRB)
    891006  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    900510  Convert references to XERRWV to references to XERMSG.  (RWC)
    900607  Editorial changes to Prologue to make Prologues for EFC,
            DEFC, FC, and DFC look as much the same as possible.  (RWC)
    920501  Reformatted the REFERENCES section.  (WRB)
    END PROLOGUE
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DFZERO

      SUBROUTINE DFZERO (F, B, C, R, RE, AE, IFLAG)
 ***BEGIN PROLOGUE  DFZERO
 ***PURPOSE  Search for a zero of a function F(X) in a given interval
             (B,C).  It is designed primarily for problems where F(B)
             and F(C) have opposite signs.
 ***LIBRARY   SLATEC
 ***CATEGORY  F1B
 ***TYPE      DOUBLE PRECISION (FZERO-S, DFZERO-D)
 ***KEYWORDS  BISECTION, NONLINEAR, ROOTS, ZEROS
 ***AUTHOR  Shampine, L. F., (SNLA)
            Watts, H. A., (SNLA)
 ***DESCRIPTION
 
      DFZERO searches for a zero of a DOUBLE PRECISION function F(X)
      between the given DOUBLE PRECISION values B and C until the width
      of the interval (B,C) has collapsed to within a tolerance
      specified by the stopping criterion,
         ABS(B-C) .LE. 2.*(RW*ABS(B)+AE).
      The method used is an efficient combination of bisection and the
      secant rule and is due to T. J. Dekker.
 
      Description Of Arguments
 
    F     :EXT   - Name of the DOUBLE PRECISION external function.  This
                   name must be in an EXTERNAL statement in the calling
                   program.  F must be a function of one DOUBLE
                   PRECISION argument.
 
    B     :INOUT - One end of the DOUBLE PRECISION interval (B,C).  The
                   value returned for B usually is the better
                   approximation to a zero of F.
 
    C     :INOUT - The other end of the DOUBLE PRECISION interval (B,C)
 
    R     :IN    - A (better) DOUBLE PRECISION guess of a zero of F
                   which could help in speeding up convergence.  If F(B)
                   and F(R) have opposite signs, a root will be found in
                   the interval (B,R);  if not, but F(R) and F(C) have
                   opposite signs, a root will be found in the interval
                   (R,C);  otherwise, the interval (B,C) will be
                   searched for a possible root.  When no better guess
                   is known, it is recommended that R be set to B or C,
                   since if R is not interior to the interval (B,C), it
                   will be ignored.
 
    RE    :IN    - Relative error used for RW in the stopping criterion.
                   If the requested RE is less than machine precision,
                   then RW is set to approximately machine precision.
 
    AE    :IN    - Absolute error used in the stopping criterion.  If
                   the given interval (B,C) contains the origin, then a
                   nonzero value should be chosen for AE.
 
    IFLAG :OUT   - A status code.  User must check IFLAG after each
                   call.  Control returns to the user from DFZERO in all
                   cases.
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                 1  B is within the requested tolerance of a zero.
                    The interval (B,C) collapsed to the requested
                    tolerance, the function changes sign in (B,C), and
                    F(X) decreased in magnitude as (B,C) collapsed.
 
                 2  F(B) = 0.  However, the interval (B,C) may not have
                    collapsed to the requested tolerance.
 
                 3  B may be near a singular point of F(X).
                    The interval (B,C) collapsed to the requested tol-
                    erance and the function changes sign in (B,C), but
                    F(X) increased in magnitude as (B,C) collapsed, i.e.
                      ABS(F(B out)) .GT. MAX(ABS(F(B in)),ABS(F(C in)))
 
                 4  No change in sign of F(X) was found although the
                    interval (B,C) collapsed to the requested tolerance.
                    The user must examine this case and decide whether
                    B is near a local minimum of F(X), or B is near a
                    zero of even multiplicity, or neither of these.
 
                 5  Too many (.GT. 500) function evaluations used.
 
 ***REFERENCES  L. F. Shampine and H. A. Watts, FZERO, a root-solving
                  code, Report SC-TM-70-631, Sandia Laboratories,
                  September 1970.
                T. J. Dekker, Finding a zero by means of successive
                  linear interpolation, Constructive Aspects of the
                  Fundamental Theorem of Algebra, edited by B. Dejon
                  and P. Henrici, Wiley-Interscience, 1969.
 ***ROUTINES CALLED  D1MACH
 ***REVISION HISTORY  (YYMMDD)
    700901  DATE WRITTEN
    890531  Changed all specific intrinsics to generic.  (WRB)
    890531  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    920501  Reformatted the REFERENCES section.  (WRB)
    END PROLOGUE
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DGAMI

      DOUBLE PRECISION FUNCTION DGAMI (A, X)
 ***BEGIN PROLOGUE  DGAMI
 ***PURPOSE  Evaluate the incomplete Gamma function.
 ***LIBRARY   SLATEC (FNLIB)
 ***CATEGORY  C7E
 ***TYPE      DOUBLE PRECISION (GAMI-S, DGAMI-D)
 ***KEYWORDS  FNLIB, INCOMPLETE GAMMA FUNCTION, SPECIAL FUNCTIONS
 ***AUTHOR  Fullerton, W., (LANL)
 ***DESCRIPTION
 
  Evaluate the incomplete gamma function defined by
 
  DGAMI = integral from T = 0 to X of EXP(-T) * T**(A-1.0) .
 
  DGAMI is evaluated for positive values of A and non-negative values
  of X.  A slight deterioration of 2 or 3 digits accuracy will occur
  when DGAMI is very large or very small, because logarithmic variables
  are used.  The function and both arguments are double precision.
 
 ***REFERENCES  (NONE)
 ***ROUTINES CALLED  DGAMIT, DLNGAM, XERMSG
 ***REVISION HISTORY  (YYMMDD)
    770701  DATE WRITTEN
    890531  Changed all specific intrinsics to generic.  (WRB)
    890531  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    900315  CALLs to XERROR changed to CALLs to XERMSG.  (THJ)
    END PROLOGUE
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DGAMIC

      DOUBLE PRECISION FUNCTION DGAMIC (A, X)
 ***BEGIN PROLOGUE  DGAMIC
 ***PURPOSE  Calculate the complementary incomplete Gamma function.
 ***LIBRARY   SLATEC (FNLIB)
 ***CATEGORY  C7E
 ***TYPE      DOUBLE PRECISION (GAMIC-S, DGAMIC-D)
 ***KEYWORDS  COMPLEMENTARY INCOMPLETE GAMMA FUNCTION, FNLIB,
              SPECIAL FUNCTIONS
 ***AUTHOR  Fullerton, W., (LANL)
 ***DESCRIPTION
 
    Evaluate the complementary incomplete Gamma function
 
    DGAMIC = integral from X to infinity of EXP(-T) * T**(A-1.)  .
 
    DGAMIC is evaluated for arbitrary real values of A and for non-
    negative values of X (even though DGAMIC is defined for X .LT.
    0.0), except that for X = 0 and A .LE. 0.0, DGAMIC is undefined.
 
    DGAMIC, A, and X are DOUBLE PRECISION.
 
    A slight deterioration of 2 or 3 digits accuracy will occur when
    DGAMIC is very large or very small in absolute value, because log-
    arithmic variables are used.  Also, if the parameter A is very close
    to a negative INTEGER (but not a negative integer), there is a loss
    of accuracy, which is reported if the result is less than half
    machine precision.
 
 ***REFERENCES  W. Gautschi, A computational procedure for incomplete
                  gamma functions, ACM Transactions on Mathematical
                  Software 5, 4 (December 1979), pp. 466-481.
                W. Gautschi, Incomplete gamma functions, Algorithm 542,
                  ACM Transactions on Mathematical Software 5, 4
                  (December 1979), pp. 482-489.
 ***ROUTINES CALLED  D1MACH, D9GMIC, D9GMIT, D9LGIC, D9LGIT, DLGAMS,
                     DLNGAM, XERCLR, XERMSG
 ***REVISION HISTORY  (YYMMDD)
    770701  DATE WRITTEN
    890531  Changed all specific intrinsics to generic.  (WRB)
    890531  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    900315  CALLs to XERROR changed to CALLs to XERMSG.  (THJ)
    920528  DESCRIPTION and REFERENCES sections revised.  (WRB)
    END PROLOGUE
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DGAMIT

      DOUBLE PRECISION FUNCTION DGAMIT (A, X)
 ***BEGIN PROLOGUE  DGAMIT
 ***PURPOSE  Calculate Tricomi's form of the incomplete Gamma function.
 ***LIBRARY   SLATEC (FNLIB)
 ***CATEGORY  C7E
 ***TYPE      DOUBLE PRECISION (GAMIT-S, DGAMIT-D)
 ***KEYWORDS  COMPLEMENTARY INCOMPLETE GAMMA FUNCTION, FNLIB,
              SPECIAL FUNCTIONS, TRICOMI
 ***AUTHOR  Fullerton, W., (LANL)
 ***DESCRIPTION
 
    Evaluate Tricomi's incomplete Gamma function defined by
 
    DGAMIT = X**(-A)/GAMMA(A) * integral from 0 to X of EXP(-T) *
               T**(A-1.)
 
    for A .GT. 0.0 and by analytic continuation for A .LE. 0.0.
    GAMMA(X) is the complete gamma function of X.
 
    DGAMIT is evaluated for arbitrary real values of A and for non-
    negative values of X (even though DGAMIT is defined for X .LT.
    0.0), except that for X = 0 and A .LE. 0.0, DGAMIT is infinite,
    which is a fatal error.
 
    The function and both arguments are DOUBLE PRECISION.
 
    A slight deterioration of 2 or 3 digits accuracy will occur when
    DGAMIT is very large or very small in absolute value, because log-
    arithmic variables are used.  Also, if the parameter  A  is very
    close to a negative integer (but not a negative integer), there is
    a loss of accuracy, which is reported if the result is less than
    half machine precision.
 
 ***REFERENCES  W. Gautschi, A computational procedure for incomplete
                  gamma functions, ACM Transactions on Mathematical
                  Software 5, 4 (December 1979), pp. 466-481.
                W. Gautschi, Incomplete gamma functions, Algorithm 542,
                  ACM Transactions on Mathematical Software 5, 4
                  (December 1979), pp. 482-489.
 ***ROUTINES CALLED  D1MACH, D9GMIT, D9LGIC, D9LGIT, DGAMR, DLGAMS,
                     DLNGAM, XERCLR, XERMSG
 ***REVISION HISTORY  (YYMMDD)
    770701  DATE WRITTEN
    890531  Changed all specific intrinsics to generic.  (WRB)
    890531  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    900315  CALLs to XERROR changed to CALLs to XERMSG.  (THJ)
    920528  DESCRIPTION and REFERENCES sections revised.  (WRB)
    END PROLOGUE
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DGAMLM

      SUBROUTINE DGAMLM (XMIN, XMAX)
 ***BEGIN PROLOGUE  DGAMLM
 ***PURPOSE  Compute the minimum and maximum bounds for the argument in
             the Gamma function.
 ***LIBRARY   SLATEC (FNLIB)
 ***CATEGORY  C7A, R2
 ***TYPE      DOUBLE PRECISION (GAMLIM-S, DGAMLM-D)
 ***KEYWORDS  COMPLETE GAMMA FUNCTION, FNLIB, LIMITS, SPECIAL FUNCTIONS
 ***AUTHOR  Fullerton, W., (LANL)
 ***DESCRIPTION
 
  Calculate the minimum and maximum legal bounds for X in gamma(X).
  XMIN and XMAX are not the only bounds, but they are the only non-
  trivial ones to calculate.
 
              Output Arguments --
  XMIN   double precision minimum legal value of X in gamma(X).  Any
         smaller value of X might result in underflow.
  XMAX   double precision maximum legal value of X in gamma(X).  Any
         larger value of X might cause overflow.
 
 ***REFERENCES  (NONE)
 ***ROUTINES CALLED  D1MACH, XERMSG
 ***REVISION HISTORY  (YYMMDD)
    770601  DATE WRITTEN
    890531  Changed all specific intrinsics to generic.  (WRB)
    890531  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    900315  CALLs to XERROR changed to CALLs to XERMSG.  (THJ)
    END PROLOGUE
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DGAMMA

      DOUBLE PRECISION FUNCTION DGAMMA (X)
 ***BEGIN PROLOGUE  DGAMMA
 ***PURPOSE  Compute the complete Gamma function.
 ***LIBRARY   SLATEC (FNLIB)
 ***CATEGORY  C7A
 ***TYPE      DOUBLE PRECISION (GAMMA-S, DGAMMA-D, CGAMMA-C)
 ***KEYWORDS  COMPLETE GAMMA FUNCTION, FNLIB, SPECIAL FUNCTIONS
 ***AUTHOR  Fullerton, W., (LANL)
 ***DESCRIPTION
 
  DGAMMA(X) calculates the double precision complete Gamma function
  for double precision argument X.
 
  Series for GAM        on the interval  0.          to  1.00000E+00
                                         with weighted error   5.79E-32
                                          log weighted error  31.24
                                significant figures required  30.00
                                     decimal places required  32.05
 
 ***REFERENCES  (NONE)
 ***ROUTINES CALLED  D1MACH, D9LGMC, DCSEVL, DGAMLM, INITDS, XERMSG
 ***REVISION HISTORY  (YYMMDD)
    770601  DATE WRITTEN
    890531  Changed all specific intrinsics to generic.  (WRB)
    890911  Removed unnecessary intrinsics.  (WRB)
    890911  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    900315  CALLs to XERROR changed to CALLs to XERMSG.  (THJ)
    920618  Removed space from variable name.  (RWC, WRB)
    END PROLOGUE
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DGAMR

      DOUBLE PRECISION FUNCTION DGAMR (X)
 ***BEGIN PROLOGUE  DGAMR
 ***PURPOSE  Compute the reciprocal of the Gamma function.
 ***LIBRARY   SLATEC (FNLIB)
 ***CATEGORY  C7A
 ***TYPE      DOUBLE PRECISION (GAMR-S, DGAMR-D, CGAMR-C)
 ***KEYWORDS  FNLIB, RECIPROCAL GAMMA FUNCTION, SPECIAL FUNCTIONS
 ***AUTHOR  Fullerton, W., (LANL)
 ***DESCRIPTION
 
  DGAMR(X) calculates the double precision reciprocal of the
  complete Gamma function for double precision argument X.
 
 ***REFERENCES  (NONE)
 ***ROUTINES CALLED  DGAMMA, DLGAMS, XERCLR, XGETF, XSETF
 ***REVISION HISTORY  (YYMMDD)
    770701  DATE WRITTEN
    890531  Changed all specific intrinsics to generic.  (WRB)
    890531  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    900727  Added EXTERNAL statement.  (WRB)
    END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 292



DGAUS8

      SUBROUTINE DGAUS8 (FUN, A, B, ERR, ANS, IERR)
 ***BEGIN PROLOGUE  DGAUS8
 ***PURPOSE  Integrate a real function of one variable over a finite
             interval using an adaptive 8-point Legendre-Gauss
             algorithm.  Intended primarily for high accuracy
             integration or integration of smooth functions.
 ***LIBRARY   SLATEC
 ***CATEGORY  H2A1A1
 ***TYPE      DOUBLE PRECISION (GAUS8-S, DGAUS8-D)
 ***KEYWORDS  ADAPTIVE QUADRATURE, AUTOMATIC INTEGRATOR,
              GAUSS QUADRATURE, NUMERICAL INTEGRATION
 ***AUTHOR  Jones, R. E., (SNLA)
 ***DESCRIPTION
 
      Abstract  *** a DOUBLE PRECISION routine ***
         DGAUS8 integrates real functions of one variable over finite
         intervals using an adaptive 8-point Legendre-Gauss algorithm.
         DGAUS8 is intended primarily for high accuracy integration
         or integration of smooth functions.
 
         The maximum number of significant digits obtainable in ANS
         is the smaller of 18 and the number of digits carried in
         double precision arithmetic.
 
      Description of Arguments
 
         Input--* FUN, A, B, ERR are DOUBLE PRECISION *
         FUN - name of external function to be integrated.  This name
               must be in an EXTERNAL statement in the calling program.
               FUN must be a DOUBLE PRECISION function of one DOUBLE
               PRECISION argument.  The value of the argument to FUN
               is the variable of integration which ranges from A to B.
         A   - lower limit of integration
         B   - upper limit of integration (may be less than A)
         ERR - is a requested pseudorelative error tolerance.  Normally
               pick a value of ABS(ERR) so that DTOL .LT. ABS(ERR) .LE.
               1.0D-3 where DTOL is the larger of 1.0D-18 and the
               double precision unit roundoff D1MACH(4).  ANS will
               normally have no more error than ABS(ERR) times the
               integral of the absolute value of FUN(X).  Usually,
               smaller values of ERR yield more accuracy and require
               more function evaluations.
 
               A negative value for ERR causes an estimate of the
               absolute error in ANS to be returned in ERR.  Note that
               ERR must be a variable (not a constant) in this case.
               Note also that the user must reset the value of ERR
               before making any more calls that use the variable ERR.
 
         Output--* ERR,ANS are double precision *
         ERR - will be an estimate of the absolute error in ANS if the
               input value of ERR was negative.  (ERR is unchanged if
               the input value of ERR was non-negative.)  The estimated
               error is solely for information to the user and should
               not be used as a correction to the computed integral.
         ANS - computed value of integral
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         IERR- a status code
             --Normal codes
                1 ANS most likely meets requested error tolerance,
                  or A=B.
               -1 A and B are too nearly equal to allow normal
                  integration.  ANS is set to zero.
             --Abnormal code
                2 ANS probably does not meet requested error tolerance.
 
 ***REFERENCES  (NONE)
 ***ROUTINES CALLED  D1MACH, I1MACH, XERMSG
 ***REVISION HISTORY  (YYMMDD)
    810223  DATE WRITTEN
    890531  Changed all specific intrinsics to generic.  (WRB)
    890911  Removed unnecessary intrinsics.  (WRB)
    890911  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    900315  CALLs to XERROR changed to CALLs to XERMSG.  (THJ)
    900326  Removed duplicate information from DESCRIPTION section.
            (WRB)
    END PROLOGUE
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DGBCO

      SUBROUTINE DGBCO (ABD, LDA, N, ML, MU, IPVT, RCOND, Z)
 ***BEGIN PROLOGUE  DGBCO
 ***PURPOSE  Factor a band matrix by Gaussian elimination and
             estimate the condition number of the matrix.
 ***LIBRARY   SLATEC (LINPACK)
 ***CATEGORY  D2A2
 ***TYPE      DOUBLE PRECISION (SGBCO-S, DGBCO-D, CGBCO-C)
 ***KEYWORDS  BANDED, CONDITION NUMBER, LINEAR ALGEBRA, LINPACK,
              MATRIX FACTORIZATION
 ***AUTHOR  Moler, C. B., (U. of New Mexico)
 ***DESCRIPTION
 
      DGBCO factors a double precision band matrix by Gaussian
      elimination and estimates the condition of the matrix.
 
      If  RCOND  is not needed, DGBFA is slightly faster.
      To solve  A*X = B , follow DGBCO by DGBSL.
      To compute  INVERSE(A)*C , follow DGBCO by DGBSL.
      To compute  DETERMINANT(A) , follow DGBCO by DGBDI.
 
      On Entry
 
         ABD     DOUBLE PRECISION(LDA, N)
                 contains the matrix in band storage.  The columns
                 of the matrix are stored in the columns of  ABD  and
                 the diagonals of the matrix are stored in rows
                 ML+1 through 2*ML+MU+1 of  ABD .
                 See the comments below for details.
 
         LDA     INTEGER
                 the leading dimension of the array  ABD .
                 LDA must be .GE. 2*ML + MU + 1 .
 
         N       INTEGER
                 the order of the original matrix.
 
         ML      INTEGER
                 number of diagonals below the main diagonal.
                 0 .LE. ML .LT.  N .
 
         MU      INTEGER
                 number of diagonals above the main diagonal.
                 0 .LE. MU .LT.  N .
                 More efficient if  ML .LE. MU .
 
      On Return
 
         ABD     an upper triangular matrix in band storage and
                 the multipliers which were used to obtain it.
                 The factorization can be written  A = L*U  where
                 L  is a product of permutation and unit lower
                 triangular matrices and  U  is upper triangular.
 
         IPVT    INTEGER(N)
                 an integer vector of pivot indices.
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         RCOND   DOUBLE PRECISION
                 an estimate of the reciprocal condition of  A .
                 For the system  A*X = B , relative perturbations
                 in  A  and  B  of size  EPSILON  may cause
                 relative perturbations in  X  of size  EPSILON/RCOND .
                 If  RCOND  is so small that the logical expression
                            1.0 + RCOND .EQ. 1.0
                 is true, then  A  may be singular to working
                 precision.  In particular,  RCOND  is zero  if
                 exact singularity is detected or the estimate
                 underflows.
 
         Z       DOUBLE PRECISION(N)
                 a work vector whose contents are usually unimportant.
                 If  A  is close to a singular matrix, then  Z  is
                 an approximate null vector in the sense that
                 NORM(A*Z) = RCOND*NORM(A)*NORM(Z) .
 
      Band Storage
 
            If  A  is a band matrix, the following program segment
            will set up the input.
 
                    ML = (band width below the diagonal)
                    MU = (band width above the diagonal)
                    M = ML + MU + 1
                    DO 20 J = 1, N
                       I1 = MAX(1, J-MU)
                       I2 = MIN(N, J+ML)
                       DO 10 I = I1, I2
                          K = I - J + M
                          ABD(K,J) = A(I,J)
                 10    CONTINUE
                 20 CONTINUE
 
            This uses rows  ML+1  through  2*ML+MU+1  of  ABD .
            In addition, the first  ML  rows in  ABD  are used for
            elements generated during the triangularization.
            The total number of rows needed in  ABD  is  2*ML+MU+1 .
            The  ML+MU by ML+MU  upper left triangle and the
            ML by ML  lower right triangle are not referenced.
 
      Example:  If the original matrix is
 
            11 12 13  0  0  0
            21 22 23 24  0  0
             0 32 33 34 35  0
             0  0 43 44 45 46
             0  0  0 54 55 56
             0  0  0  0 65 66
 
       then  N = 6, ML = 1, MU = 2, LDA .GE. 5  and ABD should contain
 
             *  *  *  +  +  +  , * = not used
             *  * 13 24 35 46  , + = used for pivoting
             * 12 23 34 45 56
            11 22 33 44 55 66
            21 32 43 54 65  *
 
 ***REFERENCES  J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
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                  Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED  DASUM, DAXPY, DDOT, DGBFA, DSCAL
 ***REVISION HISTORY  (YYMMDD)
    780814  DATE WRITTEN
    890531  Changed all specific intrinsics to generic.  (WRB)
    890831  Modified array declarations.  (WRB)
    890831  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    900326  Removed duplicate information from DESCRIPTION section.
            (WRB)
    920501  Reformatted the REFERENCES section.  (WRB)
    END PROLOGUE
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DGBDI

      SUBROUTINE DGBDI (ABD, LDA, N, ML, MU, IPVT, DET)
 ***BEGIN PROLOGUE  DGBDI
 ***PURPOSE  Compute the determinant of a band matrix using the factors
             computed by DGBCO or DGBFA.
 ***LIBRARY   SLATEC (LINPACK)
 ***CATEGORY  D3A2
 ***TYPE      DOUBLE PRECISION (SGBDI-S, DGBDI-D, CGBDI-C)
 ***KEYWORDS  BANDED, DETERMINANT, INVERSE, LINEAR ALGEBRA, LINPACK,
              MATRIX
 ***AUTHOR  Moler, C. B., (U. of New Mexico)
 ***DESCRIPTION
 
      DGBDI computes the determinant of a band matrix
      using the factors computed by DGBCO or DGBFA.
      If the inverse is needed, use DGBSL  N  times.
 
      On Entry
 
         ABD     DOUBLE PRECISION(LDA, N)
                 the output from DGBCO or DGBFA.
 
         LDA     INTEGER
                 the leading dimension of the array  ABD .
 
         N       INTEGER
                 the order of the original matrix.
 
         ML      INTEGER
                 number of diagonals below the main diagonal.
 
         MU      INTEGER
                 number of diagonals above the main diagonal.
 
         IPVT    INTEGER(N)
                 the pivot vector from DGBCO or DGBFA.
 
      On Return
 
         DET     DOUBLE PRECISION(2)
                 determinant of original matrix.
                 Determinant = DET(1) * 10.0**DET(2)
                 with  1.0 .LE. ABS(DET(1)) .LT. 10.0
                 or  DET(1) = 0.0 .
 
 ***REFERENCES  J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
                  Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED  (NONE)
 ***REVISION HISTORY  (YYMMDD)
    780814  DATE WRITTEN
    890531  Changed all specific intrinsics to generic.  (WRB)
    890831  Modified array declarations.  (WRB)
    890831  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    900326  Removed duplicate information from DESCRIPTION section.
            (WRB)
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    920501  Reformatted the REFERENCES section.  (WRB)
    END PROLOGUE
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DGBFA

      SUBROUTINE DGBFA (ABD, LDA, N, ML, MU, IPVT, INFO)
 ***BEGIN PROLOGUE  DGBFA
 ***PURPOSE  Factor a band matrix using Gaussian elimination.
 ***LIBRARY   SLATEC (LINPACK)
 ***CATEGORY  D2A2
 ***TYPE      DOUBLE PRECISION (SGBFA-S, DGBFA-D, CGBFA-C)
 ***KEYWORDS  BANDED, LINEAR ALGEBRA, LINPACK, MATRIX FACTORIZATION
 ***AUTHOR  Moler, C. B., (U. of New Mexico)
 ***DESCRIPTION
 
      DGBFA factors a double precision band matrix by elimination.
 
      DGBFA is usually called by DGBCO, but it can be called
      directly with a saving in time if  RCOND  is not needed.
 
      On Entry
 
         ABD     DOUBLE PRECISION(LDA, N)
                 contains the matrix in band storage.  The columns
                 of the matrix are stored in the columns of  ABD  and
                 the diagonals of the matrix are stored in rows
                 ML+1 through 2*ML+MU+1 of  ABD .
                 See the comments below for details.
 
         LDA     INTEGER
                 the leading dimension of the array  ABD .
                 LDA must be .GE. 2*ML + MU + 1 .
 
         N       INTEGER
                 the order of the original matrix.
 
         ML      INTEGER
                 number of diagonals below the main diagonal.
                 0 .LE. ML .LT.  N .
 
         MU      INTEGER
                 number of diagonals above the main diagonal.
                 0 .LE. MU .LT.  N .
                 More efficient if  ML .LE. MU .
      On Return
 
         ABD     an upper triangular matrix in band storage and
                 the multipliers which were used to obtain it.
                 The factorization can be written  A = L*U  where
                 L  is a product of permutation and unit lower
                 triangular matrices and  U  is upper triangular.
 
         IPVT    INTEGER(N)
                 an integer vector of pivot indices.
 
         INFO    INTEGER
                 = 0  normal value.
                 = K  if  U(K,K) .EQ. 0.0 .  This is not an error
                      condition for this subroutine, but it does
                      indicate that DGBSL will divide by zero if
                      called.  Use  RCOND  in DGBCO for a reliable

SLATEC3 (DACOSH through DS2Y) - 300



                      indication of singularity.
 
      Band Storage
 
            If  A  is a band matrix, the following program segment
            will set up the input.
 
                    ML = (band width below the diagonal)
                    MU = (band width above the diagonal)
                    M = ML + MU + 1
                    DO 20 J = 1, N
                       I1 = MAX(1, J-MU)
                       I2 = MIN(N, J+ML)
                       DO 10 I = I1, I2
                          K = I - J + M
                          ABD(K,J) = A(I,J)
                 10    CONTINUE
                 20 CONTINUE
 
            This uses rows  ML+1  through  2*ML+MU+1  of  ABD .
            In addition, the first  ML  rows in  ABD  are used for
            elements generated during the triangularization.
            The total number of rows needed in  ABD  is  2*ML+MU+1 .
            The  ML+MU by ML+MU  upper left triangle and the
            ML by ML  lower right triangle are not referenced.
 
 ***REFERENCES  J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
                  Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED  DAXPY, DSCAL, IDAMAX
 ***REVISION HISTORY  (YYMMDD)
    780814  DATE WRITTEN
    890531  Changed all specific intrinsics to generic.  (WRB)
    890831  Modified array declarations.  (WRB)
    890831  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    900326  Removed duplicate information from DESCRIPTION section.
            (WRB)
    920501  Reformatted the REFERENCES section.  (WRB)
    END PROLOGUE
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DGBMV

      SUBROUTINE DGBMV (TRANS, M, N, KL, KU, ALPHA, A, LDA,
     +     X, INCX, BETA, Y, INCY)
 ***BEGIN PROLOGUE  DGBMV
 ***PURPOSE  Perform one of the matrix-vector operations.
 ***LIBRARY   SLATEC (BLAS)
 ***CATEGORY  D1B4
 ***TYPE      DOUBLE PRECISION (SGBMV-S, DGBMV-D, CGBMV-C)
 ***KEYWORDS  LEVEL 2 BLAS, LINEAR ALGEBRA
 ***AUTHOR  Dongarra, J. J., (ANL)
            Du Croz, J., (NAG)
            Hammarling, S., (NAG)
            Hanson, R. J., (SNLA)
 ***DESCRIPTION
 
   DGBMV  performs one of the matrix-vector operations
 
      y := alpha*A*x + beta*y,   or   y := alpha*A'*x + beta*y,
 
   where alpha and beta are scalars, x and y are vectors and A is an
   m by n band matrix, with kl sub-diagonals and ku super-diagonals.
 
   Parameters
   ==========
 
   TRANS  - CHARACTER*1.
            On entry, TRANS specifies the operation to be performed as
            follows:
 
               TRANS = 'N' or 'n'   y := alpha*A*x + beta*y.
 
               TRANS = 'T' or 't'   y := alpha*A'*x + beta*y.
 
               TRANS = 'C' or 'c'   y := alpha*A'*x + beta*y.
 
            Unchanged on exit.
 
   M      - INTEGER.
            On entry, M specifies the number of rows of the matrix A.
            M must be at least zero.
            Unchanged on exit.
 
   N      - INTEGER.
            On entry, N specifies the number of columns of the matrix A.
            N must be at least zero.
            Unchanged on exit.
 
   KL     - INTEGER.
            On entry, KL specifies the number of sub-diagonals of the
            matrix A. KL must satisfy  0 .le. KL.
            Unchanged on exit.
 
   KU     - INTEGER.
            On entry, KU specifies the number of super-diagonals of the
            matrix A. KU must satisfy  0 .le. KU.
            Unchanged on exit.
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   ALPHA  - DOUBLE PRECISION.
            On entry, ALPHA specifies the scalar alpha.
            Unchanged on exit.
 
   A      - DOUBLE PRECISION array of DIMENSION ( LDA, n ).
            Before entry, the leading ( kl + ku + 1 ) by n part of the
            array A must contain the matrix of coefficients, supplied
            column by column, with the leading diagonal of the matrix in
            row ( ku + 1 ) of the array, the first super-diagonal
            starting at position 2 in row ku, the first sub-diagonal
            starting at position 1 in row ( ku + 2 ), and so on.
            Elements in the array A that do not correspond to elements
            in the band matrix (such as the top left ku by ku triangle)
            are not referenced.
            The following program segment will transfer a band matrix
            from conventional full matrix storage to band storage:
 
                  DO 20, J = 1, N
                     K = KU + 1 - J
                     DO 10, I = MAX( 1, J - KU ), MIN( M, J + KL )
                        A( K + I, J ) = matrix( I, J )
               10    CONTINUE
               20 CONTINUE
 
            Unchanged on exit.
 
   LDA    - INTEGER.
            On entry, LDA specifies the first dimension of A as declared
            in the calling (sub) program. LDA must be at least
            ( kl + ku + 1 ).
            Unchanged on exit.
 
   X      - DOUBLE PRECISION array of DIMENSION at least
            ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n'
            and at least
            ( 1 + ( m - 1 )*abs( INCX ) ) otherwise.
            Before entry, the incremented array X must contain the
            vector x.
            Unchanged on exit.
 
   INCX   - INTEGER.
            On entry, INCX specifies the increment for the elements of
            X. INCX must not be zero.
            Unchanged on exit.
 
   BETA   - DOUBLE PRECISION.
            On entry, BETA specifies the scalar beta. When BETA is
            supplied as zero then Y need not be set on input.
            Unchanged on exit.
 
   Y      - DOUBLE PRECISION array of DIMENSION at least
            ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n'
            and at least
            ( 1 + ( n - 1 )*abs( INCY ) ) otherwise.
            Before entry, the incremented array Y must contain the
            vector y. On exit, Y is overwritten by the updated vector y.
 
   INCY   - INTEGER.
            On entry, INCY specifies the increment for the elements of
            Y. INCY must not be zero.
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            Unchanged on exit.
 
 ***REFERENCES  Dongarra, J. J., Du Croz, J., Hammarling, S., and
                  Hanson, R. J.  An extended set of Fortran basic linear
                  algebra subprograms.  ACM TOMS, Vol. 14, No. 1,
                  pp. 1-17, March 1988.
 ***ROUTINES CALLED  LSAME, XERBLA
 ***REVISION HISTORY  (YYMMDD)
    861022  DATE WRITTEN
    910605  Modified to meet SLATEC prologue standards.  Only comment
            lines were modified.  (BKS)
    END PROLOGUE
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DGBSL

      SUBROUTINE DGBSL (ABD, LDA, N, ML, MU, IPVT, B, JOB)
 ***BEGIN PROLOGUE  DGBSL
 ***PURPOSE  Solve the real band system A*X=B or TRANS(A)*X=B using
             the factors computed by DGBCO or DGBFA.
 ***LIBRARY   SLATEC (LINPACK)
 ***CATEGORY  D2A2
 ***TYPE      DOUBLE PRECISION (SGBSL-S, DGBSL-D, CGBSL-C)
 ***KEYWORDS  BANDED, LINEAR ALGEBRA, LINPACK, MATRIX, SOLVE
 ***AUTHOR  Moler, C. B., (U. of New Mexico)
 ***DESCRIPTION
 
      DGBSL solves the double precision band system
      A * X = B  or  TRANS(A) * X = B
      using the factors computed by DGBCO or DGBFA.
 
      On Entry
 
         ABD     DOUBLE PRECISION(LDA, N)
                 the output from DGBCO or DGBFA.
 
         LDA     INTEGER
                 the leading dimension of the array  ABD .
 
         N       INTEGER
                 the order of the original matrix.
 
         ML      INTEGER
                 number of diagonals below the main diagonal.
 
         MU      INTEGER
                 number of diagonals above the main diagonal.
 
         IPVT    INTEGER(N)
                 the pivot vector from DGBCO or DGBFA.
 
         B       DOUBLE PRECISION(N)
                 the right hand side vector.
 
         JOB     INTEGER
                 = 0         to solve  A*X = B ,
                 = nonzero   to solve  TRANS(A)*X = B , where
                             TRANS(A)  is the transpose.
 
      On Return
 
         B       the solution vector  X .
 
      Error Condition
 
         A division by zero will occur if the input factor contains a
         zero on the diagonal.  Technically this indicates singularity
         but it is often caused by improper arguments or improper
         setting of LDA .  It will not occur if the subroutines are
         called correctly and if DGBCO has set RCOND .GT. 0.0
         or DGBFA has set INFO .EQ. 0 .
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      To compute  INVERSE(A) * C  where  C  is a matrix
      with  P  columns
            CALL DGBCO(ABD,LDA,N,ML,MU,IPVT,RCOND,Z)
            IF (RCOND is too small) GO TO ...
            DO 10 J = 1, P
               CALL DGBSL(ABD,LDA,N,ML,MU,IPVT,C(1,J),0)
         10 CONTINUE
 
 ***REFERENCES  J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
                  Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED  DAXPY, DDOT
 ***REVISION HISTORY  (YYMMDD)
    780814  DATE WRITTEN
    890531  Changed all specific intrinsics to generic.  (WRB)
    890831  Modified array declarations.  (WRB)
    890831  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    900326  Removed duplicate information from DESCRIPTION section.
            (WRB)
    920501  Reformatted the REFERENCES section.  (WRB)
    END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 306



DGECO

      SUBROUTINE DGECO (A, LDA, N, IPVT, RCOND, Z)
 ***BEGIN PROLOGUE  DGECO
 ***PURPOSE  Factor a matrix using Gaussian elimination and estimate
             the condition number of the matrix.
 ***LIBRARY   SLATEC (LINPACK)
 ***CATEGORY  D2A1
 ***TYPE      DOUBLE PRECISION (SGECO-S, DGECO-D, CGECO-C)
 ***KEYWORDS  CONDITION NUMBER, GENERAL MATRIX, LINEAR ALGEBRA, LINPACK,
              MATRIX FACTORIZATION
 ***AUTHOR  Moler, C. B., (U. of New Mexico)
 ***DESCRIPTION
 
      DGECO factors a double precision matrix by Gaussian elimination
      and estimates the condition of the matrix.
 
      If  RCOND  is not needed, DGEFA is slightly faster.
      To solve  A*X = B , follow DGECO by DGESL.
      To compute  INVERSE(A)*C , follow DGECO by DGESL.
      To compute  DETERMINANT(A) , follow DGECO by DGEDI.
      To compute  INVERSE(A) , follow DGECO by DGEDI.
 
      On Entry
 
         A       DOUBLE PRECISION(LDA, N)
                 the matrix to be factored.
 
         LDA     INTEGER
                 the leading dimension of the array  A .
 
         N       INTEGER
                 the order of the matrix  A .
 
      On Return
 
         A       an upper triangular matrix and the multipliers
                 which were used to obtain it.
                 The factorization can be written  A = L*U  where
                 L  is a product of permutation and unit lower
                 triangular matrices and  U  is upper triangular.
 
         IPVT    INTEGER(N)
                 an INTEGER vector of pivot indices.
 
         RCOND   DOUBLE PRECISION
                 an estimate of the reciprocal condition of  A .
                 For the system  A*X = B , relative perturbations
                 in  A  and  B  of size  EPSILON  may cause
                 relative perturbations in  X  of size  EPSILON/RCOND .
                 If  RCOND  is so small that the logical expression
                            1.0 + RCOND .EQ. 1.0
                 is true, then  A  may be singular to working
                 precision.  In particular,  RCOND  is zero  if
                 exact singularity is detected or the estimate
                 underflows.
 
         Z       DOUBLE PRECISION(N)
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                 a work vector whose contents are usually unimportant.
                 If  A  is close to a singular matrix, then  Z  is
                 an approximate null vector in the sense that
                 NORM(A*Z) = RCOND*NORM(A)*NORM(Z) .
 
 ***REFERENCES  J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
                  Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED  DASUM, DAXPY, DDOT, DGEFA, DSCAL
 ***REVISION HISTORY  (YYMMDD)
    780814  DATE WRITTEN
    890531  Changed all specific intrinsics to generic.  (WRB)
    890831  Modified array declarations.  (WRB)
    890831  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    900326  Removed duplicate information from DESCRIPTION section.
            (WRB)
    920501  Reformatted the REFERENCES section.  (WRB)
    END PROLOGUE
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DGEDI

      SUBROUTINE DGEDI (A, LDA, N, IPVT, DET, WORK, JOB)
 ***BEGIN PROLOGUE  DGEDI
 ***PURPOSE  Compute the determinant and inverse of a matrix using the
             factors computed by DGECO or DGEFA.
 ***LIBRARY   SLATEC (LINPACK)
 ***CATEGORY  D3A1, D2A1
 ***TYPE      DOUBLE PRECISION (SGEDI-S, DGEDI-D, CGEDI-C)
 ***KEYWORDS  DETERMINANT, INVERSE, LINEAR ALGEBRA, LINPACK, MATRIX
 ***AUTHOR  Moler, C. B., (U. of New Mexico)
 ***DESCRIPTION
 
      DGEDI computes the determinant and inverse of a matrix
      using the factors computed by DGECO or DGEFA.
 
      On Entry
 
         A       DOUBLE PRECISION(LDA, N)
                 the output from DGECO or DGEFA.
 
         LDA     INTEGER
                 the leading dimension of the array  A .
 
         N       INTEGER
                 the order of the matrix  A .
 
         IPVT    INTEGER(N)
                 the pivot vector from DGECO or DGEFA.
 
         WORK    DOUBLE PRECISION(N)
                 work vector.  Contents destroyed.
 
         JOB     INTEGER
                 = 11   both determinant and inverse.
                 = 01   inverse only.
                 = 10   determinant only.
 
      On Return
 
         A       inverse of original matrix if requested.
                 Otherwise unchanged.
 
         DET     DOUBLE PRECISION(2)
                 determinant of original matrix if requested.
                 Otherwise not referenced.
                 Determinant = DET(1) * 10.0**DET(2)
                 with  1.0 .LE. ABS(DET(1)) .LT. 10.0
                 or  DET(1) .EQ. 0.0 .
 
      Error Condition
 
         A division by zero will occur if the input factor contains
         a zero on the diagonal and the inverse is requested.
         It will not occur if the subroutines are called correctly
         and if DGECO has set RCOND .GT. 0.0 or DGEFA has set
         INFO .EQ. 0 .
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 ***REFERENCES  J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
                  Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED  DAXPY, DSCAL, DSWAP
 ***REVISION HISTORY  (YYMMDD)
    780814  DATE WRITTEN
    890531  Changed all specific intrinsics to generic.  (WRB)
    890831  Modified array declarations.  (WRB)
    890831  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    900326  Removed duplicate information from DESCRIPTION section.
            (WRB)
    920501  Reformatted the REFERENCES section.  (WRB)
    END PROLOGUE
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DGEFA

      SUBROUTINE DGEFA (A, LDA, N, IPVT, INFO)
 ***BEGIN PROLOGUE  DGEFA
 ***PURPOSE  Factor a matrix using Gaussian elimination.
 ***LIBRARY   SLATEC (LINPACK)
 ***CATEGORY  D2A1
 ***TYPE      DOUBLE PRECISION (SGEFA-S, DGEFA-D, CGEFA-C)
 ***KEYWORDS  GENERAL MATRIX, LINEAR ALGEBRA, LINPACK,
              MATRIX FACTORIZATION
 ***AUTHOR  Moler, C. B., (U. of New Mexico)
 ***DESCRIPTION
 
      DGEFA factors a double precision matrix by Gaussian elimination.
 
      DGEFA is usually called by DGECO, but it can be called
      directly with a saving in time if  RCOND  is not needed.
      (Time for DGECO) = (1 + 9/N)*(Time for DGEFA) .
 
      On Entry
 
         A       DOUBLE PRECISION(LDA, N)
                 the matrix to be factored.
 
         LDA     INTEGER
                 the leading dimension of the array  A .
 
         N       INTEGER
                 the order of the matrix  A .
 
      On Return
 
         A       an upper triangular matrix and the multipliers
                 which were used to obtain it.
                 The factorization can be written  A = L*U  where
                 L  is a product of permutation and unit lower
                 triangular matrices and  U  is upper triangular.
 
         IPVT    INTEGER(N)
                 an integer vector of pivot indices.
 
         INFO    INTEGER
                 = 0  normal value.
                 = K  if  U(K,K) .EQ. 0.0 .  This is not an error
                      condition for this subroutine, but it does
                      indicate that DGESL or DGEDI will divide by zero
                      if called.  Use  RCOND  in DGECO for a reliable
                      indication of singularity.
 
 ***REFERENCES  J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
                  Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED  DAXPY, DSCAL, IDAMAX
 ***REVISION HISTORY  (YYMMDD)
    780814  DATE WRITTEN
    890831  Modified array declarations.  (WRB)
    890831  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    900326  Removed duplicate information from DESCRIPTION section.
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            (WRB)
    920501  Reformatted the REFERENCES section.  (WRB)
    END PROLOGUE
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DGEFS

      SUBROUTINE DGEFS (A, LDA, N, V, ITASK, IND, WORK, IWORK)
 ***BEGIN PROLOGUE  DGEFS
 ***PURPOSE  Solve a general system of linear equations.
 ***LIBRARY   SLATEC
 ***CATEGORY  D2A1
 ***TYPE      DOUBLE PRECISION (SGEFS-S, DGEFS-D, CGEFS-C)
 ***KEYWORDS  COMPLEX LINEAR EQUATIONS, GENERAL MATRIX,
              GENERAL SYSTEM OF LINEAR EQUATIONS
 ***AUTHOR  Voorhees, E. A., (LANL)
 ***DESCRIPTION
 
     Subroutine DGEFS solves a general NxN system of double
     precision linear equations using LINPACK subroutines DGECO
     and DGESL.  That is, if A is an NxN double precision matrix
     and if X and B are double precision N-vectors, then DGEFS
     solves the equation
 
                           A*X=B.
 
     The matrix A is first factored into upper and lower tri-
     angular matrices U and L using partial pivoting.  These
     factors and the pivoting information are used to find the
     solution vector X.  An approximate condition number is
     calculated to provide a rough estimate of the number of
     digits of accuracy in the computed solution.
 
     If the equation A*X=B is to be solved for more than one vector
     B, the factoring of A does not need to be performed again and
     the option to only solve (ITASK.GT.1) will be faster for
     the succeeding solutions.  In this case, the contents of A,
     LDA, N and IWORK must not have been altered by the user follow-
     ing factorization (ITASK=1).  IND will not be changed by DGEFS
     in this case.
 
   Argument Description ***
 
     A      DOUBLE PRECISION(LDA,N)
              on entry, the doubly subscripted array with dimension
                (LDA,N) which contains the coefficient matrix.
              on return, an upper triangular matrix U and the
                multipliers necessary to construct a matrix L
                so that A=L*U.
     LDA    INTEGER
              the leading dimension of the array A.  LDA must be great-
              er than or equal to N.  (terminal error message IND=-1)
     N      INTEGER
              the order of the matrix A.  The first N elements of
              the array A are the elements of the first column of
              the matrix A.  N must be greater than or equal to 1.
              (terminal error message IND=-2)
     V      DOUBLE PRECISION(N)
              on entry, the singly subscripted array(vector) of di-
                mension N which contains the right hand side B of a
                system of simultaneous linear equations A*X=B.
              on return, V contains the solution vector, X .
     ITASK  INTEGER
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              If ITASK=1, the matrix A is factored and then the
                linear equation is solved.
              If ITASK .GT. 1, the equation is solved using the existing
                factored matrix A and IWORK.
              If ITASK .LT. 1, then terminal error message IND=-3 is
                printed.
     IND    INTEGER
              GT. 0  IND is a rough estimate of the number of digits
                      of accuracy in the solution, X.
              LT. 0  see error message corresponding to IND below.
     WORK   DOUBLE PRECISION(N)
              a singly subscripted array of dimension at least N.
     IWORK  INTEGER(N)
              a singly subscripted array of dimension at least N.
 
   Error Messages Printed ***
 
     IND=-1  terminal   N is greater than LDA.
     IND=-2  terminal   N is less than 1.
     IND=-3  terminal   ITASK is less than 1.
     IND=-4  terminal   The matrix A is computationally singular.
                          A solution has not been computed.
     IND=-10 warning    The solution has no apparent significance.
                          The solution may be inaccurate or the matrix
                          A may be poorly scaled.
 
                Note-  The above terminal(*fatal*) error messages are
                       designed to be handled by XERMSG in which
                       LEVEL=1 (recoverable) and IFLAG=2 .  LEVEL=0
                       for warning error messages from XERMSG.  Unless
                       the user provides otherwise, an error message
                       will be printed followed by an abort.
 
 ***REFERENCES  J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
                  Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED  D1MACH, DGECO, DGESL, XERMSG
 ***REVISION HISTORY  (YYMMDD)
    800326  DATE WRITTEN
    890531  Changed all specific intrinsics to generic.  (WRB)
    890831  Modified array declarations.  (WRB)
    890831  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    900315  CALLs to XERROR changed to CALLs to XERMSG.  (THJ)
    900510  Convert XERRWV calls to XERMSG calls.  (RWC)
    920501  Reformatted the REFERENCES section.  (WRB)
    END PROLOGUE
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DGEMM

      SUBROUTINE DGEMM (TRANSA, TRANSB, M, N, ALPHA, A, LDA,
     +     B, LDB, BETA, C, LDC)
 ***BEGIN PROLOGUE  DGEMM
 ***PURPOSE  Perform one of the matrix-matrix operations.
 ***LIBRARY   SLATEC (BLAS)
 ***CATEGORY  D1B6
 ***TYPE      DOUBLE PRECISION (SGEMM-S, DGEMM-D, CGEMM-C)
 ***KEYWORDS  LEVEL 3 BLAS, LINEAR ALGEBRA
 ***AUTHOR  Dongarra, J., (ANL)
            Duff, I., (AERE)
            Du Croz, J., (NAG)
            Hammarling, S. (NAG)
 ***DESCRIPTION
 
   DGEMM  performs one of the matrix-matrix operations
 
      C := alpha*op( A )*op( B ) + beta*C,
 
   where  op( X ) is one of
 
      op( X ) = X   or   op( X ) = X',
 
   alpha and beta are scalars, and A, B and C are matrices, with op( A )
   an m by k matrix,  op( B )  a  k by n matrix and  C an m by n matrix.
 
   Parameters
   ==========
 
   TRANSA - CHARACTER*1.
            On entry, TRANSA specifies the form of op( A ) to be used in
            the matrix multiplication as follows:
 
               TRANSA = 'N' or 'n',  op( A ) = A.
 
               TRANSA = 'T' or 't',  op( A ) = A'.
 
               TRANSA = 'C' or 'c',  op( A ) = A'.
 
            Unchanged on exit.
 
   TRANSB - CHARACTER*1.
            On entry, TRANSB specifies the form of op( B ) to be used in
            the matrix multiplication as follows:
 
               TRANSB = 'N' or 'n',  op( B ) = B.
 
               TRANSB = 'T' or 't',  op( B ) = B'.
 
               TRANSB = 'C' or 'c',  op( B ) = B'.
 
            Unchanged on exit.
 
   M      - INTEGER.
            On entry,  M  specifies  the number  of rows  of the  matrix
            op( A )  and of the  matrix  C.  M  must  be at least  zero.
            Unchanged on exit.
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   N      - INTEGER.
            On entry,  N  specifies the number  of columns of the matrix
            op( B ) and the number of columns of the matrix C. N must be
            at least zero.
            Unchanged on exit.
 
   K      - INTEGER.
            On entry,  K  specifies  the number of columns of the matrix
            op( A ) and the number of rows of the matrix op( B ). K must
            be at least  zero.
            Unchanged on exit.
 
   ALPHA  - DOUBLE PRECISION.
            On entry, ALPHA specifies the scalar alpha.
            Unchanged on exit.
 
   A      - DOUBLE PRECISION array of DIMENSION ( LDA, ka ), where ka is
            k  when  TRANSA = 'N' or 'n',  and is  m  otherwise.
            Before entry with  TRANSA = 'N' or 'n',  the leading  m by k
            part of the array  A  must contain the matrix  A,  otherwise
            the leading  k by m  part of the array  A  must contain  the
            matrix A.
            Unchanged on exit.
 
   LDA    - INTEGER.
            On entry, LDA specifies the first dimension of A as declared
            in the calling (sub) program. When  TRANSA = 'N' or 'n' then
            LDA must be at least  max( 1, m ), otherwise  LDA must be at
            least  max( 1, k ).
            Unchanged on exit.
 
   B      - DOUBLE PRECISION array of DIMENSION ( LDB, kb ), where kb is
            n  when  TRANSB = 'N' or 'n',  and is  k  otherwise.
            Before entry with  TRANSB = 'N' or 'n',  the leading  k by n
            part of the array  B  must contain the matrix  B,  otherwise
            the leading  n by k  part of the array  B  must contain  the
            matrix B.
            Unchanged on exit.
 
   LDB    - INTEGER.
            On entry, LDB specifies the first dimension of B as declared
            in the calling (sub) program. When  TRANSB = 'N' or 'n' then
            LDB must be at least  max( 1, k ), otherwise  LDB must be at
            least  max( 1, n ).
            Unchanged on exit.
 
   BETA   - DOUBLE PRECISION.
            On entry,  BETA  specifies the scalar  beta.  When  BETA  is
            supplied as zero then C need not be set on input.
            Unchanged on exit.
 
   C      - DOUBLE PRECISION array of DIMENSION ( LDC, n ).
            Before entry, the leading  m by n  part of the array  C must
            contain the matrix  C,  except when  beta  is zero, in which
            case C need not be set on entry.
            On exit, the array  C  is overwritten by the  m by n  matrix
            ( alpha*op( A )*op( B ) + beta*C ).
 
   LDC    - INTEGER.
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            On entry, LDC specifies the first dimension of C as declared
            in  the  calling  (sub)  program.   LDC  must  be  at  least
            max( 1, m ).
            Unchanged on exit.
 
 ***REFERENCES  Dongarra, J., Du Croz, J., Duff, I., and Hammarling, S.
                  A set of level 3 basic linear algebra subprograms.
                  ACM TOMS, Vol. 16, No. 1, pp. 1-17, March 1990.
 ***ROUTINES CALLED  LSAME, XERBLA
 ***REVISION HISTORY  (YYMMDD)
    890208  DATE WRITTEN
    910605  Modified to meet SLATEC prologue standards.  Only comment
            lines were modified.  (BKS)
    END PROLOGUE
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DGEMV

      SUBROUTINE DGEMV (TRANS, M, N, ALPHA, A, LDA, X, INCX,
     +    BETA, Y, INCY)
 ***BEGIN PROLOGUE  DGEMV
 ***PURPOSE  Perform one of the matrix-vector operations.
 ***LIBRARY   SLATEC (BLAS)
 ***CATEGORY  D1B4
 ***TYPE      DOUBLE PRECISION (SGEMV-S, DGEMV-D, CGEMV-C)
 ***KEYWORDS  LEVEL 2 BLAS, LINEAR ALGEBRA
 ***AUTHOR  Dongarra, J. J., (ANL)
            Du Croz, J., (NAG)
            Hammarling, S., (NAG)
            Hanson, R. J., (SNLA)
 ***DESCRIPTION
 
   DGEMV  performs one of the matrix-vector operations
 
      y := alpha*A*x + beta*y,   or   y := alpha*A'*x + beta*y,
 
   where alpha and beta are scalars, x and y are vectors and A is an
   m by n matrix.
 
   Parameters
   ==========
 
   TRANS  - CHARACTER*1.
            On entry, TRANS specifies the operation to be performed as
            follows:
 
               TRANS = 'N' or 'n'   y := alpha*A*x + beta*y.
 
               TRANS = 'T' or 't'   y := alpha*A'*x + beta*y.
 
               TRANS = 'C' or 'c'   y := alpha*A'*x + beta*y.
 
            Unchanged on exit.
 
   M      - INTEGER.
            On entry, M specifies the number of rows of the matrix A.
            M must be at least zero.
            Unchanged on exit.
 
   N      - INTEGER.
            On entry, N specifies the number of columns of the matrix A.
            N must be at least zero.
            Unchanged on exit.
 
   ALPHA  - DOUBLE PRECISION.
            On entry, ALPHA specifies the scalar alpha.
            Unchanged on exit.
 
   A      - DOUBLE PRECISION array of DIMENSION ( LDA, n ).
            Before entry, the leading m by n part of the array A must
            contain the matrix of coefficients.
            Unchanged on exit.
 
   LDA    - INTEGER.
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            On entry, LDA specifies the first dimension of A as declared
            in the calling (sub) program. LDA must be at least
            max( 1, m ).
            Unchanged on exit.
 
   X      - DOUBLE PRECISION array of DIMENSION at least
            ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n'
            and at least
            ( 1 + ( m - 1 )*abs( INCX ) ) otherwise.
            Before entry, the incremented array X must contain the
            vector x.
            Unchanged on exit.
 
   INCX   - INTEGER.
            On entry, INCX specifies the increment for the elements of
            X. INCX must not be zero.
            Unchanged on exit.
 
   BETA   - DOUBLE PRECISION.
            On entry, BETA specifies the scalar beta. When BETA is
            supplied as zero then Y need not be set on input.
            Unchanged on exit.
 
   Y      - DOUBLE PRECISION array of DIMENSION at least
            ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n'
            and at least
            ( 1 + ( n - 1 )*abs( INCY ) ) otherwise.
            Before entry with BETA non-zero, the incremented array Y
            must contain the vector y. On exit, Y is overwritten by the
            updated vector y.
 
   INCY   - INTEGER.
            On entry, INCY specifies the increment for the elements of
            Y. INCY must not be zero.
            Unchanged on exit.
 
 ***REFERENCES  Dongarra, J. J., Du Croz, J., Hammarling, S., and
                  Hanson, R. J.  An extended set of Fortran basic linear
                  algebra subprograms.  ACM TOMS, Vol. 14, No. 1,
                  pp. 1-17, March 1988.
 ***ROUTINES CALLED  LSAME, XERBLA
 ***REVISION HISTORY  (YYMMDD)
    861022  DATE WRITTEN
    910605  Modified to meet SLATEC prologue standards.  Only comment
            lines were modified.  (BKS)
    END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 319



DGER

      SUBROUTINE DGER (M, N, ALPHA, X, INCX, Y, INCY, A, LDA)
 ***BEGIN PROLOGUE  DGER
 ***PURPOSE  Perform the rank 1 operation.
 ***LIBRARY   SLATEC (BLAS)
 ***CATEGORY  D1B4
 ***TYPE      DOUBLE PRECISION (DGER-D)
 ***KEYWORDS  LEVEL 2 BLAS, LINEAR ALGEBRA
 ***AUTHOR  Dongarra, J. J., (ANL)
            Du Croz, J., (NAG)
            Hammarling, S., (NAG)
            Hanson, R. J., (SNLA)
 ***DESCRIPTION
 
   DGER   performs the rank 1 operation
 
      A := alpha*x*y' + A,
 
   where alpha is a scalar, x is an m element vector, y is an n element
   vector and A is an m by n matrix.
 
   Parameters
   ==========
 
   M      - INTEGER.
            On entry, M specifies the number of rows of the matrix A.
            M must be at least zero.
            Unchanged on exit.
 
   N      - INTEGER.
            On entry, N specifies the number of columns of the matrix A.
            N must be at least zero.
            Unchanged on exit.
 
   ALPHA  - DOUBLE PRECISION.
            On entry, ALPHA specifies the scalar alpha.
            Unchanged on exit.
 
   X      - DOUBLE PRECISION array of dimension at least
            ( 1 + ( m - 1)*abs( INCX)).
            Before entry, the incremented array X must contain the m
            element vector x.
            Unchanged on exit.
 
   INCX   - INTEGER.
            On entry, INCX specifies the increment for the elements of
            X. INCX must not be zero.
            Unchanged on exit.
 
   Y      - DOUBLE PRECISION array of dimension at least
            ( 1 + ( n - 1 )*abs( INCY ) ).
            Before entry, the incremented array Y must contain the n
            element vector y.
            Unchanged on exit.
 
   INCY   - INTEGER.
            On entry, INCY specifies the increment for the elements of
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            Y. INCY must not be zero.
            Unchanged on exit.
 
   A      - DOUBLE PRECISION array of DIMENSION ( LDA, n ).
            Before entry, the leading m by n part of the array A must
            contain the matrix of coefficients. On exit, A is
            overwritten by the updated matrix.
 
   LDA    - INTEGER.
            On entry, LDA specifies the first dimension of A as declared
            in the calling (sub) program. LDA must be at least
            max( 1, m ).
            Unchanged on exit.
 
 ***REFERENCES  Dongarra, J. J., Du Croz, J., Hammarling, S., and
                  Hanson, R. J.  An extended set of Fortran basic linear
                  algebra subprograms.  ACM TOMS, Vol. 14, No. 1,
                  pp. 1-17, March 1988.
 ***ROUTINES CALLED  XERBLA
 ***REVISION HISTORY  (YYMMDD)
    861022  DATE WRITTEN
    910605  Modified to meet SLATEC prologue standards.  Only comment
            lines were modified.  (BKS)
    END PROLOGUE
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DGESL

      SUBROUTINE DGESL (A, LDA, N, IPVT, B, JOB)
 ***BEGIN PROLOGUE  DGESL
 ***PURPOSE  Solve the real system A*X=B or TRANS(A)*X=B using the
             factors computed by DGECO or DGEFA.
 ***LIBRARY   SLATEC (LINPACK)
 ***CATEGORY  D2A1
 ***TYPE      DOUBLE PRECISION (SGESL-S, DGESL-D, CGESL-C)
 ***KEYWORDS  LINEAR ALGEBRA, LINPACK, MATRIX, SOLVE
 ***AUTHOR  Moler, C. B., (U. of New Mexico)
 ***DESCRIPTION
 
      DGESL solves the double precision system
      A * X = B  or  TRANS(A) * X = B
      using the factors computed by DGECO or DGEFA.
 
      On Entry
 
         A       DOUBLE PRECISION(LDA, N)
                 the output from DGECO or DGEFA.
 
         LDA     INTEGER
                 the leading dimension of the array  A .
 
         N       INTEGER
                 the order of the matrix  A .
 
         IPVT    INTEGER(N)
                 the pivot vector from DGECO or DGEFA.
 
         B       DOUBLE PRECISION(N)
                 the right hand side vector.
 
         JOB     INTEGER
                 = 0         to solve  A*X = B ,
                 = nonzero   to solve  TRANS(A)*X = B  where
                             TRANS(A)  is the transpose.
 
      On Return
 
         B       the solution vector  X .
 
      Error Condition
 
         A division by zero will occur if the input factor contains a
         zero on the diagonal.  Technically this indicates singularity
         but it is often caused by improper arguments or improper
         setting of LDA .  It will not occur if the subroutines are
         called correctly and if DGECO has set RCOND .GT. 0.0
         or DGEFA has set INFO .EQ. 0 .
 
      To compute  INVERSE(A) * C  where  C  is a matrix
      with  P  columns
            CALL DGECO(A,LDA,N,IPVT,RCOND,Z)
            IF (RCOND is too small) GO TO ...
            DO 10 J = 1, P
               CALL DGESL(A,LDA,N,IPVT,C(1,J),0)
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         10 CONTINUE
 
 ***REFERENCES  J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
                  Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED  DAXPY, DDOT
 ***REVISION HISTORY  (YYMMDD)
    780814  DATE WRITTEN
    890831  Modified array declarations.  (WRB)
    890831  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    900326  Removed duplicate information from DESCRIPTION section.
            (WRB)
    920501  Reformatted the REFERENCES section.  (WRB)
    END PROLOGUE
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DGLSS

      SUBROUTINE DGLSS (A, MDA, M, N, B, MDB, NB, RNORM, WORK, LW,
     +   IWORK, LIW, INFO)
 ***BEGIN PROLOGUE  DGLSS
 ***PURPOSE  Solve a linear least squares problems by performing a QR
             factorization of the input matrix using Householder
             transformations.  Emphasis is put on detecting possible
             rank deficiency.
 ***LIBRARY   SLATEC
 ***CATEGORY  D9, D5
 ***TYPE      DOUBLE PRECISION (SGLSS-S, DGLSS-D)
 ***KEYWORDS  LINEAR LEAST SQUARES, LQ FACTORIZATION, QR FACTORIZATION,
              UNDERDETERMINED LINEAR SYSTEMS
 ***AUTHOR  Manteuffel, T. A., (LANL)
 ***DESCRIPTION
 
      DGLSS solves both underdetermined and overdetermined
      LINEAR systems AX = B, where A is an M by N matrix
      and B is an M by NB matrix of right hand sides. If
      M.GE.N, the least squares solution is computed by
      decomposing the matrix A into the product of an
      orthogonal matrix Q and an upper triangular matrix
      R (QR factorization). If M.LT.N, the minimal
      length solution is computed by factoring the
      matrix A into the product of a lower triangular
      matrix L and an orthogonal matrix Q (LQ factor-
      ization). If the matrix A is determined to be rank
      deficient, that is the rank of A is less than
      MIN(M,N), then the minimal length least squares
      solution is computed.
 
      DGLSS assumes full machine precision in the data.
      If more control over the uncertainty in the data
      is desired, the codes DLLSIA and DULSIA are
      recommended.
 
      DGLSS requires MDA*N + (MDB + 1)*NB + 5*MIN(M,N) dimensioned
      real space and M+N dimensioned integer space.
 
 
    ******************************************************************
    *                                                                *
    *         WARNING - All input arrays are changed on exit.        *
    *                                                                *
    ******************************************************************
      SUBROUTINE DGLSS(A,MDA,M,N,B,MDB,NB,RNORM,WORK,LW,IWORK,LIW,INFO)
 
      Input..All TYPE REAL variables are DOUBLE PRECISION
 
      A(,)          Linear coefficient matrix of AX=B, with MDA the
       MDA,M,N      actual first dimension of A in the calling program.
                    M is the row dimension (no. of EQUATIONS of the
                    problem) and N the col dimension (no. of UNKNOWNS).
 
      B(,)          Right hand side(s), with MDB the actual first
       MDB,NB       dimension of B in the calling program. NB is the
                    number of M by 1 right hand sides. Must have
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                    MDB.GE.MAX(M,N). If NB = 0, B is never accessed.
 
 
      RNORM()       Vector of length at least NB.  On input the contents
                    of RNORM are unused.
 
      WORK()        A real work array dimensioned 5*MIN(M,N).
 
      LW            Actual dimension of WORK.
 
      IWORK()       Integer work array dimensioned at least N+M.
 
      LIW           Actual dimension of IWORK.
 
 
      INFO          A flag which provides for the efficient
                    solution of subsequent problems involving the
                    same A but different B.
                    If INFO = 0 original call
                       INFO = 1 subsequent calls
                    On subsequent calls, the user must supply A, INFO,
                    LW, IWORK, LIW, and the first 2*MIN(M,N) locations
                    of WORK as output by the original call to DGLSS.
 
 
      Output..All TYPE REAL variables are DOUBLE PRECISION
 
      A(,)          Contains the triangular part of the reduced matrix
                    and the transformation information. It together with
                    the first 2*MIN(M,N) elements of WORK (see below)
                    completely specify the factorization of A.
 
      B(,)          Contains the N by NB solution matrix X.
 
 
      RNORM()       Contains the Euclidean length of the NB residual
                    vectors  B(I)-AX(I), I=1,NB.
 
      WORK()        The first 2*MIN(M,N) locations of WORK contain value
                    necessary to reproduce the factorization of A.
 
      IWORK()       The first M+N locations contain the order in
                    which the rows and columns of A were used.
                    If M.GE.N columns then rows. If M.LT.N rows
                    then columns.
 
      INFO          Flag to indicate status of computation on completion
                   -1   Parameter error(s)
                    0 - Full rank
                    N.GT.0 - Reduced rank  rank=MIN(M,N)-INFO
 
 ***REFERENCES  T. Manteuffel, An interval analysis approach to rank
                  determination in linear least squares problems,
                  Report SAND80-0655, Sandia Laboratories, June 1980.
 ***ROUTINES CALLED  DLLSIA, DULSIA
 ***REVISION HISTORY  (YYMMDD)
    810801  DATE WRITTEN
    890831  Modified array declarations.  (WRB)
    891006  Cosmetic changes to prologue.  (WRB)
    891006  REVISION DATE from Version 3.2
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    891214  Prologue converted to Version 4.0 format.  (BAB)
    920501  Reformatted the REFERENCES section.  (WRB)
    END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 326



DGMRES

       SUBROUTINE DGMRES(N, B, X, NELT, IA, JA, A, ISYM, MATVEC, MSOLVE,
      $     ITOL, TOL, ITMAX, ITER, ERR, IERR, IUNIT, SB, SX,
      $     RGWK, LRGW, IGWK, LIGW, RWORK, IWORK)
 ***BEGIN PROLOGUE  DGMRES
 ***PURPOSE  Preconditioned GMRES iterative sparse Ax=b solver.
             This routine uses the generalized minimum residual
             (GMRES) method with preconditioning to solve
             non-symmetric linear systems of the form: Ax = b.
 ***LIBRARY   SLATEC (SLAP)
 ***CATEGORY  D2A4, D2B4
 ***TYPE      DOUBLE PRECISION (SGMRES-S, DGMRES-D)
 ***KEYWORDS  GENERALIZED MINIMUM RESIDUAL, ITERATIVE PRECONDITION,
              NON-SYMMETRIC LINEAR SYSTEM, SLAP, SPARSE
 ***AUTHOR  Brown, Peter, (LLNL), pnbrown@llnl.gov
            Hindmarsh, Alan, (LLNL), alanh@llnl.gov
            Seager, Mark K., (LLNL), seager@llnl.gov
              Lawrence Livermore National Laboratory
              PO Box 808, L-60
              Livermore, CA 94550 (510) 423-3141
 ***DESCRIPTION
 
  *Usage:
       INTEGER   N, NELT, IA(NELT), JA(NELT), ISYM, ITOL, ITMAX
       INTEGER   ITER, IERR, IUNIT, LRGW, IGWK(LIGW), LIGW
       INTEGER   IWORK(USER DEFINED)
       DOUBLE PRECISION B(N), X(N), A(NELT), TOL, ERR, SB(N), SX(N)
       DOUBLE PRECISION RGWK(LRGW), RWORK(USER DEFINED)
       EXTERNAL  MATVEC, MSOLVE
 
       CALL DGMRES(N, B, X, NELT, IA, JA, A, ISYM, MATVEC, MSOLVE,
      $     ITOL, TOL, ITMAX, ITER, ERR, IERR, IUNIT, SB, SX,
      $     RGWK, LRGW, IGWK, LIGW, RWORK, IWORK)
 
  *Arguments:
  N      :IN       Integer.
          Order of the Matrix.
  B      :IN       Double Precision B(N).
          Right-hand side vector.
  X      :INOUT    Double Precision X(N).
          On input X is your initial guess for the solution vector.
          On output X is the final approximate solution.
  NELT   :IN       Integer.
          Number of Non-Zeros stored in A.
  IA     :IN       Integer IA(NELT).
  JA     :IN       Integer JA(NELT).
  A      :IN       Double Precision A(NELT).
          These arrays contain the matrix data structure for A.
          It could take any form.  See "Description", below,
          for more details.
  ISYM   :IN       Integer.
          Flag to indicate symmetric storage format.
          If ISYM=0, all non-zero entries of the matrix are stored.
          If ISYM=1, the matrix is symmetric, and only the upper
          or lower triangle of the matrix is stored.
  MATVEC :EXT      External.
          Name of a routine which performs the matrix vector multiply

SLATEC3 (DACOSH through DS2Y) - 327



          Y = A*X given A and X.  The name of the MATVEC routine must
          be declared external in the calling program.  The calling
          sequence to MATVEC is:
              CALL MATVEC(N, X, Y, NELT, IA, JA, A, ISYM)
          where N is the number of unknowns, Y is the product A*X
          upon return, X is an input vector, and NELT is the number of
          non-zeros in the SLAP IA, JA, A storage for the matrix A.
          ISYM is a flag which, if non-zero, denotes that A is
          symmetric and only the lower or upper triangle is stored.
  MSOLVE :EXT      External.
          Name of the routine which solves a linear system Mz = r for
          z given r with the preconditioning matrix M (M is supplied via
          RWORK and IWORK arrays.  The name of the MSOLVE routine must
          be declared external in the calling program.  The calling
          sequence to MSOLVE is:
              CALL MSOLVE(N, R, Z, NELT, IA, JA, A, ISYM, RWORK, IWORK)
          Where N is the number of unknowns, R is the right-hand side
          vector and Z is the solution upon return.  NELT, IA, JA, A and
          ISYM are defined as above.  RWORK is a double precision array
          that can be used to pass necessary preconditioning information
          and/or workspace to MSOLVE.  IWORK is an integer work array
          for the same purpose as RWORK.
  ITOL   :IN       Integer.
          Flag to indicate the type of convergence criterion used.
          ITOL=0  Means the  iteration stops when the test described
                  below on  the  residual RL  is satisfied.  This is
                  the  "Natural Stopping Criteria" for this routine.
                  Other values  of   ITOL  cause  extra,   otherwise
                  unnecessary, computation per iteration and     are
                  therefore  much less  efficient.  See  ISDGMR (the
                  stop test routine) for more information.
          ITOL=1  Means   the  iteration stops   when the first test
                  described below on  the residual RL  is satisfied,
                  and there  is either right  or  no preconditioning
                  being used.
          ITOL=2  Implies     that   the  user    is   using    left
                  preconditioning, and the second stopping criterion
                  below is used.
          ITOL=3  Means the  iteration stops   when  the  third test
                  described below on Minv*Residual is satisfied, and
                  there is either left  or no  preconditioning being
                  used.
          ITOL=11 is    often  useful  for   checking  and comparing
                  different routines.  For this case, the  user must
                  supply  the  "exact" solution or  a  very accurate
                  approximation (one with  an  error much less  than
                  TOL) through a common block,
                      COMMON /DSLBLK/ SOLN( )
                  If ITOL=11, iteration stops when the 2-norm of the
                  difference between the iterative approximation and
                  the user-supplied solution  divided by the  2-norm
                  of the  user-supplied solution  is  less than TOL.
                  Note that this requires  the  user to  set up  the
                  "COMMON     /DSLBLK/ SOLN(LENGTH)"  in the calling
                  routine.  The routine with this declaration should
                  be loaded before the stop test so that the correct
                  length is used by  the loader.  This procedure  is
                  not standard Fortran and may not work correctly on
                  your   system (although  it  has  worked  on every
                  system the authors have tried).  If ITOL is not 11
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                  then this common block is indeed standard Fortran.
  TOL    :INOUT    Double Precision.
          Convergence criterion, as described below.  If TOL is set
          to zero on input, then a default value of 500*(the smallest
          positive magnitude, machine epsilon) is used.
  ITMAX  :DUMMY    Integer.
          Maximum number of iterations in most SLAP routines.  In
          this routine this does not make sense.  The maximum number
          of iterations here is given by ITMAX = MAXL*(NRMAX+1).
          See IGWK for definitions of MAXL and NRMAX.
  ITER   :OUT      Integer.
          Number of iterations required to reach convergence, or
          ITMAX if convergence criterion could not be achieved in
          ITMAX iterations.
  ERR    :OUT      Double Precision.
          Error estimate of error in final approximate solution, as
          defined by ITOL.  Letting norm() denote the Euclidean
          norm, ERR is defined as follows..
 
          If ITOL=0, then ERR = norm(SB*(B-A*X(L)))/norm(SB*B),
                                for right or no preconditioning, and
                          ERR = norm(SB*(M-inverse)*(B-A*X(L)))/
                                 norm(SB*(M-inverse)*B),
                                for left preconditioning.
          If ITOL=1, then ERR = norm(SB*(B-A*X(L)))/norm(SB*B),
                                since right or no preconditioning
                                being used.
          If ITOL=2, then ERR = norm(SB*(M-inverse)*(B-A*X(L)))/
                                 norm(SB*(M-inverse)*B),
                                since left preconditioning is being
                                used.
          If ITOL=3, then ERR =  Max  |(Minv*(B-A*X(L)))(i)/x(i)|
                                i=1,n
          If ITOL=11, then ERR = norm(SB*(X(L)-SOLN))/norm(SB*SOLN).
  IERR   :OUT      Integer.
          Return error flag.
                IERR = 0 => All went well.
                IERR = 1 => Insufficient storage allocated for
                            RGWK or IGWK.
                IERR = 2 => Routine DGMRES failed to reduce the norm
                            of the current residual on its last call,
                            and so the iteration has stalled.  In
                            this case, X equals the last computed
                            approximation.  The user must either
                            increase MAXL, or choose a different
                            initial guess.
                IERR =-1 => Insufficient length for RGWK array.
                            IGWK(6) contains the required minimum
                            length of the RGWK array.
                IERR =-2 => Illegal value of ITOL, or ITOL and JPRE
                            values are inconsistent.
          For IERR <= 2, RGWK(1) = RHOL, which is the norm on the
          left-hand-side of the relevant stopping test defined
          below associated with the residual for the current
          approximation X(L).
  IUNIT  :IN       Integer.
          Unit number on which to write the error at each iteration,
          if this is desired for monitoring convergence.  If unit
          number is 0, no writing will occur.
  SB     :IN       Double Precision SB(N).
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          Array of length N containing scale factors for the right
          hand side vector B.  If JSCAL.eq.0 (see below), SB need
          not be supplied.
  SX     :IN       Double Precision SX(N).
          Array of length N containing scale factors for the solution
          vector X.  If JSCAL.eq.0 (see below), SX need not be
          supplied.  SB and SX can be the same array in the calling
          program if desired.
  RGWK   :INOUT    Double Precision RGWK(LRGW).
          Double Precision array used for workspace by DGMRES.
          On return, RGWK(1) = RHOL.  See IERR for definition of RHOL.
  LRGW   :IN       Integer.
          Length of the double precision workspace, RGWK.
          LRGW >= 1 + N*(MAXL+6) + MAXL*(MAXL+3).
          See below for definition of MAXL.
          For the default values, RGWK has size at least 131 + 16*N.
  IGWK   :INOUT    Integer IGWK(LIGW).
          The following IGWK parameters should be set by the user
          before calling this routine.
          IGWK(1) = MAXL.  Maximum dimension of Krylov subspace in
             which X - X0 is to be found (where, X0 is the initial
             guess).  The default value of MAXL is 10.
          IGWK(2) = KMP.  Maximum number of previous Krylov basis
             vectors to which each new basis vector is made orthogonal.
             The default value of KMP is MAXL.
          IGWK(3) = JSCAL.  Flag indicating whether the scaling
             arrays SB and SX are to be used.
             JSCAL = 0 => SB and SX are not used and the algorithm
                will perform as if all SB(I) = 1 and SX(I) = 1.
             JSCAL = 1 =>  Only SX is used, and the algorithm
                performs as if all SB(I) = 1.
             JSCAL = 2 =>  Only SB is used, and the algorithm
                performs as if all SX(I) = 1.
             JSCAL = 3 =>  Both SB and SX are used.
          IGWK(4) = JPRE.  Flag indicating whether preconditioning
             is being used.
             JPRE = 0  =>  There is no preconditioning.
             JPRE > 0  =>  There is preconditioning on the right
                only, and the solver will call routine MSOLVE.
             JPRE < 0  =>  There is preconditioning on the left
                only, and the solver will call routine MSOLVE.
          IGWK(5) = NRMAX.  Maximum number of restarts of the
             Krylov iteration.  The default value of NRMAX = 10.
             if IWORK(5) = -1,  then no restarts are performed (in
             this case, NRMAX is set to zero internally).
          The following IWORK parameters are diagnostic information
          made available to the user after this routine completes.
          IGWK(6) = MLWK.  Required minimum length of RGWK array.
          IGWK(7) = NMS.  The total number of calls to MSOLVE.
  LIGW   :IN       Integer.
          Length of the integer workspace, IGWK.  LIGW >= 20.
  RWORK  :WORK     Double Precision RWORK(USER DEFINED).
          Double Precision array that can be used for workspace in
          MSOLVE.
  IWORK  :WORK     Integer IWORK(USER DEFINED).
          Integer array that can be used for workspace in MSOLVE.
 
  *Description:
        DGMRES solves a linear system A*X = B rewritten in the form:
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         (SB*A*(M-inverse)*(SX-inverse))*(SX*M*X) = SB*B,
 
        with right preconditioning, or
 
         (SB*(M-inverse)*A*(SX-inverse))*(SX*X) = SB*(M-inverse)*B,
 
        with left preconditioning, where A is an N-by-N double precision
        matrix, X and B are N-vectors,  SB and SX  are diagonal scaling
        matrices,   and M is  a preconditioning    matrix.   It uses
        preconditioned  Krylov   subpace  methods  based     on  the
        generalized minimum residual  method (GMRES).   This routine
        optionally performs  either  the  full     orthogonalization
        version of the  GMRES  algorithm or an incomplete variant of
        it.  Both versions use restarting of the linear iteration by
        default, although the user can disable this feature.
 
        The GMRES  algorithm generates a sequence  of approximations
        X(L) to the  true solution of the above  linear system.  The
        convergence criteria for stopping the  iteration is based on
        the size  of the  scaled norm of  the residual  R(L)  =  B -
        A*X(L).  The actual stopping test is either:
 
                norm(SB*(B-A*X(L))) .le. TOL*norm(SB*B),
 
        for right preconditioning, or
 
                norm(SB*(M-inverse)*(B-A*X(L))) .le.
                        TOL*norm(SB*(M-inverse)*B),
 
        for left preconditioning, where norm() denotes the Euclidean
        norm, and TOL is  a positive scalar less  than one  input by
        the user.  If TOL equals zero  when DGMRES is called, then a
        default  value  of 500*(the   smallest  positive  magnitude,
        machine epsilon) is used.  If the  scaling arrays SB  and SX
        are used, then  ideally they  should be chosen  so  that the
        vectors SX*X(or SX*M*X) and  SB*B have all their  components
        approximately equal  to  one in  magnitude.  If one wants to
        use the same scaling in X  and B, then  SB and SX can be the
        same array in the calling program.
 
        The following is a list of the other routines and their
        functions used by DGMRES:
        DPIGMR  Contains the main iteration loop for GMRES.
        DORTH   Orthogonalizes a new vector against older basis vectors.
        DHEQR   Computes a QR decomposition of a Hessenberg matrix.
        DHELS   Solves a Hessenberg least-squares system, using QR
                factors.
        DRLCAL  Computes the scaled residual RL.
        DXLCAL  Computes the solution XL.
        ISDGMR  User-replaceable stopping routine.
 
        This routine does  not care  what matrix data   structure is
        used for  A and M.  It simply   calls  the MATVEC and MSOLVE
        routines, with  the arguments as  described above.  The user
        could write any type of structure and the appropriate MATVEC
        and MSOLVE routines.  It is assumed  that A is stored in the
        IA, JA, A  arrays in some fashion and  that M (or INV(M)) is
        stored  in  IWORK  and  RWORK   in  some fashion.   The SLAP
        routines DSDCG and DSICCG are examples of this procedure.
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        Two  examples  of  matrix  data structures  are the: 1) SLAP
        Triad  format and 2) SLAP Column format.
 
        =================== S L A P Triad format ===================
        This routine requires that the  matrix A be   stored in  the
        SLAP  Triad format.  In  this format only the non-zeros  are
        stored.  They may appear in  *ANY* order.  The user supplies
        three arrays of  length NELT, where  NELT is  the number  of
        non-zeros in the matrix: (IA(NELT), JA(NELT), A(NELT)).  For
        each non-zero the user puts the row and column index of that
        matrix element  in the IA and  JA arrays.  The  value of the
        non-zero   matrix  element is  placed  in  the corresponding
        location of the A array.   This is  an  extremely  easy data
        structure to generate.  On  the  other hand it   is  not too
        efficient on vector computers for  the iterative solution of
        linear systems.  Hence,   SLAP changes   this  input    data
        structure to the SLAP Column format  for  the iteration (but
        does not change it back).
 
        Here is an example of the  SLAP Triad   storage format for a
        5x5 Matrix.  Recall that the entries may appear in any order.
 
            5x5 Matrix      SLAP Triad format for 5x5 matrix on left.
                               1  2  3  4  5  6  7  8  9 10 11
        |11 12  0  0 15|   A: 51 12 11 33 15 53 55 22 35 44 21
        |21 22  0  0  0|  IA:  5  1  1  3  1  5  5  2  3  4  2
        | 0  0 33  0 35|  JA:  1  2  1  3  5  3  5  2  5  4  1
        | 0  0  0 44  0|
        |51  0 53  0 55|
 
        =================== S L A P Column format ==================
 
        This routine  requires that  the matrix A  be stored in  the
        SLAP Column format.  In this format the non-zeros are stored
        counting down columns (except for  the diagonal entry, which
        must appear first in each  "column")  and are stored  in the
        double precision array A.   In other words,  for each column
        in the matrix put the diagonal entry in  A.  Then put in the
        other non-zero  elements going down  the column (except  the
        diagonal) in order.   The  IA array holds the  row index for
        each non-zero.  The JA array holds the offsets  into the IA,
        A arrays  for  the  beginning  of each   column.   That  is,
        IA(JA(ICOL)),  A(JA(ICOL)) points   to the beginning  of the
        ICOL-th   column    in    IA and   A.      IA(JA(ICOL+1)-1),
        A(JA(ICOL+1)-1) points to  the  end of the   ICOL-th column.
        Note that we always have  JA(N+1) = NELT+1,  where N is  the
        number of columns in  the matrix and NELT  is the number  of
        non-zeros in the matrix.
 
        Here is an example of the  SLAP Column  storage format for a
        5x5 Matrix (in the A and IA arrays '|'  denotes the end of a
        column):
 
            5x5 Matrix      SLAP Column format for 5x5 matrix on left.
                               1  2  3    4  5    6  7    8    9 10 11
        |11 12  0  0 15|   A: 11 21 51 | 22 12 | 33 53 | 44 | 55 15 35
        |21 22  0  0  0|  IA:  1  2  5 |  2  1 |  3  5 |  4 |  5  1  3
        | 0  0 33  0 35|  JA:  1  4  6    8  9   12
        | 0  0  0 44  0|
        |51  0 53  0 55|
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  *Cautions:
      This routine will attempt to write to the Fortran logical output
      unit IUNIT, if IUNIT .ne. 0.  Thus, the user must make sure that
      this logical unit is attached to a file or terminal before calling
      this routine with a non-zero value for IUNIT.  This routine does
      not check for the validity of a non-zero IUNIT unit number.
 
 ***REFERENCES  1. Peter N. Brown and A. C. Hindmarsh, Reduced Storage
                   Matrix Methods in Stiff ODE Systems, Lawrence Liver-
                   more National Laboratory Report UCRL-95088, Rev. 1,
                   Livermore, California, June 1987.
                2. Mark K. Seager, A SLAP for the Masses, in
                   G. F. Carey, Ed., Parallel Supercomputing: Methods,
                   Algorithms and Applications, Wiley, 1989, pp.135-155.
 ***ROUTINES CALLED  D1MACH, DCOPY, DNRM2, DPIGMR
 ***REVISION HISTORY  (YYMMDD)
    890404  DATE WRITTEN
    890404  Previous REVISION DATE
    890915  Made changes requested at July 1989 CML Meeting.  (MKS)
    890922  Numerous changes to prologue to make closer to SLATEC
            standard.  (FNF)
    890929  Numerous changes to reduce SP/DP differences.  (FNF)
    891004  Added new reference.
    910411  Prologue converted to Version 4.0 format.  (BAB)
    910506  Corrected errors in C***ROUTINES CALLED list.  (FNF)
    920407  COMMON BLOCK renamed DSLBLK.  (WRB)
    920511  Added complete declaration section.  (WRB)
    920929  Corrected format of references.  (FNF)
    921019  Changed 500.0 to 500 to reduce SP/DP differences.  (FNF)
    921026  Added check for valid value of ITOL.  (FNF)
    END PROLOGUE
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DGTSL

      SUBROUTINE DGTSL (N, C, D, E, B, INFO)
 ***BEGIN PROLOGUE  DGTSL
 ***PURPOSE  Solve a tridiagonal linear system.
 ***LIBRARY   SLATEC (LINPACK)
 ***CATEGORY  D2A2A
 ***TYPE      DOUBLE PRECISION (SGTSL-S, DGTSL-D, CGTSL-C)
 ***KEYWORDS  LINEAR ALGEBRA, LINPACK, MATRIX, SOLVE, TRIDIAGONAL
 ***AUTHOR  Dongarra, J., (ANL)
 ***DESCRIPTION
 
      DGTSL given a general tridiagonal matrix and a right hand
      side will find the solution.
 
      On Entry
 
         N       INTEGER
                 is the order of the tridiagonal matrix.
 
         C       DOUBLE PRECISION(N)
                 is the subdiagonal of the tridiagonal matrix.
                 C(2) through C(N) should contain the subdiagonal.
                 On output C is destroyed.
 
         D       DOUBLE PRECISION(N)
                 is the diagonal of the tridiagonal matrix.
                 On output D is destroyed.
 
         E       DOUBLE PRECISION(N)
                 is the superdiagonal of the tridiagonal matrix.
                 E(1) through E(N-1) should contain the superdiagonal.
                 On output E is destroyed.
 
         B       DOUBLE PRECISION(N)
                 is the right hand side vector.
 
      On Return
 
         B       is the solution vector.
 
         INFO    INTEGER
                 = 0 normal value.
                 = K if the K-th element of the diagonal becomes
                     exactly zero.  The subroutine returns when
                     this is detected.
 
 ***REFERENCES  J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
                  Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED  (NONE)
 ***REVISION HISTORY  (YYMMDD)
    780814  DATE WRITTEN
    890531  Changed all specific intrinsics to generic.  (WRB)
    890831  Modified array declarations.  (WRB)
    890831  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    900326  Removed duplicate information from DESCRIPTION section.
            (WRB)
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    920501  Reformatted the REFERENCES section.  (WRB)
    END PROLOGUE
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DHFTI

      SUBROUTINE DHFTI (A, MDA, M, N, B, MDB, NB, TAU, KRANK, RNORM, H,
     +   G, IP)
 ***BEGIN PROLOGUE  DHFTI
 ***PURPOSE  Solve a least squares problem for banded matrices using
             sequential accumulation of rows of the data matrix.
             Exactly one right-hand side vector is permitted.
 ***LIBRARY   SLATEC
 ***CATEGORY  D9
 ***TYPE      DOUBLE PRECISION (HFTI-S, DHFTI-D)
 ***KEYWORDS  CURVE FITTING, LEAST SQUARES
 ***AUTHOR  Lawson, C. L., (JPL)
            Hanson, R. J., (SNLA)
 ***DESCRIPTION
 
      DIMENSION A(MDA,N),(B(MDB,NB) or B(M)),RNORM(NB),H(N),G(N),IP(N)
 
      This subroutine solves a linear least squares problem or a set of
      linear least squares problems having the same matrix but different
      right-side vectors.  The problem data consists of an M by N matrix
      A, an M by NB matrix B, and an absolute tolerance parameter TAU
      whose usage is described below.  The NB column vectors of B
      represent right-side vectors for NB distinct linear least squares
      problems.
 
      This set of problems can also be written as the matrix least
      squares problem
 
                        AX = B,
 
      where X is the N by NB solution matrix.
 
      Note that if B is the M by M identity matrix, then X will be the
      pseudo-inverse of A.
 
      This subroutine first transforms the augmented matrix (A B) to a
      matrix (R C) using premultiplying Householder transformations with
      column interchanges.  All subdiagonal elements in the matrix R are
      zero and its diagonal elements satisfy
 
                        ABS(R(I,I)).GE.ABS(R(I+1,I+1)),
 
                        I = 1,...,L-1, where
 
                        L = MIN(M,N).
 
      The subroutine will compute an integer, KRANK, equal to the number
      of diagonal terms of R that exceed TAU in magnitude. Then a
      solution of minimum Euclidean length is computed using the first
      KRANK rows of (R C).
 
      To be specific we suggest that the user consider an easily
      computable matrix norm, such as, the maximum of all column sums of
      magnitudes.
 
      Now if the relative uncertainty of B is EPS, (norm of uncertainty/
      norm of B), it is suggested that TAU be set approximately equal to
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      EPS*(norm of A).
 
      The user must dimension all arrays appearing in the call list..
      A(MDA,N),(B(MDB,NB) or B(M)),RNORM(NB),H(N),G(N),IP(N).  This
      permits the solution of a range of problems in the same array
      space.
 
      The entire set of parameters for DHFTI are
 
      INPUT.. All TYPE REAL variables are DOUBLE PRECISION
 
      A(*,*),MDA,M,N    The array A(*,*) initially contains the M by N
                        matrix A of the least squares problem AX = B.
                        The first dimensioning parameter of the array
                        A(*,*) is MDA, which must satisfy MDA.GE.M
                        Either M.GE.N or M.LT.N is permitted.  There
                        is no restriction on the rank of A.  The
                        condition MDA.LT.M is considered an error.
 
      B(*),MDB,NB       If NB = 0 the subroutine will perform the
                        orthogonal decomposition but will make no
                        references to the array B(*).  If NB.GT.0
                        the array B(*) must initially contain the M by
                        NB matrix B of the least squares problem AX =
                        B.  If NB.GE.2 the array B(*) must be doubly
                        subscripted with first dimensioning parameter
                        MDB.GE.MAX(M,N).  If NB = 1 the array B(*) may
                        be either doubly or singly subscripted.  In
                        the latter case the value of MDB is arbitrary
                        but it should be set to some valid integer
                        value such as MDB = M.
 
                        The condition of NB.GT.1.AND.MDB.LT. MAX(M,N)
                        is considered an error.
 
      TAU               Absolute tolerance parameter provided by user
                        for pseudorank determination.
 
      H(*),G(*),IP(*)   Arrays of working space used by DHFTI.
 
      OUTPUT.. All TYPE REAL variables are DOUBLE PRECISION
 
      A(*,*)            The contents of the array A(*,*) will be
                        modified by the subroutine. These contents
                        are not generally required by the user.
 
      B(*)              On return the array B(*) will contain the N by
                        NB solution matrix X.
 
      KRANK             Set by the subroutine to indicate the
                        pseudorank of A.
 
      RNORM(*)          On return, RNORM(J) will contain the Euclidean
                        norm of the residual vector for the problem
                        defined by the J-th column vector of the array
                        B(*,*) for J = 1,...,NB.
 
      H(*),G(*)         On return these arrays respectively contain
                        elements of the pre- and post-multiplying
                        Householder transformations used to compute
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                        the minimum Euclidean length solution.
 
      IP(*)             Array in which the subroutine records indices
                        describing the permutation of column vectors.
                        The contents of arrays H(*),G(*) and IP(*)
                        are not generally required by the user.
 
 ***REFERENCES  C. L. Lawson and R. J. Hanson, Solving Least Squares
                  Problems, Prentice-Hall, Inc., 1974, Chapter 14.
 ***ROUTINES CALLED  D1MACH, DH12, XERMSG
 ***REVISION HISTORY  (YYMMDD)
    790101  DATE WRITTEN
    890531  Changed all specific intrinsics to generic.  (WRB)
    891006  Cosmetic changes to prologue.  (WRB)
    891006  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    900315  CALLs to XERROR changed to CALLs to XERMSG.  (THJ)
    901005  Replace usage of DDIFF with usage of D1MACH.  (RWC)
    920501  Reformatted the REFERENCES section.  (WRB)
    END PROLOGUE
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DINTP

      SUBROUTINE DINTP (X, Y, XOUT, YOUT, YPOUT, NEQN, KOLD, PHI, IVC,
     +   IV, KGI, GI, ALPHA, OG, OW, OX, OY)
 ***BEGIN PROLOGUE  DINTP
 ***PURPOSE  Approximate the solution at XOUT by evaluating the
             polynomial computed in DSTEPS at XOUT.  Must be used in
             conjunction with DSTEPS.
 ***LIBRARY   SLATEC (DEPAC)
 ***CATEGORY  I1A1B
 ***TYPE      DOUBLE PRECISION (SINTRP-S, DINTP-D)
 ***KEYWORDS  ADAMS METHOD, DEPAC, INITIAL VALUE PROBLEMS, ODE,
              ORDINARY DIFFERENTIAL EQUATIONS, PREDICTOR-CORRECTOR,
              SMOOTH INTERPOLANT
 ***AUTHOR  Watts, H. A., (SNLA)
 ***DESCRIPTION
 
    The methods in subroutine  DSTEPS  approximate the solution near  X
    by a polynomial.  Subroutine  DINTP  approximates the solution at
    XOUT  by evaluating the polynomial there.  Information defining this
    polynomial is passed from  DSTEPS  so  DINTP  cannot be used alone.
 
    Subroutine DSTEPS is completely explained and documented in the text
    "Computer Solution of Ordinary Differential Equations, the Initial
    Value Problem"  by L. F. Shampine and M. K. Gordon.
 
    Input to DINTP --
 
    The user provides storage in the calling program for the arrays in
    the call list
       DIMENSION Y(NEQN),YOUT(NEQN),YPOUT(NEQN),PHI(NEQN,16),OY(NEQN)
                 AND ALPHA(12),OG(13),OW(12),GI(11),IV(10)
    and defines
       XOUT -- point at which solution is desired.
    The remaining parameters are defined in  DSTEPS  and passed to
    DINTP  from that subroutine
 
    Output from  DINTP --
 
       YOUT(*) -- solution at  XOUT
       YPOUT(*) -- derivative of solution at  XOUT
    The remaining parameters are returned unaltered from their input
    values.  Integration with  DSTEPS  may be continued.
 
 ***REFERENCES  H. A. Watts, A smoother interpolant for DE/STEP, INTRP
                  II, Report SAND84-0293, Sandia Laboratories, 1984.
 ***ROUTINES CALLED  (NONE)
 ***REVISION HISTORY  (YYMMDD)
    840201  DATE WRITTEN
    890831  Modified array declarations.  (WRB)
    890831  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    920501  Reformatted the REFERENCES section.  (WRB)
    END PROLOGUE
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DINTRV

      SUBROUTINE DINTRV (XT, LXT, X, ILO, ILEFT, MFLAG)
 ***BEGIN PROLOGUE  DINTRV
 ***PURPOSE  Compute the largest integer ILEFT in 1 .LE. ILEFT .LE. LXT
             such that XT(ILEFT) .LE. X where XT(*) is a subdivision of
             the X interval.
 ***LIBRARY   SLATEC
 ***CATEGORY  E3, K6
 ***TYPE      DOUBLE PRECISION (INTRV-S, DINTRV-D)
 ***KEYWORDS  B-SPLINE, DATA FITTING, INTERPOLATION, SPLINES
 ***AUTHOR  Amos, D. E., (SNLA)
 ***DESCRIPTION
 
      Written by Carl de Boor and modified by D. E. Amos
 
      Abstract    **** a double precision routine ****
          DINTRV is the INTERV routine of the reference.
 
          DINTRV computes the largest integer ILEFT in 1 .LE. ILEFT .LE.
          LXT such that XT(ILEFT) .LE. X where XT(*) is a subdivision of
          the X interval.  Precisely,
 
                       X .LT. XT(1)                1         -1
          if  XT(I) .LE. X .LT. XT(I+1)  then  ILEFT=I  , MFLAG=0
            XT(LXT) .LE. X                         LXT        1,
 
          That is, when multiplicities are present in the break point
          to the left of X, the largest index is taken for ILEFT.
 
      Description of Arguments
 
          Input      XT,X are double precision
           XT      - XT is a knot or break point vector of length LXT
           LXT     - length of the XT vector
           X       - argument
           ILO     - an initialization parameter which must be set
                     to 1 the first time the spline array XT is
                     processed by DINTRV.
 
          Output
           ILO     - ILO contains information for efficient process-
                     ing after the initial call and ILO must not be
                     changed by the user.  Distinct splines require
                     distinct ILO parameters.
           ILEFT   - largest integer satisfying XT(ILEFT) .LE. X
           MFLAG   - signals when X lies out of bounds
 
      Error Conditions
          None
 
 ***REFERENCES  Carl de Boor, Package for calculating with B-splines,
                  SIAM Journal on Numerical Analysis 14, 3 (June 1977),
                  pp. 441-472.
 ***ROUTINES CALLED  (NONE)
 ***REVISION HISTORY  (YYMMDD)
    800901  DATE WRITTEN
    890831  Modified array declarations.  (WRB)
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    890831  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    920501  Reformatted the REFERENCES section.  (WRB)
    END PROLOGUE
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DIR

      SUBROUTINE DIR(N, B, X, NELT, IA, JA, A, ISYM, MATVEC, MSOLVE, ITOL,
     $     TOL, ITMAX, ITER, ERR, IERR, IUNIT, R, Z, DZ, RWORK, IWORK)
 ***BEGIN PROLOGUE  DIR
 ***PURPOSE  Preconditioned Iterative Refinement Sparse Ax = b Solver.
             Routine to solve a general linear system  Ax = b  using
             iterative refinement with a matrix splitting.
 ***LIBRARY   SLATEC (SLAP)
 ***CATEGORY  D2A4, D2B4
 ***TYPE      DOUBLE PRECISION (SIR-S, DIR-D)
 ***KEYWORDS  ITERATIVE PRECONDITION, LINEAR SYSTEM, SLAP, SPARSE
 ***AUTHOR  Greenbaum, Anne, (Courant Institute)
            Seager, Mark K., (LLNL)
              Lawrence Livermore National Laboratory
              PO BOX 808, L-60
              Livermore, CA 94550 (510) 423-3141
              seager@llnl.gov
 ***DESCRIPTION
 
  *Usage:
      INTEGER  N, NELT, IA(NELT), JA(NELT), ISYM, ITOL, ITMAX
      INTEGER  ITER, IERR, IUNIT, IWORK(USER DEFINED)
      DOUBLE PRECISION B(N), X(N), A(NELT), TOL, ERR, R(N), Z(N), DZ(N)
      DOUBLE PRECISION RWORK(USER DEFINED)
      EXTERNAL MATVEC, MSOLVE
 
      CALL DIR(N, B, X, NELT, IA, JA, A, ISYM, MATVEC, MSOLVE, ITOL,
     $     TOL, ITMAX, ITER, ERR, IERR, IUNIT, R, Z, DZ, RWORK, IWORK)
 
  *Arguments:
  N      :IN       Integer.
          Order of the Matrix.
  B      :IN       Double Precision B(N).
          Right-hand side vector.
  X      :INOUT    Double Precision X(N).
          On input X is your initial guess for solution vector.
          On output X is the final approximate solution.
  NELT   :IN       Integer.
          Number of Non-Zeros stored in A.
  IA     :IN       Integer IA(NELT).
  JA     :IN       Integer JA(NELT).
  A      :IN       Double Precision A(NELT).
          These arrays contain the matrix data structure for A.
          It could take any form.  See "Description", below,
          for more details.
  ISYM   :IN       Integer.
          Flag to indicate symmetric storage format.
          If ISYM=0, all non-zero entries of the matrix are stored.
          If ISYM=1, the matrix is symmetric, and only the upper
          or lower triangle of the matrix is stored.
  MATVEC :EXT      External.
          Name of a routine which performs the matrix vector multiply
          Y = A*X given A and X.  The name of the MATVEC routine must
          be declared external in the calling program.  The calling
          sequence to MATVEC is:
              CALL MATVEC( N, X, Y, NELT, IA, JA, A, ISYM )
          Where N is the number of unknowns, Y is the product A*X
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          upon return, X is an input vector, NELT is the number of
          non-zeros in the SLAP IA, JA, A storage for the matrix A.
          ISYM is a flag which, if non-zero, denotes that A is
          symmetric and only the lower or upper triangle is stored.
  MSOLVE :EXT      External.
          Name of a routine which solves a linear system MZ = R for
          Z given R with the preconditioning matrix M (M is supplied via
          RWORK and IWORK arrays).  The name of the MSOLVE routine must
          be declared external in the calling program.  The calling
          sequence to MSOLVE is:
              CALL MSOLVE(N, R, Z, NELT, IA, JA, A, ISYM, RWORK, IWORK)
          Where N is the number of unknowns, R is the right-hand side
          vector and Z is the solution upon return.  NELT, IA, JA, A and
          ISYM are defined as above.  RWORK is a double precision array
          that can be used to pass necessary preconditioning information
          and/or workspace to MSOLVE.  IWORK is an integer work array
          for the same purpose as RWORK.
  ITOL   :IN       Integer.
          Flag to indicate type of convergence criterion.
          If ITOL=1, iteration stops when the 2-norm of the residual
          divided by the 2-norm of the right-hand side is less than TOL.
          If ITOL=2, iteration stops when the 2-norm of M-inv times the
          residual divided by the 2-norm of M-inv times the right hand
          side is less than TOL, where M-inv is the inverse of the
          diagonal of A.
          ITOL=11 is often useful for checking and comparing different
          routines.  For this case, the user must supply the "exact"
          solution or a very accurate approximation (one with an error
          much less than TOL) through a common block,
              COMMON /DSLBLK/ SOLN( )
          If ITOL=11, iteration stops when the 2-norm of the difference
          between the iterative approximation and the user-supplied
          solution divided by the 2-norm of the user-supplied solution
          is less than TOL.  Note that this requires the user to set up
          the "COMMON /DSLBLK/ SOLN(LENGTH)" in the calling routine.
          The routine with this declaration should be loaded before the
          stop test so that the correct length is used by the loader.
          This procedure is not standard Fortran and may not work
          correctly on your system (although it has worked on every
          system the authors have tried).  If ITOL is not 11 then this
          common block is indeed standard Fortran.
  TOL    :INOUT    Double Precision.
          Convergence criterion, as described above.  (Reset if IERR=4.)
  ITMAX  :IN       Integer.
          Maximum number of iterations.
  ITER   :OUT      Integer.
          Number of iterations required to reach convergence, or
          ITMAX+1 if convergence criterion could not be achieved in
          ITMAX iterations.
  ERR    :OUT      Double Precision.
          Error estimate of error in final approximate solution, as
          defined by ITOL.
  IERR   :OUT      Integer.
          Return error flag.
            IERR = 0 => All went well.
            IERR = 1 => Insufficient space allocated for WORK or IWORK.
            IERR = 2 => Method failed to converge in ITMAX steps.
            IERR = 3 => Error in user input.
                        Check input values of N, ITOL.
            IERR = 4 => User error tolerance set too tight.
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                        Reset to 500*D1MACH(3).  Iteration proceeded.
            IERR = 5 => Preconditioning matrix, M, is not positive
                        definite.  (r,z) < 0.
            IERR = 6 => Matrix A is not positive definite.  (p,Ap) < 0.
  IUNIT  :IN       Integer.
          Unit number on which to write the error at each iteration,
          if this is desired for monitoring convergence.  If unit
          number is 0, no writing will occur.
  R      :WORK     Double Precision R(N).
  Z      :WORK     Double Precision Z(N).
  DZ     :WORK     Double Precision DZ(N).
          Double Precision arrays used for workspace.
  RWORK  :WORK     Double Precision RWORK(USER DEFINED).
          Double Precision array that can be used by  MSOLVE.
  IWORK  :WORK     Integer IWORK(USER DEFINED).
          Integer array that can be used by  MSOLVE.
 
  *Description:
        The basic algorithm for iterative refinement (also known as
        iterative improvement) is:
 
             n+1    n    -1       n
            X    = X  + M  (B - AX  ).
 
            -1   -1
        If M =  A then this  is the  standard  iterative  refinement
        algorithm and the "subtraction" in the  residual calculation
        should be done in double precision (which it is  not in this
        routine).
        If M = DIAG(A), the diagonal of A, then iterative refinement
        is  known  as  Jacobi's  method.   The  SLAP  routine  DSJAC
        implements this iterative strategy.
        If M = L, the lower triangle of A, then iterative refinement
        is known as Gauss-Seidel.   The SLAP routine DSGS implements
        this iterative strategy.
 
        This routine does  not care  what matrix data   structure is
        used for  A and M.  It simply   calls  the MATVEC and MSOLVE
        routines, with  the arguments as  described above.  The user
        could write any type of structure and the appropriate MATVEC
        and MSOLVE routines.  It is assumed  that A is stored in the
        IA, JA, A  arrays in some fashion and  that M (or INV(M)) is
        stored  in  IWORK  and  RWORK)  in  some fashion.   The SLAP
        routines DSJAC and DSGS are examples of this procedure.
 
        Two  examples  of  matrix  data structures  are the: 1) SLAP
        Triad  format and 2) SLAP Column format.
 
        =================== S L A P Triad format ===================
 
        In  this   format only the  non-zeros are  stored.  They may
        appear  in *ANY* order.   The user  supplies three arrays of
        length NELT, where  NELT  is the number  of non-zeros in the
        matrix:  (IA(NELT), JA(NELT),  A(NELT)).  For each  non-zero
        the  user puts   the row  and  column index   of that matrix
        element in the IA and JA arrays.  The  value of the non-zero
        matrix  element is  placed in  the corresponding location of
        the A  array.  This is  an extremely easy data  structure to
        generate.  On  the other hand it  is  not too  efficient  on
        vector  computers   for the  iterative  solution  of  linear
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        systems.  Hence, SLAP  changes this input  data structure to
        the SLAP   Column  format for the  iteration (but   does not
        change it back).
 
        Here is an example of the  SLAP Triad   storage format for a
        5x5 Matrix.  Recall that the entries may appear in any order.
 
            5x5 Matrix      SLAP Triad format for 5x5 matrix on left.
                               1  2  3  4  5  6  7  8  9 10 11
        |11 12  0  0 15|   A: 51 12 11 33 15 53 55 22 35 44 21
        |21 22  0  0  0|  IA:  5  1  1  3  1  5  5  2  3  4  2
        | 0  0 33  0 35|  JA:  1  2  1  3  5  3  5  2  5  4  1
        | 0  0  0 44  0|
        |51  0 53  0 55|
 
        =================== S L A P Column format ==================
 
        In  this format   the non-zeros are    stored counting  down
        columns (except  for the diagonal  entry, which must  appear
        first  in each "column") and are  stored in the  double pre-
        cision array  A. In  other  words,  for each  column  in the
        matrix  first put  the diagonal entry in A.  Then put in the
        other non-zero  elements going  down the column  (except the
        diagonal)  in order.  The IA array  holds the  row index for
        each non-zero.  The JA array  holds the offsets into the IA,
        A  arrays  for  the  beginning  of  each  column.  That  is,
        IA(JA(ICOL)),A(JA(ICOL)) are the first elements of the ICOL-
        th column in IA and A, and IA(JA(ICOL+1)-1), A(JA(ICOL+1)-1)
        are  the last elements of the ICOL-th column.   Note that we
        always have JA(N+1)=NELT+1, where N is the number of columns
        in the matrix  and NELT  is the number  of non-zeros  in the
        matrix.
 
        Here is an example of the  SLAP Column  storage format for a
        5x5 Matrix (in the A and IA arrays '|'  denotes the end of a
        column):
 
            5x5 Matrix      SLAP Column format for 5x5 matrix on left.
                               1  2  3    4  5    6  7    8    9 10 11
        |11 12  0  0 15|   A: 11 21 51 | 22 12 | 33 53 | 44 | 55 15 35
        |21 22  0  0  0|  IA:  1  2  5 |  2  1 |  3  5 |  4 |  5  1  3
        | 0  0 33  0 35|  JA:  1  4  6    8  9   12
        | 0  0  0 44  0|
        |51  0 53  0 55|
 
  *Examples:
        See the SLAP routines DSJAC, DSGS
 
  *Cautions:
      This routine will attempt to write to the Fortran logical output
      unit IUNIT, if IUNIT .ne. 0.  Thus, the user must make sure that
      this logical unit is attached to a file or terminal before calling
      this routine with a non-zero value for IUNIT.  This routine does
      not check for the validity of a non-zero IUNIT unit number.
 
 ***SEE ALSO  DSJAC, DSGS
 ***REFERENCES  1. Gene Golub and Charles Van Loan, Matrix Computations,
                   Johns Hopkins University Press, Baltimore, Maryland,
                   1983.
                2. Mark K. Seager, A SLAP for the Masses, in
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                   G. F. Carey, Ed., Parallel Supercomputing: Methods,
                   Algorithms and Applications, Wiley, 1989, pp.135-155.
 ***ROUTINES CALLED  D1MACH, ISDIR
 ***REVISION HISTORY  (YYMMDD)
    890404  DATE WRITTEN
    890404  Previous REVISION DATE
    890915  Made changes requested at July 1989 CML Meeting.  (MKS)
    890921  Removed TeX from comments.  (FNF)
    890922  Numerous changes to prologue to make closer to SLATEC
            standard.  (FNF)
    890929  Numerous changes to reduce SP/DP differences.  (FNF)
    891004  Added new reference.
    910411  Prologue converted to Version 4.0 format.  (BAB)
    910502  Removed MATVEC and MSOLVE from ROUTINES CALLED list.  (FNF)
    920407  COMMON BLOCK renamed DSLBLK.  (WRB)
    920511  Added complete declaration section.  (WRB)
    920929  Corrected format of references.  (FNF)
    921019  Changed 500.0 to 500 to reduce SP/DP differences.  (FNF)
    END PROLOGUE
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DLBETA

      DOUBLE PRECISION FUNCTION DLBETA (A, B)
 ***BEGIN PROLOGUE  DLBETA
 ***PURPOSE  Compute the natural logarithm of the complete Beta
             function.
 ***LIBRARY   SLATEC (FNLIB)
 ***CATEGORY  C7B
 ***TYPE      DOUBLE PRECISION (ALBETA-S, DLBETA-D, CLBETA-C)
 ***KEYWORDS  FNLIB, LOGARITHM OF THE COMPLETE BETA FUNCTION,
              SPECIAL FUNCTIONS
 ***AUTHOR  Fullerton, W., (LANL)
 ***DESCRIPTION
 
  DLBETA(A,B) calculates the double precision natural logarithm of
  the complete beta function for double precision arguments
  A and B.
 
 ***REFERENCES  (NONE)
 ***ROUTINES CALLED  D9LGMC, DGAMMA, DLNGAM, DLNREL, XERMSG
 ***REVISION HISTORY  (YYMMDD)
    770701  DATE WRITTEN
    890531  Changed all specific intrinsics to generic.  (WRB)
    890531  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    900315  CALLs to XERROR changed to CALLs to XERMSG.  (THJ)
    900727  Added EXTERNAL statement.  (WRB)
    END PROLOGUE
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DLGAMS

      SUBROUTINE DLGAMS (X, DLGAM, SGNGAM)
 ***BEGIN PROLOGUE  DLGAMS
 ***PURPOSE  Compute the logarithm of the absolute value of the Gamma
             function.
 ***LIBRARY   SLATEC (FNLIB)
 ***CATEGORY  C7A
 ***TYPE      DOUBLE PRECISION (ALGAMS-S, DLGAMS-D)
 ***KEYWORDS  ABSOLUTE VALUE OF THE LOGARITHM OF THE GAMMA FUNCTION,
              FNLIB, SPECIAL FUNCTIONS
 ***AUTHOR  Fullerton, W., (LANL)
 ***DESCRIPTION
 
  DLGAMS(X,DLGAM,SGNGAM) calculates the double precision natural
  logarithm of the absolute value of the Gamma function for
  double precision argument X and stores the result in double
  precision argument DLGAM.
 
 ***REFERENCES  (NONE)
 ***ROUTINES CALLED  DLNGAM
 ***REVISION HISTORY  (YYMMDD)
    770701  DATE WRITTEN
    890531  Changed all specific intrinsics to generic.  (WRB)
    890531  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    END PROLOGUE
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DLI

      DOUBLE PRECISION FUNCTION DLI (X)
 ***BEGIN PROLOGUE  DLI
 ***PURPOSE  Compute the logarithmic integral.
 ***LIBRARY   SLATEC (FNLIB)
 ***CATEGORY  C5
 ***TYPE      DOUBLE PRECISION (ALI-S, DLI-D)
 ***KEYWORDS  FNLIB, LOGARITHMIC INTEGRAL, SPECIAL FUNCTIONS
 ***AUTHOR  Fullerton, W., (LANL)
 ***DESCRIPTION
 
  DLI(X) calculates the double precision logarithmic integral
  for double precision argument X.
 
 ***REFERENCES  (NONE)
 ***ROUTINES CALLED  DEI, XERMSG
 ***REVISION HISTORY  (YYMMDD)
    770701  DATE WRITTEN
    890531  Changed all specific intrinsics to generic.  (WRB)
    890531  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    900315  CALLs to XERROR changed to CALLs to XERMSG.  (THJ)
    END PROLOGUE
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DLLSIA

      SUBROUTINE DLLSIA (A, MDA, M, N, B, MDB, NB, RE, AE, KEY, MODE,
     +   NP, KRANK, KSURE, RNORM, W, LW, IWORK, LIW, INFO)
 ***BEGIN PROLOGUE  DLLSIA
 ***PURPOSE  Solve linear least squares problems by performing a QR
             factorization of the input matrix using Householder
             transformations.  Emphasis is put on detecting possible
             rank deficiency.
 ***LIBRARY   SLATEC
 ***CATEGORY  D9, D5
 ***TYPE      DOUBLE PRECISION (LLSIA-S, DLLSIA-D)
 ***KEYWORDS  LINEAR LEAST SQUARES, QR FACTORIZATION
 ***AUTHOR  Manteuffel, T. A., (LANL)
 ***DESCRIPTION
 
      DLLSIA computes the least squares solution(s) to the problem AX=B
      where A is an M by N matrix with M.GE.N and B is the M by NB
      matrix of right hand sides.  User input bounds on the uncertainty
      in the elements of A are used to detect numerical rank deficiency.
      The algorithm employs a row and column pivot strategy to
      minimize the growth of uncertainty and round-off errors.
 
      DLLSIA requires (MDA+6)*N + (MDB+1)*NB + M dimensioned space
 
    ******************************************************************
    *                                                                *
    *         WARNING - All input arrays are changed on exit.        *
    *                                                                *
    ******************************************************************
      SUBROUTINE DLLSIA(A,MDA,M,N,B,MDB,NB,RE,AE,KEY,MODE,NP,
     1   KRANK,KSURE,RNORM,W,LW,IWORK,LIW,INFO)
 
      Input..All TYPE REAL variables are DOUBLE PRECISION
 
      A(,)          Linear coefficient matrix of AX=B, with MDA the
       MDA,M,N      actual first dimension of A in the calling program.
                    M is the row dimension (no. of EQUATIONS of the
                    problem) and N the col dimension (no. of UNKNOWNS).
                    Must have MDA.GE.M and M.GE.N.
 
      B(,)          Right hand side(s), with MDB the actual first
       MDB,NB       dimension of B in the calling program. NB is the
                    number of M by 1 right hand sides. Must have
                    MDB.GE.M. If NB = 0, B is never accessed.
 
    ******************************************************************
    *                                                                *
    *         Note - Use of RE and AE are what make this             *
    *                code significantly different from               *
    *                other linear least squares solvers.             *
    *                However, the inexperienced user is              *
    *                advised to set RE=0.,AE=0.,KEY=0.               *
    *                                                                *
    ******************************************************************
      RE(),AE(),KEY
      RE()          RE() is a vector of length N such that RE(I) is
                    the maximum relative uncertainty in column I of
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                    the matrix A. The values of RE() must be between
                    0 and 1. A minimum of 10*machine precision will
                    be enforced.
 
      AE()          AE() is a vector of length N such that AE(I) is
                    the maximum absolute uncertainty in column I of
                    the matrix A. The values of AE() must be greater
                    than or equal to 0.
 
      KEY           For ease of use, RE and AE may be input as either
                    vectors or scalars. If a scalar is input, the algo-
                    rithm will use that value for each column of A.
                    The parameter key indicates whether scalars or
                    vectors are being input.
                         KEY=0     RE scalar  AE scalar
                         KEY=1     RE vector  AE scalar
                         KEY=2     RE scalar  AE vector
                         KEY=3     RE vector  AE vector
 
      MODE          The integer mode indicates how the routine
                    is to react if rank deficiency is detected.
                    If MODE = 0 return immediately, no solution
                              1 compute truncated solution
                              2 compute minimal length solution
                    The inexperienced user is advised to set MODE=0
 
      NP            The first NP columns of A will not be interchanged
                    with other columns even though the pivot strategy
                    would suggest otherwise.
                    The inexperienced user is advised to set NP=0.
 
      WORK()        A real work array dimensioned 5*N.  However, if
                    RE or AE have been specified as vectors, dimension
                    WORK 4*N. If both RE and AE have been specified
                    as vectors, dimension WORK 3*N.
 
      LW            Actual dimension of WORK
 
      IWORK()       Integer work array dimensioned at least N+M.
 
      LIW           Actual dimension of IWORK.
 
      INFO          Is a flag which provides for the efficient
                    solution of subsequent problems involving the
                    same A but different B.
                    If INFO = 0 original call
                       INFO = 1 subsequent calls
                    On subsequent calls, the user must supply A, KRANK,
                    LW, IWORK, LIW, and the first 2*N locations of WORK
                    as output by the original call to DLLSIA. MODE must
                    be equal to the value of MODE in the original call.
                    If MODE.LT.2, only the first N locations of WORK
                    are accessed. AE, RE, KEY, and NP are not accessed.
 
      Output..All TYPE REAL variable are DOUBLE PRECISION
 
      A(,)          Contains the upper triangular part of the reduced
                    matrix and the transformation information. It togeth
                    with the first N elements of WORK (see below)
                    completely specify the QR factorization of A.
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      B(,)          Contains the N by NB solution matrix for X.
 
      KRANK,KSURE   The numerical rank of A,  based upon the relative
                    and absolute bounds on uncertainty, is bounded
                    above by KRANK and below by KSURE. The algorithm
                    returns a solution based on KRANK. KSURE provides
                    an indication of the precision of the rank.
 
      RNORM()       Contains the Euclidean length of the NB residual
                    vectors  B(I)-AX(I), I=1,NB.
 
      WORK()        The first N locations of WORK contain values
                    necessary to reproduce the Householder
                    transformation.
 
      IWORK()       The first N locations contain the order in
                    which the columns of A were used. The next
                    M locations contain the order in which the
                    rows of A were used.
 
      INFO          Flag to indicate status of computation on completion
                   -1   Parameter error(s)
                    0 - Rank deficient, no solution
                    1 - Rank deficient, truncated solution
                    2 - Rank deficient, minimal length solution
                    3 - Numerical rank 0, zero solution
                    4 - Rank .LT. NP
                    5 - Full rank
 
 ***REFERENCES  T. Manteuffel, An interval analysis approach to rank
                  determination in linear least squares problems,
                  Report SAND80-0655, Sandia Laboratories, June 1980.
 ***ROUTINES CALLED  D1MACH, DU11LS, DU12LS, XERMSG
 ***REVISION HISTORY  (YYMMDD)
    810801  DATE WRITTEN
    890831  Modified array declarations.  (WRB)
    891006  Cosmetic changes to prologue.  (WRB)
    891009  Removed unreferenced variable.  (WRB)
    891009  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    900315  CALLs to XERROR changed to CALLs to XERMSG.  (THJ)
    900510  Fixed an error message.  (RWC)
    920501  Reformatted the REFERENCES section.  (WRB)
    END PROLOGUE
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DLLTI2

      SUBROUTINE DLLTI2 (N, B, X, NEL, IEL, JEL, EL, DINV)
 ***BEGIN PROLOGUE  DLLTI2
 ***PURPOSE  SLAP Backsolve routine for LDL' Factorization.
             Routine to solve a system of the form  L*D*L' X = B,
             where L is a unit lower triangular matrix and D is a
             diagonal matrix and ' means transpose.
 ***LIBRARY   SLATEC (SLAP)
 ***CATEGORY  D2E
 ***TYPE      DOUBLE PRECISION (SLLTI2-S, DLLTI2-D)
 ***KEYWORDS  INCOMPLETE FACTORIZATION, ITERATIVE PRECONDITION, SLAP,
              SPARSE, SYMMETRIC LINEAR SYSTEM SOLVE
 ***AUTHOR  Greenbaum, Anne, (Courant Institute)
            Seager, Mark K., (LLNL)
              Lawrence Livermore National Laboratory
              PO BOX 808, L-60
              Livermore, CA 94550 (510) 423-3141
              seager@llnl.gov
 ***DESCRIPTION
 
  *Usage:
      INTEGER N, NEL, IEL(NEL), JEL(NEL)
      DOUBLE PRECISION B(N), X(N), EL(NEL), DINV(N)
 
      CALL DLLTI2( N, B, X, NEL, IEL, JEL, EL, DINV )
 
  *Arguments:
  N      :IN       Integer
          Order of the Matrix.
  B      :IN       Double Precision B(N).
          Right hand side vector.
  X      :OUT      Double Precision X(N).
          Solution to L*D*L' x = b.
  NEL    :IN       Integer.
          Number of non-zeros in the EL array.
  IEL    :IN       Integer IEL(NEL).
  JEL    :IN       Integer JEL(NEL).
  EL     :IN       Double Precision     EL(NEL).
          IEL, JEL, EL contain the unit lower triangular factor   of
          the incomplete decomposition   of the A  matrix  stored in
          SLAP Row format.   The diagonal of ones *IS* stored.  This
          structure can be set  up  by  the DS2LT routine.  See  the
          "Description", below for more details about the  SLAP  Row
          format.
  DINV   :IN       Double Precision DINV(N).
          Inverse of the diagonal matrix D.
 
  *Description:
        This routine is supplied with  the SLAP package as a routine
        to perform the MSOLVE operation in the SCG iteration routine
        for  the driver  routine DSICCG.   It must be called via the
        SLAP  MSOLVE calling sequence  convention  interface routine
        DSLLI.
          **** THIS ROUTINE ITSELF DOES NOT CONFORM TO THE ****
                **** SLAP MSOLVE CALLING CONVENTION ****
 
        IEL, JEL, EL should contain the unit lower triangular factor
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        of  the incomplete decomposition of  the A matrix  stored in
        SLAP Row format.   This IC factorization  can be computed by
        the  DSICS routine.  The  diagonal  (which is all one's) is
        stored.
 
        ==================== S L A P Row format ====================
 
        This routine requires  that the matrix A  be  stored  in the
        SLAP  Row format.   In this format  the non-zeros are stored
        counting across  rows (except for the diagonal  entry, which
        must  appear first  in each  "row")  and  are stored  in the
        double precision  array A.  In other words, for each row  in
        the matrix  put the diagonal  entry in A.   Then put in  the
        other  non-zero elements  going across  the row  (except the
        diagonal) in order.  The JA array holds the column index for
        each non-zero.  The IA array holds the offsets  into the JA,
        A  arrays  for  the   beginning  of  each  row.    That  is,
        JA(IA(IROW)),A(IA(IROW)) are the first elements of the IROW-
        th row in  JA and A,  and  JA(IA(IROW+1)-1), A(IA(IROW+1)-1)
        are  the last elements  of the  IROW-th row.   Note  that we
        always have  IA(N+1) = NELT+1, where N is the number of rows
        in the matrix  and  NELT is the  number of non-zeros  in the
        matrix.
 
        Here is an example of the SLAP Row storage format for a  5x5
        Matrix (in the A and JA arrays '|' denotes the end of a row):
 
            5x5 Matrix         SLAP Row format for 5x5 matrix on left.
                               1  2  3    4  5    6  7    8    9 10 11
        |11 12  0  0 15|   A: 11 12 15 | 22 21 | 33 35 | 44 | 55 51 53
        |21 22  0  0  0|  JA:  1  2  5 |  2  1 |  3  5 |  4 |  5  1  3
        | 0  0 33  0 35|  IA:  1  4  6    8  9   12
        | 0  0  0 44  0|
        |51  0 53  0 55|
 
        With  the SLAP  Row format  the "inner loop" of this routine
        should vectorize   on machines with   hardware  support  for
        vector gather/scatter operations.  Your compiler may require
        a  compiler directive  to  convince   it that there  are  no
        implicit vector  dependencies.  Compiler directives  for the
        Alliant FX/Fortran and CRI CFT/CFT77 compilers  are supplied
        with the standard SLAP distribution.
 
 ***SEE ALSO  DSICCG, DSICS
 ***REFERENCES  (NONE)
 ***ROUTINES CALLED  (NONE)
 ***REVISION HISTORY  (YYMMDD)
    871119  DATE WRITTEN
    881213  Previous REVISION DATE
    890915  Made changes requested at July 1989 CML Meeting.  (MKS)
    890922  Numerous changes to prologue to make closer to SLATEC
            standard.  (FNF)
    890929  Numerous changes to reduce SP/DP differences.  (FNF)
    910411  Prologue converted to Version 4.0 format.  (BAB)
    920511  Added complete declaration section.  (WRB)
    921113  Corrected C***CATEGORY line.  (FNF)
    930701  Updated CATEGORY section.  (FNF, WRB)
    END PROLOGUE
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DLNGAM

      DOUBLE PRECISION FUNCTION DLNGAM (X)
 ***BEGIN PROLOGUE  DLNGAM
 ***PURPOSE  Compute the logarithm of the absolute value of the Gamma
             function.
 ***LIBRARY   SLATEC (FNLIB)
 ***CATEGORY  C7A
 ***TYPE      DOUBLE PRECISION (ALNGAM-S, DLNGAM-D, CLNGAM-C)
 ***KEYWORDS  ABSOLUTE VALUE, COMPLETE GAMMA FUNCTION, FNLIB, LOGARITHM,
              SPECIAL FUNCTIONS
 ***AUTHOR  Fullerton, W., (LANL)
 ***DESCRIPTION
 
  DLNGAM(X) calculates the double precision logarithm of the
  absolute value of the Gamma function for double precision
  argument X.
 
 ***REFERENCES  (NONE)
 ***ROUTINES CALLED  D1MACH, D9LGMC, DGAMMA, XERMSG
 ***REVISION HISTORY  (YYMMDD)
    770601  DATE WRITTEN
    890531  Changed all specific intrinsics to generic.  (WRB)
    890531  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    900315  CALLs to XERROR changed to CALLs to XERMSG.  (THJ)
    900727  Added EXTERNAL statement.  (WRB)
    END PROLOGUE
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DLNREL

      DOUBLE PRECISION FUNCTION DLNREL (X)
 ***BEGIN PROLOGUE  DLNREL
 ***PURPOSE  Evaluate ln(1+X) accurate in the sense of relative error.
 ***LIBRARY   SLATEC (FNLIB)
 ***CATEGORY  C4B
 ***TYPE      DOUBLE PRECISION (ALNREL-S, DLNREL-D, CLNREL-C)
 ***KEYWORDS  ELEMENTARY FUNCTIONS, FNLIB, LOGARITHM
 ***AUTHOR  Fullerton, W., (LANL)
 ***DESCRIPTION
 
  DLNREL(X) calculates the double precision natural logarithm of
  (1.0+X) for double precision argument X.  This routine should
  be used when X is small and accurate to calculate the logarithm
  accurately (in the relative error sense) in the neighborhood
  of 1.0.
 
  Series for ALNR       on the interval -3.75000E-01 to  3.75000E-01
                                         with weighted error   6.35E-32
                                          log weighted error  31.20
                                significant figures required  30.93
                                     decimal places required  32.01
 
 ***REFERENCES  (NONE)
 ***ROUTINES CALLED  D1MACH, DCSEVL, INITDS, XERMSG
 ***REVISION HISTORY  (YYMMDD)
    770601  DATE WRITTEN
    890531  Changed all specific intrinsics to generic.  (WRB)
    890531  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    900315  CALLs to XERROR changed to CALLs to XERMSG.  (THJ)
    END PROLOGUE
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DLPDOC

      SUBROUTINE DLPDOC
 ***BEGIN PROLOGUE  DLPDOC
 ***PURPOSE  Sparse Linear Algebra Package Version 2.0.2 Documentation.
             Routines to solve large sparse symmetric and nonsymmetric
             positive definite linear systems, Ax = b, using precondi-
             tioned iterative methods.
 ***LIBRARY   SLATEC (SLAP)
 ***CATEGORY  D2A4, D2B4, Z
 ***TYPE      DOUBLE PRECISION (SLPDOC-S, DLPDOC-D)
 ***KEYWORDS  BICONJUGATE GRADIENT SQUARED, DOCUMENTATION,
              GENERALIZED MINIMUM RESIDUAL, ITERATIVE IMPROVEMENT,
              NORMAL EQUATIONS, ORTHOMIN,
              PRECONDITIONED CONJUGATE GRADIENT, SLAP,
              SPARSE ITERATIVE METHODS
 ***AUTHOR  Seager, Mark. K., (LLNL)
              User Systems Division
              Lawrence Livermore National Laboratory
              PO BOX 808, L-60
              Livermore, CA 94550
              (FTS) 543-3141, (510) 423-3141
              seager@llnl.gov
 ***DESCRIPTION
                                  The
                     Sparse Linear Algebra Package
                       Double Precision Routines
 
                 @@@@  @            @@    @@@@
                @       @ @           @   @   @       @
                @         @          @     @  @       @
                 @@@@  @         @       @ @@@@
                        @ @         @@@@@ @
                @       @ @         @       @ @
                 @@@@  @@@@@ @       @ @
 
       @       @                            @@@@        @@@
       @       @                           @       @      @    @
       @       @  @@@@  @ @                    @     @    @  @
       @       @ @       @ @  @             @@@      @   @   @
        @     @  @@@@@ @                @            @  @    @
         @   @   @         @               @         @@  @    @
          @@     @@@@  @               @@@@@ @@   @@@
 
 
     =================================================================
     ========================== Introduction =========================
     =================================================================
       This package was  originally derived from a set of  iterative
       routines written by Anne Greenbaum, as announced in "Routines
       for Solving Large Sparse Linear Systems",  Tentacle, Lawrence
       Livermore  National  Laboratory,  Livermore  Computing Center
       (January 1986), pp 15-21.
 
     This document  contains the specifications for  the  SLAP Version
     2.0 package, a Fortran 77  package  for  the  solution  of  large
     sparse   linear systems, Ax  =  b,  via  preconditioned iterative
     methods.   Included in  this  package are "core"  routines  to do
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     Iterative   Refinement  (Jacobi's  method),  Conjugate  Gradient,
     Conjugate Gradient on the normal equations, AA'y = b,  (where x =
     A'y and  A' denotes the  transpose of   A), BiConjugate Gradient,
     BiConjugate  Gradient  Squared, Orthomin and  Generalized Minimum
     Residual Iteration.    These "core" routines   do  not  require a
     "fixed"   data  structure   for storing  the   matrix  A  and the
     preconditioning   matrix  M.   The  user  is free  to  choose any
     structure that facilitates  efficient solution  of the problem at
     hand.  The drawback  to this approach  is that the user must also
     supply at least two routines  (MATVEC and MSOLVE,  say).   MATVEC
     must calculate, y = Ax, given x and the user's data structure for
     A.  MSOLVE must solve,  r = Mz, for z (*NOT*  r) given r  and the
     user's data  structure for  M (or its  inverse).  The user should
     choose M so that  inv(M)*A  is approximately the identity and the
     solution step r = Mz is "easy" to  solve.  For some of the "core"
     routines (Orthomin,  BiConjugate Gradient and  Conjugate Gradient
     on the  normal equations)   the user must  also  supply  a matrix
     transpose times   vector  routine  (MTTVEC,  say)  and (possibly,
     depending    on the "core"  method)   a  routine  that solves the
     transpose  of   the   preconditioning    step     (MTSOLV,  say).
     Specifically, MTTVEC is a routine which calculates y = A'x, given
     x and the user's data structure for A (A' is the transpose of A).
     MTSOLV is a routine which solves the system r = M'z for z given r
     and the user's data structure for M.
 
     This process of writing the matrix vector operations  can be time
     consuming and error  prone.  To alleviate  these problems we have
     written drivers   for  the  "core" methods  that  assume the user
     supplies one of two specific data structures (SLAP Triad and SLAP
     Column format), see  below.  Utilizing these  data structures  we
     have augmented   each  "core" method  with   two preconditioners:
     Diagonal  Scaling and Incomplete Factorization.  Diagonal scaling
     is easy to implement, vectorizes very  well and for problems that
     are  not too  ill-conditioned  reduces the  number  of iterations
     enough   to warrant its use.  On   the other  hand, an Incomplete
     factorization  (Incomplete  Cholesky for  symmetric systems   and
     Incomplete LU for nonsymmetric  systems) may  take much longer to
     calculate, but it reduces the iteration count (for most problems)
     significantly.  Our implementations  of IC and ILU  vectorize for
     machines with hardware gather scatter, but the vector lengths can
     be quite short if  the  number  of non-zeros  in a column is  not
     large.
 
     =================================================================
     ==================== Supplied Data Structures ===================
     =================================================================
     The following describes the data   structures supplied  with  the
     package: SLAP Triad and Column formats.
 
     ====================== S L A P Triad format =====================
 
     In the SLAP Triad format only the non-zeros are stored.  They may
     appear in *ANY* order.  The user supplies three  arrays of length
     NELT, where NELT  is the   number of  non-zeros  in the   matrix:
     (IA(NELT),  JA(NELT), A(NELT)).  If  the matrix is symmetric then
     one need only store the lower triangle (including  the  diagonal)
     and NELT would be the corresponding  number  of non-zeros stored.
     For each non-zero the user puts the row and column  index of that
     matrix  element   in the  IA  and JA  arrays.  The  value  of the
     non-zero matrix element is placed  in  the corresponding location
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     of  the A array.   This  is an extremely  easy  data structure to
     generate.  On the other hand, it is not very  efficient on vector
     computers for the iterative  solution of  linear systems.  Hence,
     SLAP changes this input data structure to  the SLAP Column format
     for the iteration (but does not change it back).
 
     Here  is an example   of  the  SLAP  Triad storage  format  for a
     nonsymmetric 5x5 Matrix.  NELT=11.   Recall that the  entries may
     appear in any order.
 
      5x5 Matrix       SLAP Triad format for 5x5 matrix on left.
                            1  2  3  4  5  6  7  8  9 10 11
     |11 12  0  0 15|   A: 51 12 11 33 15 53 55 22 35 44 21
     |21 22  0  0  0|  IA:  5  1  1  3  1  5  5  2  3  4  2
     | 0  0 33  0 35|  JA:  1  2  1  3  5  3  5  2  5  4  1
     | 0  0  0 44  0|
     |51  0 53  0 55|
 
     ====================== S L A P Column format ====================
 
     In the SLAP Column format  the non-zeros are stored counting down
     columns (except for the  diagonal entry,  which must appear first
     in each "column") and are stored in the double precision array A.
     In  other words,  for each  column  in the matrix  first put  the
     diagonal  entry  in A.  Then  put in the other  non-zero elements
     going  down the column  (except the  diagonal)  in order.  The IA
     array holds the row index  for each non-zero.  The JA array holds
     the  offsets  into the  IA, A  arrays for the  beginning of  each
     column. That is, IA(JA(ICOL)), A(JA(ICOL)) are the first elements
     of  the  ICOL-th  column  in  IA  and  A,  and  IA(JA(ICOL+1)-1),
     A(JA(ICOL+1)-1) are the last elements of the ICOL-th column. Note
     that we  always have  JA(N+1) = NELT+1, where  N is the number of
     columns in the matrix  and NELT is the number of non-zeros in the
     matrix.  If the matrix is symmetric one need only store the lower
     triangle  (including the diagonal)  and NELT would be the  corre-
     sponding number of non-zeros stored.
 
     Here is  an  example of the  SLAP   Column storage format  for  a
     nonsymmetric 5x5 Matrix (in the  A and  IA arrays '|' denotes the
     end of a column):
 
        5x5 Matrix      SLAP Column format for 5x5 matrix on left.
                            1  2  3    4  5    6  7    8    9 10 11
     |11 12  0  0 15|   A: 11 21 51 | 22 12 | 33 53 | 44 | 55 15 35
     |21 22  0  0  0|  IA:  1  2  5 |  2  1 |  3  5 |  4 |  5  1  3
     | 0  0 33  0 35|  JA:  1  4  6    8  9   12
     | 0  0  0 44  0|
     |51  0 53  0 55|
 
     =================================================================
     ====================== Which Method To Use ======================
     =================================================================
 
                           BACKGROUND
     In solving a large sparse linear system Ax = b using an iterative
     method, it   is  not necessary to actually   store  the matrix A.
     Rather, what is needed is a procedure  for multiplying the matrix
     A times a given vector y to obtain the matrix-vector product, Ay.
     SLAP has been written to take advantage of this fact.  The higher
     level routines in the package require storage only of the non-zero
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     elements of   A (and  their  positions), and  even this   can  be
     avoided, if the  user  writes his own subroutine for  multiplying
     the matrix times a vector  and   calls the lower-level  iterative
     routines in the package.
 
     If  the matrix A is ill-conditioned,  then most iterative methods
     will be slow to converge (if they converge  at all!).  To improve
     the  convergence  rate,  one  may use  a "matrix  splitting," or,
     "preconditioning matrix," say, M.  It is then necessary to solve,
     at each iteration, a linear system  with coefficient matrix M.  A
     good preconditioner  M should have  two  properties: (1) M should
     "approximate" A, in the sense that the  matrix inv(M)*A  (or some
     variant  thereof) is better conditioned  than the original matrix
     A; and  (2) linear  systems with coefficient  matrix M should  be
     much easier  to solve  than  the original system with coefficient
     matrix   A.   Preconditioning routines  in the   SLAP package are
     separate from the  iterative   routines,  so   that any of    the
     preconditioners provided in the package,   or one that the   user
     codes himself, can be used with any of the iterative routines.
 
                         CHOICE OF PRECONDITIONER
     If you  willing   to live with   either the SLAP Triad or  Column
     matrix data structure  you  can then  choose one  of two types of
     preconditioners   to   use:   diagonal  scaling    or  incomplete
     factorization.  To  choose   between these two   methods requires
     knowing  something  about the computer you're going  to run these
     codes on  and how well incomplete factorization  approximates the
     inverse of your matrix.
 
     Let us  suppose you have   a scalar  machine.   Then,  unless the
     incomplete factorization is very,  very poor this  is *GENERALLY*
     the method to choose.  It  will reduce the  number of  iterations
     significantly and is not all  that expensive  to compute.  So  if
     you have just one  linear system to solve  and  "just want to get
     the job  done" then try  incomplete factorization first.   If you
     are thinking of integrating some SLAP  iterative method into your
     favorite   "production  code" then  try incomplete  factorization
     first,  but  also check  to see that  diagonal  scaling is indeed
     slower for a large sample of test problems.
 
     Let us now suppose  you have  a  vector  computer  with  hardware
     gather/scatter support (Cray X-MP, Y-MP, SCS-40 or Cyber 205, ETA
     10,  ETA Piper,  Convex C-1,  etc.).   Then  it is much harder to
     choose  between the  two  methods.   The  versions  of incomplete
     factorization in SLAP do in fact vectorize, but have short vector
     lengths and the factorization step is relatively  more expensive.
     Hence,  for  most problems (i.e.,  unless  your  problem  is  ill
     conditioned,  sic!)  diagonal  scaling is  faster,  with its very
     fast    set up  time    and  vectorized  (with   long    vectors)
     preconditioning step (even though  it  may take more iterations).
     If you have several systems (or  right hand sides) to  solve that
     can  utilize  the  same  preconditioner  then the   cost   of the
     incomplete factorization can   be  amortized over these  several
     solutions.  This situation gives more advantage to the incomplete
     factorization methods.  If  you have  a  vector  machine  without
     hardware  gather/scatter (Cray  1,  Cray  2  &  Cray 3) then  the
     advantages for incomplete factorization are even less.
 
     If you're trying to shoehorn SLAP into your  favorite "production
     code" and can not easily generate either the SLAP Triad or Column
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     format  then  you are  left  to   your  own  devices in terms  of
     preconditioning.  Also,  you may  find that the   preconditioners
     supplied with SLAP are not sufficient  for your problem.  In this
     situation we would  recommend  that you   talk  with a  numerical
     analyst  versed in   iterative   methods   about   writing  other
     preconditioning  subroutines (e.g.,  polynomial  preconditioning,
     shifted incomplete factorization,  SOR  or SSOR  iteration).  You
     can always "roll your own"  by using the "core" iterative methods
     and supplying your own MSOLVE and MATVEC (and possibly MTSOLV and
     MTTVEC) routines.
 
                           SYMMETRIC SYSTEMS
     If your matrix is symmetric then you would want to use one of the
     symmetric system  solvers.    If  your  system  is  also positive
     definite,   (Ax,x) (Ax dot  product  with x) is  positive for all
     non-zero  vectors x,  then use   Conjugate Gradient (DCG,  DSDCG,
     DSICSG).  If you're  not sure it's SPD   (symmetric and  Positive
     Definite)  then try DCG anyway and  if it works, fine.  If you're
     sure your matrix is not  positive definite  then you  may want to
     try the iterative refinement   methods  (DIR)  or the  GMRES code
     (DGMRES) if DIR converges too slowly.
 
                          NONSYMMETRIC SYSTEMS
     This   is currently  an  area  of  active research  in  numerical
     analysis  and   there   are   new  strategies  being   developed.
     Consequently take the following advice with a grain of salt.   If
     you matrix is positive definite, (Ax,x)  (Ax  dot product  with x
     is positive for all non-zero  vectors x), then you can use any of
     the    methods   for   nonsymmetric   systems (Orthomin,   GMRES,
     BiConjugate Gradient, BiConjugate Gradient  Squared and Conjugate
     Gradient applied to the normal equations).  If your system is not
     too ill conditioned then try  BiConjugate Gradient Squared (BCGS)
     or GMRES (DGMRES).  Both  of  these methods converge very quickly
     and do  not require A'  or M' ('  denotes transpose) information.
     DGMRES  does require  some  additional storage,  though.  If  the
     system is very  ill conditioned  or   nearly positive  indefinite
     ((Ax,x) is positive,  but may be  very small),  then GMRES should
     be the first choice,  but try the  other  methods  if you have to
     fine tune  the solution process for a  "production code".  If you
     have a great preconditioner for the normal  equations (i.e., M is
     an approximation to the inverse of AA' rather than  just  A) then
     this is not a bad route to travel.  Old wisdom would say that the
     normal equations are a disaster  (since it squares the  condition
     number of the system and DCG convergence is linked to this number
     of    infamy), but   some     preconditioners    (like incomplete
     factorization) can reduce the condition number back below that of
     the original system.
 
     =================================================================
     ======================= Naming Conventions ======================
     =================================================================
     SLAP  iterative  methods,    matrix vector    and  preconditioner
     calculation  routines   follow a naming   convention  which, when
     understood, allows one to determine the iterative method and data
     structure(s) used.  The  subroutine  naming convention  takes the
     following form:
                           P[S][M]DESC
     where
         P  stands for the precision (or data type) of the routine and
            is required in all names,
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         S  denotes whether or not the routine requires the SLAP Triad
            or Column format (it does if the second letter of the name
            is S and does not otherwise),
         M  stands for the type of preconditioner used (only appears
            in drivers for "core" routines), and
      DESC  is some number of letters describing the method or purpose
            of the routine.  The following is a list of the "DESC"
            fields for iterative methods and their meaning:
              BCG,BC:       BiConjugate Gradient
              CG:           Conjugate Gradient
              CGN,CN:       Conjugate Gradient on the Normal equations
              CGS,CS:       biConjugate Gradient Squared
              GMRES,GMR,GM: Generalized Minimum RESidual
              IR,R:         Iterative Refinement
              JAC:          JACobi's method
              GS:           Gauss-Seidel
              OMN,OM:       OrthoMiN
 
     In the double precision version of SLAP, all routine names start
     with a D. The brackets around the S and M designate that these
     fields are optional.
 
     Here are some examples of the routines:
     1) DBCG: Double precision BiConjugate Gradient "core" routine.
        One can deduce that this is a "core" routine, because the S and
        M fields are missing and BiConjugate Gradient is an iterative
        method.
     2) DSDBCG: Double precision, SLAP data structure BCG with Diagonal
        scaling.
     3) DSLUBC: Double precision, SLAP data structure BCG with incom-
        plete LU factorization as the preconditioning.
     4) DCG: Double precision Conjugate Gradient "core" routine.
     5) DSDCG: Double precision, SLAP data structure Conjugate Gradient
        with Diagonal scaling.
     6) DSICCG: Double precision, SLAP data structure Conjugate Gra-
        dient with Incomplete Cholesky factorization preconditioning.
 
 
     =================================================================
     ===================== USER CALLABLE ROUTINES ====================
     =================================================================
     The following is a list of  the "user callable" SLAP routines and
     their one line descriptions.  The headers denote  the  file names
     where the routines can be found, as distributed for UNIX systems.
 
     Note:  Each core routine, DXXX, has a corresponding stop routine,
          ISDXXX.  If the stop routine does not have the specific stop
          test the user requires (e.g., weighted infinity norm),  then
          the user should modify the source for ISDXXX accordingly.
 
     ============================= dir.f =============================
     DIR: Preconditioned Iterative Refinement Sparse Ax = b Solver.
     DSJAC: Jacobi's Method Iterative Sparse Ax = b Solver.
     DSGS: Gauss-Seidel Method Iterative Sparse Ax = b Solver.
     DSILUR: Incomplete LU Iterative Refinement Sparse Ax = b Solver.
 
     ============================= dcg.f =============================
     DCG: Preconditioned Conjugate Gradient Sparse Ax=b Solver.
     DSDCG: Diagonally Scaled Conjugate Gradient Sparse Ax=b Solver.
     DSICCG: Incomplete Cholesky Conjugate Gradient Sparse Ax=b Solver.
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     ============================= dcgn.f ============================
     DCGN: Preconditioned CG Sparse Ax=b Solver for Normal Equations.
     DSDCGN: Diagonally Scaled CG Sparse Ax=b Solver for Normal Eqn's.
     DSLUCN: Incomplete LU CG Sparse Ax=b Solver for Normal Equations.
 
     ============================= dbcg.f ============================
     DBCG: Preconditioned BiConjugate Gradient Sparse Ax = b Solver.
     DSDBCG: Diagonally Scaled BiConjugate Gradient Sparse Ax=b Solver.
     DSLUBC: Incomplete LU BiConjugate Gradient Sparse Ax=b Solver.
 
     ============================= dcgs.f ============================
     DCGS: Preconditioned BiConjugate Gradient Squared Ax=b Solver.
     DSDCGS: Diagonally Scaled CGS Sparse Ax=b Solver.
     DSLUCS: Incomplete LU BiConjugate Gradient Squared Ax=b Solver.
 
     ============================= domn.f ============================
     DOMN: Preconditioned Orthomin Sparse Iterative Ax=b Solver.
     DSDOMN: Diagonally Scaled Orthomin Sparse Iterative Ax=b Solver.
     DSLUOM: Incomplete LU Orthomin Sparse Iterative Ax=b Solver.
 
     ============================ dgmres.f ===========================
     DGMRES: Preconditioned GMRES Iterative Sparse Ax=b Solver.
     DSDGMR: Diagonally Scaled GMRES Iterative Sparse Ax=b Solver.
     DSLUGM: Incomplete LU GMRES Iterative Sparse Ax=b Solver.
 
     ============================ dmset.f ============================
        The following routines are used to set up preconditioners.
 
     DSDS: Diagonal Scaling Preconditioner SLAP Set Up.
     DSDSCL: Diagonally Scales/Unscales a SLAP Column Matrix.
     DSD2S: Diagonal Scaling Preconditioner SLAP Normal Eqns Set Up.
     DS2LT: Lower Triangle Preconditioner SLAP Set Up.
     DSICS: Incomplete Cholesky Decomp. Preconditioner SLAP Set Up.
     DSILUS: Incomplete LU Decomposition Preconditioner SLAP Set Up.
 
     ============================ dmvops.f ===========================
        Most of the incomplete  factorization  (LL' and LDU) solvers
        in this  file require an  intermediate routine  to translate
        from the SLAP MSOLVE(N, R, Z, NELT, IA,  JA, A, ISYM, RWORK,
        IWORK) calling  convention to the calling  sequence required
        by  the solve routine.   This generally  is  accomplished by
        fishing out pointers to the preconditioner (stored in RWORK)
        from the  IWORK  array and then making a call to the routine
        that actually does the backsolve.
 
     DSMV: SLAP Column Format Sparse Matrix Vector Product.
     DSMTV: SLAP Column Format Sparse Matrix (transpose) Vector Prod.
     DSDI: Diagonal Matrix Vector Multiply.
     DSLI: SLAP MSOLVE for Lower Triangle Matrix (set up for DSLI2).
     DSLI2: Lower Triangle Matrix Backsolve.
     DSLLTI: SLAP MSOLVE for LDL' (IC) Fact. (set up for DLLTI2).
     DLLTI2: Backsolve routine for LDL' Factorization.
     DSLUI: SLAP MSOLVE for LDU Factorization (set up for DSLUI2).
     DSLUI2: SLAP Backsolve for LDU Factorization.
     DSLUTI: SLAP MTSOLV for LDU Factorization (set up for DSLUI4).
     DSLUI4: SLAP Backsolve for LDU Factorization.
     DSMMTI: SLAP MSOLVE for LDU Fact of Normal Eq (set up for DSMMI2).
     DSMMI2: SLAP Backsolve for LDU Factorization of Normal Equations.
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     =========================== dlaputil.f ==========================
        The following utility routines are useful additions to SLAP.
 
     DBHIN: Read Sparse Linear System in the Boeing/Harwell Format.
     DCHKW: SLAP WORK/IWORK Array Bounds Checker.
     DCPPLT: Printer Plot of SLAP Column Format Matrix.
     DS2Y: SLAP Triad to SLAP Column Format Converter.
     QS2I1D: Quick Sort Integer array, moving integer and DP arrays.
             (Used by DS2Y.)
     DTIN: Read in SLAP Triad Format Linear System.
     DTOUT: Write out SLAP Triad Format Linear System.
 
 
 ***REFERENCES  1. Mark K. Seager, A SLAP for the Masses, in
                   G. F. Carey, Ed., Parallel Supercomputing: Methods,
                   Algorithms and Applications, Wiley, 1989, pp.135-155.
 ***ROUTINES CALLED  (NONE)
 ***REVISION HISTORY  (YYMMDD)
    890404  DATE WRITTEN
    890404  Previous REVISION DATE
    890915  Made changes requested at July 1989 CML Meeting.  (MKS)
    890921  Removed TeX from comments.  (FNF)
    890922  Numerous changes to prologue to make closer to SLATEC
            standard.  (FNF)
    890929  Numerous changes to reduce SP/DP differences.  (FNF)
            -----( This produced Version 2.0.1. )-----
    891003  Rearranged list of user callable routines to agree with
            order in source deck.  (FNF)
    891004  Updated reference.
    910411  Prologue converted to Version 4.0 format.  (BAB)
            -----( This produced Version 2.0.2. )-----
    910506  Minor improvements to prologue.  (FNF)
    920511  Added complete declaration section.  (WRB)
    920929  Corrected format of reference.  (FNF)
    921019  Improved one-line descriptions, reordering some.  (FNF)
    END PROLOGUE
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DLSEI

      SUBROUTINE DLSEI (W, MDW, ME, MA, MG, N, PRGOPT, X, RNORME,
     +   RNORML, MODE, WS, IP)
 ***BEGIN PROLOGUE  DLSEI
 ***PURPOSE  Solve a linearly constrained least squares problem with
             equality and inequality constraints, and optionally compute
             a covariance matrix.
 ***LIBRARY   SLATEC
 ***CATEGORY  K1A2A, D9
 ***TYPE      DOUBLE PRECISION (LSEI-S, DLSEI-D)
 ***KEYWORDS  CONSTRAINED LEAST SQUARES, CURVE FITTING, DATA FITTING,
              EQUALITY CONSTRAINTS, INEQUALITY CONSTRAINTS,
              QUADRATIC PROGRAMMING
 ***AUTHOR  Hanson, R. J., (SNLA)
            Haskell, K. H., (SNLA)
 ***DESCRIPTION
 
      Abstract
 
      This subprogram solves a linearly constrained least squares
      problem with both equality and inequality constraints, and, if the
      user requests, obtains a covariance matrix of the solution
      parameters.
 
      Suppose there are given matrices E, A and G of respective
      dimensions ME by N, MA by N and MG by N, and vectors F, B and H of
      respective lengths ME, MA and MG.  This subroutine solves the
      linearly constrained least squares problem
 
                    EX = F, (E ME by N) (equations to be exactly
                                        satisfied)
                    AX = B, (A MA by N) (equations to be
                                        approximately satisfied,
                                        least squares sense)
                    GX .GE. H,(G MG by N) (inequality constraints)
 
      The inequalities GX .GE. H mean that every component of the
      product GX must be .GE. the corresponding component of H.
 
      In case the equality constraints cannot be satisfied, a
      generalized inverse solution residual vector length is obtained
      for F-EX.  This is the minimal length possible for F-EX.
 
      Any values ME .GE. 0, MA .GE. 0, or MG .GE. 0 are permitted.  The
      rank of the matrix E is estimated during the computation.  We call
      this value KRANKE.  It is an output parameter in IP(1) defined
      below.  Using a generalized inverse solution of EX=F, a reduced
      least squares problem with inequality constraints is obtained.
      The tolerances used in these tests for determining the rank
      of E and the rank of the reduced least squares problem are
      given in Sandia Tech. Rept. SAND-78-1290.  They can be
      modified by the user if new values are provided in
      the option list of the array PRGOPT(*).
 
      The user must dimension all arrays appearing in the call list..
      W(MDW,N+1),PRGOPT(*),X(N),WS(2*(ME+N)+K+(MG+2)*(N+7)),IP(MG+2*N+2)
      where K=MAX(MA+MG,N).  This allows for a solution of a range of
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      problems in the given working space.  The dimension of WS(*)
      given is a necessary overestimate.  Once a particular problem
      has been run, the output parameter IP(3) gives the actual
      dimension required for that problem.
 
      The parameters for DLSEI( ) are
 
      Input.. All TYPE REAL variables are DOUBLE PRECISION
 
      W(*,*),MDW,   The array W(*,*) is doubly subscripted with
      ME,MA,MG,N    first dimensioning parameter equal to MDW.
                    For this discussion let us call M = ME+MA+MG.  Then
                    MDW must satisfy MDW .GE. M.  The condition
                    MDW .LT. M is an error.
 
                    The array W(*,*) contains the matrices and vectors
 
                                   (E  F)
                                   (A  B)
                                   (G  H)
 
                    in rows and columns 1,...,M and 1,...,N+1
                    respectively.
 
                    The integers ME, MA, and MG are the
                    respective matrix row dimensions
                    of E, A and G.  Each matrix has N columns.
 
      PRGOPT(*)    This real-valued array is the option vector.
                   If the user is satisfied with the nominal
                   subprogram features set
 
                   PRGOPT(1)=1 (or PRGOPT(1)=1.0)
 
                   Otherwise PRGOPT(*) is a linked list consisting of
                   groups of data of the following form
 
                   LINK
                   KEY
                   DATA SET
 
                   The parameters LINK and KEY are each one word.
                   The DATA SET can be comprised of several words.
                   The number of items depends on the value of KEY.
                   The value of LINK points to the first
                   entry of the next group of data within
                   PRGOPT(*).  The exception is when there are
                   no more options to change.  In that
                   case, LINK=1 and the values KEY and DATA SET
                   are not referenced.  The general layout of
                   PRGOPT(*) is as follows.
 
                ...PRGOPT(1) = LINK1 (link to first entry of next group)
                .  PRGOPT(2) = KEY1 (key to the option change)
                .  PRGOPT(3) = data value (data value for this change)
                .       .
                .       .
                .       .
                ...PRGOPT(LINK1)   = LINK2 (link to the first entry of
                .                       next group)
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                .  PRGOPT(LINK1+1) = KEY2 (key to the option change)
                .  PRGOPT(LINK1+2) = data value
                ...     .
                .       .
                .       .
                ...PRGOPT(LINK) = 1 (no more options to change)
 
                   Values of LINK that are nonpositive are errors.
                   A value of LINK .GT. NLINK=100000 is also an error.
                   This helps prevent using invalid but positive
                   values of LINK that will probably extend
                   beyond the program limits of PRGOPT(*).
                   Unrecognized values of KEY are ignored.  The
                   order of the options is arbitrary and any number
                   of options can be changed with the following
                   restriction.  To prevent cycling in the
                   processing of the option array, a count of the
                   number of options changed is maintained.
                   Whenever this count exceeds NOPT=1000, an error
                   message is printed and the subprogram returns.
 
                   Options..
 
                   KEY=1
                          Compute in W(*,*) the N by N
                   covariance matrix of the solution variables
                   as an output parameter.  Nominally the
                   covariance matrix will not be computed.
                   (This requires no user input.)
                   The data set for this option is a single value.
                   It must be nonzero when the covariance matrix
                   is desired.  If it is zero, the covariance
                   matrix is not computed.  When the covariance matrix
                   is computed, the first dimensioning parameter
                   of the array W(*,*) must satisfy MDW .GE. MAX(M,N).
 
                   KEY=10
                          Suppress scaling of the inverse of the
                   normal matrix by the scale factor RNORM**2/
                   MAX(1, no. of degrees of freedom).  This option
                   only applies when the option for computing the
                   covariance matrix (KEY=1) is used.  With KEY=1 and
                   KEY=10 used as options the unscaled inverse of the
                   normal matrix is returned in W(*,*).
                   The data set for this option is a single value.
                   When it is nonzero no scaling is done.  When it is
                   zero scaling is done.  The nominal case is to do
                   scaling so if option (KEY=1) is used alone, the
                   matrix will be scaled on output.
 
                   KEY=2
                          Scale the nonzero columns of the
                          entire data matrix.
                   (E)
                   (A)
                   (G)
 
                   to have length one.  The data set for this
                   option is a single value.  It must be
                   nonzero if unit length column scaling
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                   is desired.
 
                   KEY=3
                          Scale columns of the entire data matrix
                   (E)
                   (A)
                   (G)
 
                   with a user-provided diagonal matrix.
                   The data set for this option consists
                   of the N diagonal scaling factors, one for
                   each matrix column.
 
                   KEY=4
                          Change the rank determination tolerance for
                   the equality constraint equations from
                   the nominal value of SQRT(DRELPR).  This quantity can
                   be no smaller than DRELPR, the arithmetic-
                   storage precision.  The quantity DRELPR is the
                   largest positive number such that T=1.+DRELPR
                   satisfies T .EQ. 1.  The quantity used
                   here is internally restricted to be at
                   least DRELPR.  The data set for this option
                   is the new tolerance.
 
                   KEY=5
                          Change the rank determination tolerance for
                   the reduced least squares equations from
                   the nominal value of SQRT(DRELPR).  This quantity can
                   be no smaller than DRELPR, the arithmetic-
                   storage precision.  The quantity used
                   here is internally restricted to be at
                   least DRELPR.  The data set for this option
                   is the new tolerance.
 
                   For example, suppose we want to change
                   the tolerance for the reduced least squares
                   problem, compute the covariance matrix of
                   the solution parameters, and provide
                   column scaling for the data matrix.  For
                   these options the dimension of PRGOPT(*)
                   must be at least N+9.  The Fortran statements
                   defining these options would be as follows:
 
                   PRGOPT(1)=4 (link to entry 4 in PRGOPT(*))
                   PRGOPT(2)=1 (covariance matrix key)
                   PRGOPT(3)=1 (covariance matrix wanted)
 
                   PRGOPT(4)=7 (link to entry 7 in PRGOPT(*))
                   PRGOPT(5)=5 (least squares equas.  tolerance key)
                   PRGOPT(6)=... (new value of the tolerance)
 
                   PRGOPT(7)=N+9 (link to entry N+9 in PRGOPT(*))
                   PRGOPT(8)=3 (user-provided column scaling key)
 
                   CALL DCOPY (N, D, 1, PRGOPT(9), 1)  (Copy the N
                     scaling factors from the user array D(*)
                     to PRGOPT(9)-PRGOPT(N+8))
 
                   PRGOPT(N+9)=1 (no more options to change)
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                   The contents of PRGOPT(*) are not modified
                   by the subprogram.
                   The options for WNNLS( ) can also be included
                   in this array.  The values of KEY recognized
                   by WNNLS( ) are 6, 7 and 8.  Their functions
                   are documented in the usage instructions for
                   subroutine WNNLS( ).  Normally these options
                   do not need to be modified when using DLSEI( ).
 
      IP(1),       The amounts of working storage actually
      IP(2)        allocated for the working arrays WS(*) and
                   IP(*), respectively.  These quantities are
                   compared with the actual amounts of storage
                   needed by DLSEI( ).  Insufficient storage
                   allocated for either WS(*) or IP(*) is an
                   error.  This feature was included in DLSEI( )
                   because miscalculating the storage formulas
                   for WS(*) and IP(*) might very well lead to
                   subtle and hard-to-find execution errors.
 
                   The length of WS(*) must be at least
 
                   LW = 2*(ME+N)+K+(MG+2)*(N+7)
 
                   where K = max(MA+MG,N)
                   This test will not be made if IP(1).LE.0.
 
                   The length of IP(*) must be at least
 
                   LIP = MG+2*N+2
                   This test will not be made if IP(2).LE.0.
 
      Output.. All TYPE REAL variables are DOUBLE PRECISION
 
      X(*),RNORME,  The array X(*) contains the solution parameters
      RNORML        if the integer output flag MODE = 0 or 1.
                    The definition of MODE is given directly below.
                    When MODE = 0 or 1, RNORME and RNORML
                    respectively contain the residual vector
                    Euclidean lengths of F - EX and B - AX.  When
                    MODE=1 the equality constraint equations EX=F
                    are contradictory, so RNORME .NE. 0.  The residual
                    vector F-EX has minimal Euclidean length.  For
                    MODE .GE. 2, none of these parameters is defined.
 
      MODE          Integer flag that indicates the subprogram
                    status after completion.  If MODE .GE. 2, no
                    solution has been computed.
 
                    MODE =
 
                    0  Both equality and inequality constraints
                       are compatible and have been satisfied.
 
                    1  Equality constraints are contradictory.
                       A generalized inverse solution of EX=F was used
                       to minimize the residual vector length F-EX.
                       In this sense, the solution is still meaningful.
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                    2  Inequality constraints are contradictory.
 
                    3  Both equality and inequality constraints
                       are contradictory.
 
                    The following interpretation of
                    MODE=1,2 or 3 must be made.  The
                    sets consisting of all solutions
                    of the equality constraints EX=F
                    and all vectors satisfying GX .GE. H
                    have no points in common.  (In
                    particular this does not say that
                    each individual set has no points
                    at all, although this could be the
                    case.)
 
                    4  Usage error occurred.  The value
                       of MDW is .LT. ME+MA+MG, MDW is
                       .LT. N and a covariance matrix is
                       requested, or the option vector
                       PRGOPT(*) is not properly defined,
                       or the lengths of the working arrays
                       WS(*) and IP(*), when specified in
                       IP(1) and IP(2) respectively, are not
                       long enough.
 
      W(*,*)        The array W(*,*) contains the N by N symmetric
                    covariance matrix of the solution parameters,
                    provided this was requested on input with
                    the option vector PRGOPT(*) and the output
                    flag is returned with MODE = 0 or 1.
 
      IP(*)         The integer working array has three entries
                    that provide rank and working array length
                    information after completion.
 
                       IP(1) = rank of equality constraint
                               matrix.  Define this quantity
                               as KRANKE.
 
                       IP(2) = rank of reduced least squares
                               problem.
 
                       IP(3) = the amount of storage in the
                               working array WS(*) that was
                               actually used by the subprogram.
                               The formula given above for the length
                               of WS(*) is a necessary overestimate.
                               If exactly the same problem matrices
                               are used in subsequent executions,
                               the declared dimension of WS(*) can
                               be reduced to this output value.
      User Designated
      Working Arrays..
 
      WS(*),IP(*)              These are respectively type real
                               and type integer working arrays.
                               Their required minimal lengths are
                               given above.
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 ***REFERENCES  K. H. Haskell and R. J. Hanson, An algorithm for
                  linear least squares problems with equality and
                  nonnegativity constraints, Report SAND77-0552, Sandia
                  Laboratories, June 1978.
                K. H. Haskell and R. J. Hanson, Selected algorithms for
                  the linearly constrained least squares problem - a
                  users guide, Report SAND78-1290, Sandia Laboratories,
                  August 1979.
                K. H. Haskell and R. J. Hanson, An algorithm for
                  linear least squares problems with equality and
                  nonnegativity constraints, Mathematical Programming
                  21 (1981), pp. 98-118.
                R. J. Hanson and K. H. Haskell, Two algorithms for the
                  linearly constrained least squares problem, ACM
                  Transactions on Mathematical Software, September 1982.
 ***ROUTINES CALLED  D1MACH, DASUM, DAXPY, DCOPY, DDOT, DH12, DLSI,
                     DNRM2, DSCAL, DSWAP, XERMSG
 ***REVISION HISTORY  (YYMMDD)
    790701  DATE WRITTEN
    890531  Changed all specific intrinsics to generic.  (WRB)
    890618  Completely restructured and extensively revised (WRB & RWC)
    890831  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    900315  CALLs to XERROR changed to CALLs to XERMSG.  (THJ)
    900510  Convert XERRWV calls to XERMSG calls.  (RWC)
    900604  DP version created from SP version.  (RWC)
    920501  Reformatted the REFERENCES section.  (WRB)
    END PROLOGUE
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DNBCO

      SUBROUTINE DNBCO (ABE, LDA, N, ML, MU, IPVT, RCOND, Z)
 ***BEGIN PROLOGUE  DNBCO
 ***PURPOSE  Factor a band matrix using Gaussian elimination and
             estimate the condition number.
 ***LIBRARY   SLATEC
 ***CATEGORY  D2A2
 ***TYPE      DOUBLE PRECISION (SNBCO-S, DNBCO-D, CNBCO-C)
 ***KEYWORDS  BANDED, LINEAR EQUATIONS, MATRIX FACTORIZATION,
              NONSYMMETRIC
 ***AUTHOR  Voorhees, E. A., (LANL)
 ***DESCRIPTION
 
      DNBCO factors a double precision band matrix by Gaussian
      elimination and estimates the condition of the matrix.
 
      If RCOND is not needed, DNBFA is slightly faster.
      To solve  A*X = B , follow DNBCO by DNBSL.
      To compute  INVERSE(A)*C , follow DNBCO by DNBSL.
      To compute  DETERMINANT(A) , follow DNBCO by DNBDI.
 
      On Entry
 
         ABE     DOUBLE PRECISION(LDA, NC)
                 contains the matrix in band storage.  The rows
                 of the original matrix are stored in the rows
                 of ABE and the diagonals of the original matrix
                 are stored in columns 1 through ML+MU+1 of ABE.
                 NC must be .GE. 2*ML+MU+1 .
                 See the comments below for details.
 
         LDA     INTEGER
                 the leading dimension of the array ABE.
                 LDA must be .GE.  N .
 
         N       INTEGER
                 the order of the original matrix.
 
         ML      INTEGER
                 number of diagonals below the main diagonal.
                 0 .LE. ML .LT.  N .
 
         MU      INTEGER
                 number of diagonals above the main diagonal.
                 0 .LE. MU .LT.  N .
                 More efficient if ML .LE. MU .
 
      On Return
 
         ABE     an upper triangular matrix in band storage
                 and the multipliers which were used to obtain it.
                 The factorization can be written  A = L*U  where
                 L is a product of permutation and unit lower
                 triangular matrices and  U  is upper triangular.
 
         IPVT    INTEGER(N)
                 an integer vector of pivot indices.

SLATEC3 (DACOSH through DS2Y) - 372



 
         RCOND   DOUBLE PRECISION
                 an estimate of the reciprocal condition of  A .
                 For the system  A*X = B , relative perturbations
                 in  A  and  B  of size  EPSILON  may cause
                 relative perturbations in  X  of size  EPSILON/RCOND .
                 If  RCOND  is so small that the logical expression
                          1.0 + RCOND .EQ. 1.0
                 is true, then  A  may be singular to working
                 precision.  In particular,  RCOND  is zero  if
                 exact singularity is detected or the estimate
                 underflows.
 
         Z       DOUBLE PRECISION(N)
                 a work vector whose contents are usually unimportant.
                 If  A  is close to a singular matrix, then  Z  is
                 an approximate null vector in the sense that
                 NORM(A*Z) = RCOND*NORM(A)*NORM(Z) .
 
      Band Storage
 
            If  A  is a band matrix, the following program segment
            will set up the input.
 
                    ML = (band width below the diagonal)
                    MU = (band width above the diagonal)
                    DO 20 I = 1, N
                       J1 = MAX(1, I-ML)
                       J2 = MIN(N, I+MU)
                       DO 10 J = J1, J2
                          K = J - I + ML + 1
                          ABE(I,K) = A(I,J)
                 10    CONTINUE
                 20 CONTINUE
 
            This uses columns  1  through  ML+MU+1  of ABE .
            Furthermore,  ML  additional columns are needed in
            ABE  starting with column  ML+MU+2  for elements
            generated during the triangularization.  The total
            number of columns needed in  ABE  is  2*ML+MU+1 .
 
      Example:  If the original matrix is
 
            11 12 13  0  0  0
            21 22 23 24  0  0
             0 32 33 34 35  0
             0  0 43 44 45 46
             0  0  0 54 55 56
             0  0  0  0 65 66
 
       then  N = 6, ML = 1, MU = 2, LDA .GE. 5  and ABE should contain
 
             * 11 12 13  +     , * = not used
            21 22 23 24  +     , + = used for pivoting
            32 33 34 35  +
            43 44 45 46  +
            54 55 56  *  +
            65 66  *  *  +
 
 ***REFERENCES  J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
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                  Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED  DASUM, DAXPY, DDOT, DNBFA, DSCAL
 ***REVISION HISTORY  (YYMMDD)
    800728  DATE WRITTEN
    890531  Changed all specific intrinsics to generic.  (WRB)
    890831  Modified array declarations.  (WRB)
    890831  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    920501  Reformatted the REFERENCES section.  (WRB)
    END PROLOGUE
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DNBDI

      SUBROUTINE DNBDI (ABE, LDA, N, ML, MU, IPVT, DET)
 ***BEGIN PROLOGUE  DNBDI
 ***PURPOSE  Compute the determinant of a band matrix using the factors
             computed by DNBCO or DNBFA.
 ***LIBRARY   SLATEC
 ***CATEGORY  D3A2
 ***TYPE      DOUBLE PRECISION (SNBDI-S, DNBDI-D, CNBDI-C)
 ***KEYWORDS  BANDED, DETERMINANT, LINEAR EQUATIONS, NONSYMMETRIC
 ***AUTHOR  Voorhees, E. A., (LANL)
 ***DESCRIPTION
 
      DNBDI computes the determinant of a band matrix
      using the factors computed by DNBCO or DNBFA.
      If the inverse is needed, use DNBSL  N  times.
 
      On Entry
 
         ABE     DOUBLE PRECISION(LDA, NC)
                 the output from DNBCO or DNBFA.
                 NC must be .GE. 2*ML+MU+1 .
 
         LDA     INTEGER
                 the leading dimension of the array  ABE .
 
         N       INTEGER
                 the order of the original matrix.
 
         ML      INTEGER
                 number of diagonals below the main diagonal.
 
         MU      INTEGER
                 number of diagonals above the main diagonal.
 
         IPVT    INTEGER(N)
                 the pivot vector from DNBCO or DNBFA.
 
      On Return
 
         DET     DOUBLE PRECISION(2)
                 determinant of original matrix.
                 Determinant = DET(1) * 10.0**DET(2)
                 with  1.0 .LE. ABS(DET(1)) .LT. 10.0
                 or  DET(1) = 0.0 .
 
 ***REFERENCES  J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
                  Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED  (NONE)
 ***REVISION HISTORY  (YYMMDD)
    800728  DATE WRITTEN
    890531  Changed all specific intrinsics to generic.  (WRB)
    890831  Modified array declarations.  (WRB)
    890831  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    920501  Reformatted the REFERENCES section.  (WRB)
    END PROLOGUE
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DNBFA

      SUBROUTINE DNBFA (ABE, LDA, N, ML, MU, IPVT, INFO)
 ***BEGIN PROLOGUE  DNBFA
 ***PURPOSE  Factor a band matrix by elimination.
 ***LIBRARY   SLATEC
 ***CATEGORY  D2A2
 ***TYPE      DOUBLE PRECISION (SNBFA-S, DNBFA-D, CNBFA-C)
 ***KEYWORDS  BANDED, LINEAR EQUATIONS, MATRIX FACTORIZATION,
              NONSYMMETRIC
 ***AUTHOR  Voorhees, E. A., (LANL)
 ***DESCRIPTION
 
      DNBFA factors a double precision band matrix by elimination.
 
      DNBFA is usually called by DNBCO, but it can be called
      directly with a saving in time if RCOND is not needed.
 
      On Entry
 
         ABE     DOUBLE PRECISION(LDA, NC)
                 contains the matrix in band storage.  The rows
                 of the original matrix are stored in the rows
                 of ABE and the diagonals of the original matrix
                 are stored in columns 1 through ML+MU+1 of ABE.
                 NC must be .GE. 2*ML+MU+1 .
                 See the comments below for details.
 
         LDA     INTEGER
                 the leading dimension of the array ABE.
                 LDA must be .GE.  N .
 
         N       INTEGER
                 the order of the original matrix.
 
         ML      INTEGER
                 number of diagonals below the main diagonal.
                 0 .LE. ML .LT.  N .
 
         MU      INTEGER
                 number of diagonals above the main diagonal.
                 0 .LE. MU .LT.  N .
                 More efficient if ML .LE. MU .
 
      On Return
 
         ABE     an upper triangular matrix in band storage
                 and the multipliers which were used to obtain it.
                 The factorization can be written  A = L*U  where
                 L is a product of permutation and unit lower
                 triangular matrices and  U  is upper triangular.
 
         IPVT    INTEGER(N)
                 an integer vector of pivot indices.
 
         INFO    INTEGER
                 =0  normal value
                 =K  if  U(K,K) .EQ. 0.0 .  This is not an error
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                 condition for this subroutine, but it does
                 indicate that DNBSL will divide by zero if
                 called.  Use RCOND in DNBCO for a reliable
                 indication of singularity.
 
      Band Storage
 
            If  A  is a band matrix, the following program segment
            will set up the input.
 
                    ML = (band width below the diagonal)
                    MU = (band width above the diagonal)
                    DO 20 I = 1, N
                       J1 = MAX(1, I-ML)
                       J2 = MIN(N, I+MU)
                       DO 10 J = J1, J2
                          K = J - I + ML + 1
                          ABE(I,K) = A(I,J)
                 10    CONTINUE
                 20 CONTINUE
 
            This uses columns  1  through  ML+MU+1  of ABE .
            Furthermore,  ML  additional columns are needed in
            ABE  starting with column  ML+MU+2  for elements
            generated during the triangularization.  The total
            number of columns needed in  ABE  is  2*ML+MU+1 .
 
      Example:  If the original matrix is
 
            11 12 13  0  0  0
            21 22 23 24  0  0
             0 32 33 34 35  0
             0  0 43 44 45 46
             0  0  0 54 55 56
             0  0  0  0 65 66
 
       then  N = 6, ML = 1, MU = 2, LDA .GE. 5  and ABE should contain
 
             * 11 12 13  +     , * = not used
            21 22 23 24  +     , + = used for pivoting
            32 33 34 35  +
            43 44 45 46  +
            54 55 56  *  +
            65 66  *  *  +
 
 ***REFERENCES  J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
                  Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED  DAXPY, DSCAL, DSWAP, IDAMAX
 ***REVISION HISTORY  (YYMMDD)
    800728  DATE WRITTEN
    890531  Changed all specific intrinsics to generic.  (WRB)
    890831  Modified array declarations.  (WRB)
    890831  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    920501  Reformatted the REFERENCES section.  (WRB)
    END PROLOGUE
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DNBFS

      SUBROUTINE DNBFS (ABE, LDA, N, ML, MU, V, ITASK, IND, WORK, IWORK)
 ***BEGIN PROLOGUE  DNBFS
 ***PURPOSE  Solve a general nonsymmetric banded system of linear
             equations.
 ***LIBRARY   SLATEC
 ***CATEGORY  D2A2
 ***TYPE      DOUBLE PRECISION (SNBFS-S, DNBFS-D, CNBFS-C)
 ***KEYWORDS  BANDED, LINEAR EQUATIONS, NONSYMMETRIC
 ***AUTHOR  Voorhees, E. A., (LANL)
 ***DESCRIPTION
 
     Subroutine DNBFS solves a general nonsymmetric banded NxN
     system of double precision real linear equations using
     SLATEC subroutines DNBCO and DNBSL.  These are adaptations
     of the LINPACK subroutines DGBCO and DGBSL which require
     a different format for storing the matrix elements.  If
     A  is an NxN double precision matrix and if  X  and  B  are
     double precision N-vectors, then DNBFS solves the equation
 
                           A*X=B.
 
     A band matrix is a matrix whose nonzero elements are all
     fairly near the main diagonal, specifically  A(I,J) = 0
     if  I-J is greater than  ML  or  J-I  is greater than
     MU .  The integers ML and MU are called the lower and upper
     band widths and  M = ML+MU+1  is the total band width.
     DNBFS uses less time and storage than the corresponding
     program for general matrices (DGEFS) if 2*ML+MU .LT.  N .
 
     The matrix A is first factored into upper and lower tri-
     angular matrices U and L using partial pivoting.  These
     factors and the pivoting information are used to find the
     solution vector X.  An approximate condition number is
     calculated to provide a rough estimate of the number of
     digits of accuracy in the computed solution.
 
     If the equation A*X=B is to be solved for more than one vector
     B, the factoring of A does not need to be performed again and
     the option to only solve (ITASK .GT. 1) will be faster for
     the succeeding solutions.  In this case, the contents of A,
     LDA, N and IWORK must not have been altered by the user follow-
     ing factorization (ITASK=1).  IND will not be changed by DNBFS
     in this case.
 
 
     Band Storage
 
           If  A  is a band matrix, the following program segment
           will set up the input.
 
                   ML = (band width below the diagonal)
                   MU = (band width above the diagonal)
                   DO 20 I = 1, N
                      J1 = MAX(1, I-ML)
                      J2 = MIN(N, I+MU)
                      DO 10 J = J1, J2
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                         K = J - I + ML + 1
                         ABE(I,K) = A(I,J)
                10    CONTINUE
                20 CONTINUE
 
           This uses columns  1  through  ML+MU+1  of ABE .
           Furthermore,  ML  additional columns are needed in
           ABE  starting with column  ML+MU+2  for elements
           generated during the triangularization.  The total
           number of columns needed in  ABE  is  2*ML+MU+1 .
 
     Example:  If the original matrix is
 
           11 12 13  0  0  0
           21 22 23 24  0  0
            0 32 33 34 35  0
            0  0 43 44 45 46
            0  0  0 54 55 56
            0  0  0  0 65 66
 
      then  N = 6, ML = 1, MU = 2, LDA .GE. 5  and ABE should contain
 
            * 11 12 13  +     , * = not used
           21 22 23 24  +     , + = used for pivoting
           32 33 34 35  +
           43 44 45 46  +
           54 55 56  *  +
           65 66  *  *  +
 
 
   Argument Description ***
 
     ABE    DOUBLE PRECISION(LDA,NC)
              on entry, contains the matrix in band storage as
                described above.  NC  must not be less than
                2*ML+MU+1 .  The user is cautioned to specify  NC
                with care since it is not an argument and cannot
                be checked by DNBFS.  The rows of the original
                matrix are stored in the rows of  ABE  and the
                diagonals of the original matrix are stored in
                columns  1  through  ML+MU+1  of  ABE .
              on return, contains an upper triangular matrix U and
                the multipliers necessary to construct a matrix L
                so that A=L*U.
     LDA    INTEGER
              the leading dimension of array ABE.  LDA must be great-
              er than or equal to N.  (terminal error message IND=-1)
     N      INTEGER
              the order of the matrix A.  N must be greater
              than or equal to 1 .  (terminal error message IND=-2)
     ML     INTEGER
              the number of diagonals below the main diagonal.
              ML  must not be less than zero nor greater than or
              equal to  N .  (terminal error message IND=-5)
     MU     INTEGER
              the number of diagonals above the main diagonal.
              MU  must not be less than zero nor greater than or
              equal to  N .  (terminal error message IND=-6)
     V      DOUBLE PRECISION(N)
              on entry, the singly subscripted array(vector) of di-
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                mension N which contains the right hand side B of a
                system of simultaneous linear equations A*X=B.
              on return, V contains the solution vector, X .
     ITASK  INTEGER
              If ITASK=1, the matrix A is factored and then the
                linear equation is solved.
              If ITASK .GT. 1, the equation is solved using the existing
                factored matrix A and IWORK.
              If ITASK .LT. 1, then terminal error message IND=-3 is
                printed.
     IND    INTEGER
              GT. 0  IND is a rough estimate of the number of digits
                      of accuracy in the solution, X.
              LT. 0  See error message corresponding to IND below.
     WORK   DOUBLE PRECISION(N)
              a singly subscripted array of dimension at least N.
     IWORK  INTEGER(N)
              a singly subscripted array of dimension at least N.
 
   Error Messages Printed ***
 
     IND=-1  terminal   N is greater than LDA.
     IND=-2  terminal   N is less than 1.
     IND=-3  terminal   ITASK is less than 1.
     IND=-4  terminal   The matrix A is computationally singular.
                          A solution has not been computed.
     IND=-5  terminal   ML is less than zero or is greater than
                          or equal to N .
     IND=-6  terminal   MU is less than zero or is greater than
                          or equal to N .
     IND=-10 warning    The solution has no apparent significance.
                          The solution may be inaccurate or the matrix
                          A may be poorly scaled.
 
                Note-  The above terminal(*fatal*) error messages are
                       designed to be handled by XERMSG in which
                       LEVEL=1 (recoverable) and IFLAG=2 .  LEVEL=0
                       for warning error messages from XERMSG.  Unless
                       the user provides otherwise, an error message
                       will be printed followed by an abort.
 
 ***REFERENCES  J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
                  Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED  D1MACH, DNBCO, DNBSL, XERMSG
 ***REVISION HISTORY  (YYMMDD)
    800812  DATE WRITTEN
    890531  Changed all specific intrinsics to generic.  (WRB)
    890831  Modified array declarations.  (WRB)
    890831  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    900315  CALLs to XERROR changed to CALLs to XERMSG.  (THJ)
    900510  Convert XERRWV calls to XERMSG calls, changed GOTOs to
            IF-THEN-ELSEs.  (RWC)
    920501  Reformatted the REFERENCES section.  (WRB)
    END PROLOGUE
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DNBSL

      SUBROUTINE DNBSL (ABE, LDA, N, ML, MU, IPVT, B, JOB)
 ***BEGIN PROLOGUE  DNBSL
 ***PURPOSE  Solve a real band system using the factors computed by
             DNBCO or DNBFA.
 ***LIBRARY   SLATEC
 ***CATEGORY  D2A2
 ***TYPE      DOUBLE PRECISION (SNBSL-S, DNBSL-D, CNBSL-C)
 ***KEYWORDS  BANDED, LINEAR EQUATIONS, NONSYMMETRIC, SOLVE
 ***AUTHOR  Voorhees, E. A., (LANL)
 ***DESCRIPTION
 
      DNBSL solves the double precision band system
      A * X = B  or  TRANS(A) * X = B
      using the factors computed by DNBCO or DNBFA.
 
      On Entry
 
         ABE     DOUBLE PRECISION(LDA, NC)
                 the output from DNBCO or DNBFA.
                 NC must be .GE. 2*ML+MU+1 .
 
         LDA     INTEGER
                 the leading dimension of the array  ABE .
 
         N       INTEGER
                 the order of the original matrix.
 
         ML      INTEGER
                 number of diagonals below the main diagonal.
 
         MU      INTEGER
                 number of diagonals above the main diagonal.
 
         IPVT    INTEGER(N)
                 the pivot vector from DNBCO or DNBFA.
 
         B       DOUBLE PRECISION(N)
                 the right hand side vector.
 
         JOB     INTEGER
                 = 0         to solve  A*X = B .
                 = nonzero   to solve  TRANS(A)*X = B , where
                             TRANS(A)  is the transpose.
 
      On Return
 
         B       the solution vector  X .
 
      Error Condition
 
         A division by zero will occur if the input factor contains a
         zero on the diagonal.  Technically this indicates singularity
         but it is often caused by improper arguments or improper
         setting of LDA.  It will not occur if the subroutines are
         called correctly and if DNBCO has set RCOND .GT. 0.0
         or DNBFA has set INFO .EQ. 0 .
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      To compute  INVERSE(A) * C  where  C  is a matrix
      with  P  columns
            CALL DNBCO(ABE,LDA,N,ML,MU,IPVT,RCOND,Z)
            IF (RCOND is too small) GO TO ...
            DO 10 J = 1, P
              CALL DNBSL(ABE,LDA,N,ML,MU,IPVT,C(1,J),0)
         10 CONTINUE
 
 ***REFERENCES  J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
                  Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED  DAXPY, DDOT
 ***REVISION HISTORY  (YYMMDD)
    800728  DATE WRITTEN
    890531  Changed all specific intrinsics to generic.  (WRB)
    890831  Modified array declarations.  (WRB)
    890831  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    920501  Reformatted the REFERENCES section.  (WRB)
    END PROLOGUE
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DNLS1

      SUBROUTINE DNLS1 (FCN, IOPT, M, N, X, FVEC, FJAC, LDFJAC, FTOL,
         XTOL, GTOL, MAXFEV, EPSFCN, DIAG, MODE, FACTOR, NPRINT, INFO,
     +   NFEV, NJEV, IPVT, QTF, WA1, WA2, WA3, WA4)
 ***BEGIN PROLOGUE  DNLS1
 ***PURPOSE  Minimize the sum of the squares of M nonlinear functions
             in N variables by a modification of the Levenberg-Marquardt
             algorithm.
 ***LIBRARY   SLATEC
 ***CATEGORY  K1B1A1, K1B1A2
 ***TYPE      DOUBLE PRECISION (SNLS1-S, DNLS1-D)
 ***KEYWORDS  LEVENBERG-MARQUARDT, NONLINEAR DATA FITTING,
              NONLINEAR LEAST SQUARES
 ***AUTHOR  Hiebert, K. L., (SNLA)
 ***DESCRIPTION
 
  1. Purpose.
 
        The purpose of DNLS1 is to minimize the sum of the squares of M
        nonlinear functions in N variables by a modification of the
        Levenberg-Marquardt algorithm.  The user must provide a subrou-
        tine which calculates the functions.  The user has the option
        of how the Jacobian will be supplied.  The user can supply the
        full Jacobian, or the rows of the Jacobian (to avoid storing
        the full Jacobian), or let the code approximate the Jacobian by
        forward-differencing.   This code is the combination of the
        MINPACK codes (Argonne) LMDER, LMDIF, and LMSTR.
 
 
  2. Subroutine and Type Statements.
 
        SUBROUTINE DNLS1(FCN,IOPT,M,N,X,FVEC,FJAC,LDFJAC,FTOL,XTOL,
       *                 GTOL,MAXFEV,EPSFCN,DIAG,MODE,FACTOR,NPRINT,INFO
       *                 ,NFEV,NJEV,IPVT,QTF,WA1,WA2,WA3,WA4)
        INTEGER IOPT,M,N,LDFJAC,MAXFEV,MODE,NPRINT,INFO,NFEV,NJEV
        INTEGER IPVT(N)
        DOUBLE PRECISION FTOL,XTOL,GTOL,EPSFCN,FACTOR
        DOUBLE PRECISION X(N),FVEC(M),FJAC(LDFJAC,N),DIAG(N),QTF(N),
       *     WA1(N),WA2(N),WA3(N),WA4(M)
 
 
  3. Parameters.
 
        Parameters designated as input parameters must be specified on
        entry to DNLS1 and are not changed on exit, while parameters
        designated as output parameters need not be specified on entry
        and are set to appropriate values on exit from DNLS1.
 
       FCN is the name of the user-supplied subroutine which calculate
          the functions.  If the user wants to supply the Jacobian
          (IOPT=2 or 3), then FCN must be written to calculate the
          Jacobian, as well as the functions.  See the explanation
          of the IOPT argument below.
          If the user wants the iterates printed (NPRINT positive), then
          FCN must do the printing.  See the explanation of NPRINT
          below.  FCN must be declared in an EXTERNAL statement in the
          calling program and should be written as follows.
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          SUBROUTINE FCN(IFLAG,M,N,X,FVEC,FJAC,LDFJAC)
          INTEGER IFLAG,LDFJAC,M,N
          DOUBLE PRECISION X(N),FVEC(M)
          ----------
          FJAC and LDFJAC may be ignored       , if IOPT=1.
          DOUBLE PRECISION FJAC(LDFJAC,N)      , if IOPT=2.
          DOUBLE PRECISION FJAC(N)             , if IOPT=3.
          ----------
            If IFLAG=0, the values in X and FVEC are available
            for printing.  See the explanation of NPRINT below.
            IFLAG will never be zero unless NPRINT is positive.
            The values of X and FVEC must not be changed.
          RETURN
          ----------
            If IFLAG=1, calculate the functions at X and return
            this vector in FVEC.
          RETURN
          ----------
            If IFLAG=2, calculate the full Jacobian at X and return
            this matrix in FJAC.  Note that IFLAG will never be 2 unless
            IOPT=2.  FVEC contains the function values at X and must
            not be altered.  FJAC(I,J) must be set to the derivative
            of FVEC(I) with respect to X(J).
          RETURN
          ----------
            If IFLAG=3, calculate the LDFJAC-th row of the Jacobian
            and return this vector in FJAC.  Note that IFLAG will
            never be 3 unless IOPT=3.  FVEC contains the function
            values at X and must not be altered.  FJAC(J) must be
            set to the derivative of FVEC(LDFJAC) with respect to X(J).
          RETURN
          ----------
          END
 
 
          The value of IFLAG should not be changed by FCN unless the
          user wants to terminate execution of DNLS1.  In this case, set
          IFLAG to a negative integer.
 
 
        IOPT is an input variable which specifies how the Jacobian will
          be calculated.  If IOPT=2 or 3, then the user must supply the
          Jacobian, as well as the function values, through the
          subroutine FCN.  If IOPT=2, the user supplies the full
          Jacobian with one call to FCN.  If IOPT=3, the user supplies
          one row of the Jacobian with each call.  (In this manner,
          storage can be saved because the full Jacobian is not stored.)
          If IOPT=1, the code will approximate the Jacobian by forward
          differencing.
 
        M is a positive integer input variable set to the number of
          functions.
 
        N is a positive integer input variable set to the number of
          variables.  N must not exceed M.
 
        X is an array of length N.  On input, X must contain an initial
          estimate of the solution vector.  On output, X contains the
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          final estimate of the solution vector.
 
        FVEC is an output array of length M which contains the functions
          evaluated at the output X.
 
        FJAC is an output array.  For IOPT=1 and 2, FJAC is an M by N
          array.  For IOPT=3, FJAC is an N by N array.  The upper N by N
          submatrix of FJAC contains an upper triangular matrix R with
          diagonal elements of nonincreasing magnitude such that
 
                 T     T           T
                P *(JAC *JAC)*P = R *R,
 
          where P is a permutation matrix and JAC is the final calcu-
          lated Jacobian.  Column J of P is column IPVT(J) (see below)
          of the identity matrix.  The lower part of FJAC contains
          information generated during the computation of R.
 
        LDFJAC is a positive integer input variable which specifies
          the leading dimension of the array FJAC.  For IOPT=1 and 2,
          LDFJAC must not be less than M.  For IOPT=3, LDFJAC must not
          be less than N.
 
        FTOL is a non-negative input variable.  Termination occurs when
          both the actual and predicted relative reductions in the sum
          of squares are at most FTOL.  Therefore, FTOL measures the
          relative error desired in the sum of squares.  Section 4 con-
          tains more details about FTOL.
 
        XTOL is a non-negative input variable.  Termination occurs when
          the relative error between two consecutive iterates is at most
          XTOL.  Therefore, XTOL measures the relative error desired in
          the approximate solution.  Section 4 contains more details
          about XTOL.
 
        GTOL is a non-negative input variable.  Termination occurs when
          the cosine of the angle between FVEC and any column of the
          Jacobian is at most GTOL in absolute value.  Therefore, GTOL
          measures the orthogonality desired between the function vector
          and the columns of the Jacobian.  Section 4 contains more
          details about GTOL.
 
        MAXFEV is a positive integer input variable.  Termination occurs
          when the number of calls to FCN to evaluate the functions
          has reached MAXFEV.
 
        EPSFCN is an input variable used in determining a suitable step
          for the forward-difference approximation.  This approximation
          assumes that the relative errors in the functions are of the
          order of EPSFCN.  If EPSFCN is less than the machine preci-
          sion, it is assumed that the relative errors in the functions
          are of the order of the machine precision.  If IOPT=2 or 3,
          then EPSFCN can be ignored (treat it as a dummy argument).
 
        DIAG is an array of length N.  If MODE = 1 (see below), DIAG is
          internally set.  If MODE = 2, DIAG must contain positive
          entries that serve as implicit (multiplicative) scale factors
          for the variables.
 
        MODE is an integer input variable.  If MODE = 1, the variables
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          will be scaled internally.  If MODE = 2, the scaling is speci-
          fied by the input DIAG.  Other values of MODE are equivalent
          to MODE = 1.
 
        FACTOR is a positive input variable used in determining the ini-
          tial step bound.  This bound is set to the product of FACTOR
          and the Euclidean norm of DIAG*X if nonzero, or else to FACTOR
          itself.  In most cases FACTOR should lie in the interval
          (.1,100.).  100. is a generally recommended value.
 
        NPRINT is an integer input variable that enables controlled
          printing of iterates if it is positive.  In this case, FCN is
          called with IFLAG = 0 at the beginning of the first iteration
          and every NPRINT iterations thereafter and immediately prior
          to return, with X and FVEC available for printing. Appropriate
          print statements must be added to FCN (see example) and
          FVEC should not be altered.  If NPRINT is not positive, no
          special calls to FCN with IFLAG = 0 are made.
 
        INFO is an integer output variable.  If the user has terminated
         execution, INFO is set to the (negative) value of IFLAG.  See
         description of FCN and JAC. Otherwise, INFO is set as follows
 
          INFO = 0  improper input parameters.
 
          INFO = 1  both actual and predicted relative reductions in the
                    sum of squares are at most FTOL.
 
          INFO = 2  relative error between two consecutive iterates is
                    at most XTOL.
 
          INFO = 3  conditions for INFO = 1 and INFO = 2 both hold.
 
          INFO = 4  the cosine of the angle between FVEC and any column
                    of the Jacobian is at most GTOL in absolute value.
 
          INFO = 5  number of calls to FCN for function evaluation
                    has reached MAXFEV.
 
          INFO = 6  FTOL is too small.  No further reduction in the sum
                    of squares is possible.
 
          INFO = 7  XTOL is too small.  No further improvement in the
                    approximate solution X is possible.
 
          INFO = 8  GTOL is too small.  FVEC is orthogonal to the
                    columns of the Jacobian to machine precision.
 
          Sections 4 and 5 contain more details about INFO.
 
        NFEV is an integer output variable set to the number of calls to
          FCN for function evaluation.
 
        NJEV is an integer output variable set to the number of
          evaluations of the full Jacobian.  If IOPT=2, only one call to
          FCN is required for each evaluation of the full Jacobian.
          If IOPT=3, the M calls to FCN are required.
          If IOPT=1, then NJEV is set to zero.
 
        IPVT is an integer output array of length N.  IPVT defines a
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          permutation matrix P such that JAC*P = Q*R, where JAC is the
          final calculated Jacobian, Q is orthogonal (not stored), and R
          is upper triangular with diagonal elements of nonincreasing
          magnitude.  Column J of P is column IPVT(J) of the identity
          matrix.
 
        QTF is an output array of length N which contains the first N
          elements of the vector (Q transpose)*FVEC.
 
        WA1, WA2, and WA3 are work arrays of length N.
 
        WA4 is a work array of length M.
 
 
  4. Successful Completion.
 
        The accuracy of DNLS1 is controlled by the convergence parame-
        ters FTOL, XTOL, and GTOL.  These parameters are used in tests
        which make three types of comparisons between the approximation
        X and a solution XSOL.  DNLS1 terminates when any of the tests
        is satisfied.  If any of the convergence parameters is less than
        the machine precision (as defined by the function R1MACH(4)),
        then DNLS1 only attempts to satisfy the test defined by the
        machine precision.  Further progress is not usually possible.
 
        The tests assume that the functions are reasonably well behaved,
        and, if the Jacobian is supplied by the user, that the functions
        and the Jacobian are coded consistently.  If these conditions
        are not satisfied, then DNLS1 may incorrectly indicate conver-
        gence.  If the Jacobian is coded correctly or IOPT=1,
        then the validity of the answer can be checked, for example, by
        rerunning DNLS1 with tighter tolerances.
 
        First Convergence Test.  If ENORM(Z) denotes the Euclidean norm
          of a vector Z, then this test attempts to guarantee that
 
                ENORM(FVEC) .LE. (1+FTOL)*ENORM(FVECS),
 
          where FVECS denotes the functions evaluated at XSOL.  If this
          condition is satisfied with FTOL = 10**(-K), then the final
          residual norm ENORM(FVEC) has K significant decimal digits and
          INFO is set to 1 (or to 3 if the second test is also satis-
          fied).  Unless high precision solutions are required, the
          recommended value for FTOL is the square root of the machine
          precision.
 
        Second Convergence Test.  If D is the diagonal matrix whose
          entries are defined by the array DIAG, then this test attempts
          to guarantee that
 
                ENORM(D*(X-XSOL)) .LE. XTOL*ENORM(D*XSOL).
 
          If this condition is satisfied with XTOL = 10**(-K), then the
          larger components of D*X have K significant decimal digits and
          INFO is set to 2 (or to 3 if the first test is also satis-
          fied).  There is a danger that the smaller components of D*X
          may have large relative errors, but if MODE = 1, then the
          accuracy of the components of X is usually related to their
          sensitivity.  Unless high precision solutions are required,
          the recommended value for XTOL is the square root of the
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          machine precision.
 
        Third Convergence Test.  This test is satisfied when the cosine
          of the angle between FVEC and any column of the Jacobian at X
          is at most GTOL in absolute value.  There is no clear rela-
          tionship between this test and the accuracy of DNLS1, and
          furthermore, the test is equally well satisfied at other crit-
          ical points, namely maximizers and saddle points.  Therefore,
          termination caused by this test (INFO = 4) should be examined
          carefully.  The recommended value for GTOL is zero.
 
 
  5. Unsuccessful Completion.
 
        Unsuccessful termination of DNLS1 can be due to improper input
        parameters, arithmetic interrupts, or an excessive number of
        function evaluations.
 
        Improper Input Parameters.  INFO is set to 0 if IOPT .LT. 1
          or IOPT .GT. 3, or N .LE. 0, or M .LT. N, or for IOPT=1 or 2
          LDFJAC .LT. M, or for IOPT=3 LDFJAC .LT. N, or FTOL .LT. 0.E0,
          or XTOL .LT. 0.E0, or GTOL .LT. 0.E0, or MAXFEV .LE. 0, or
          FACTOR .LE. 0.E0.
 
        Arithmetic Interrupts.  If these interrupts occur in the FCN
          subroutine during an early stage of the computation, they may
          be caused by an unacceptable choice of X by DNLS1.  In this
          case, it may be possible to remedy the situation by rerunning
          DNLS1 with a smaller value of FACTOR.
 
        Excessive Number of Function Evaluations.  A reasonable value
          for MAXFEV is 100*(N+1) for IOPT=2 or 3 and 200*(N+1) for
          IOPT=1.  If the number of calls to FCN reaches MAXFEV, then
          this indicates that the routine is converging very slowly
          as measured by the progress of FVEC, and INFO is set to 5.
          In this case, it may be helpful to restart DNLS1 with MODE
          set to 1.
 
 
  6. Characteristics of the Algorithm.
 
        DNLS1 is a modification of the Levenberg-Marquardt algorithm.
        Two of its main characteristics involve the proper use of
        implicitly scaled variables (if MODE = 1) and an optimal choice
        for the correction.  The use of implicitly scaled variables
        achieves scale invariance of DNLS1 and limits the size of the
        correction in any direction where the functions are changing
        rapidly.  The optimal choice of the correction guarantees (under
        reasonable conditions) global convergence from starting points
        far from the solution and a fast rate of convergence for
        problems with small residuals.
 
        Timing.  The time required by DNLS1 to solve a given problem
          depends on M and N, the behavior of the functions, the accu-
          racy requested, and the starting point.  The number of arith-
          metic operations needed by DNLS1 is about N**3 to process each
          evaluation of the functions (call to FCN) and to process each
          evaluation of the Jacobian it takes M*N**2 for IOPT=2 (one
          call to FCN), M*N**2 for IOPT=1 (N calls to FCN) and
          1.5*M*N**2 for IOPT=3 (M calls to FCN).  Unless FCN

SLATEC3 (DACOSH through DS2Y) - 388



          can be evaluated quickly, the timing of DNLS1 will be
          strongly influenced by the time spent in FCN.
 
        Storage.  DNLS1 requires (M*N + 2*M + 6*N) for IOPT=1 or 2 and
          (N**2 + 2*M + 6*N) for IOPT=3 single precision storage
          locations and N integer storage locations, in addition to
          the storage required by the program.  There are no internally
          declared storage arrays.
 
  *Long Description:
 
  7. Example.
 
        The problem is to determine the values of X(1), X(2), and X(3)
        which provide the best fit (in the least squares sense) of
 
              X(1) + U(I)/(V(I)*X(2) + W(I)*X(3)),  I = 1, 15
 
        to the data
 
              Y = (0.14,0.18,0.22,0.25,0.29,0.32,0.35,0.39,
                   0.37,0.58,0.73,0.96,1.34,2.10,4.39),
 
        where U(I) = I, V(I) = 16 - I, and W(I) = MIN(U(I),V(I)).  The
        I-th component of FVEC is thus defined by
 
              Y(I) - (X(1) + U(I)/(V(I)*X(2) + W(I)*X(3))).
 
        **********
 
        PROGRAM TEST
  C
  C     Driver for DNLS1 example.
  C
        INTEGER J,IOPT,M,N,LDFJAC,MAXFEV,MODE,NPRINT,INFO,NFEV,NJEV,
       *        NWRITE
        INTEGER IPVT(3)
        DOUBLE PRECISION FTOL,XTOL,GTOL,FACTOR,FNORM,EPSFCN
        DOUBLE PRECISION X(3),FVEC(15),FJAC(15,3),DIAG(3),QTF(3),
       *     WA1(3),WA2(3),WA3(3),WA4(15)
        DOUBLE PRECISION DENORM,D1MACH
        EXTERNAL FCN
        DATA NWRITE /6/
  C
        IOPT = 1
        M = 15
        N = 3
  C
  C     The following starting values provide a rough fit.
  C
        X(1) = 1.E0
        X(2) = 1.E0
        X(3) = 1.E0
  C
        LDFJAC = 15
  C
  C     Set FTOL and XTOL to the square root of the machine precision
  C     and GTOL to zero.  Unless high precision solutions are
  C     required, these are the recommended settings.
  C
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        FTOL = SQRT(R1MACH(4))
        XTOL = SQRT(R1MACH(4))
        GTOL = 0.E0
  C
        MAXFEV = 400
        EPSFCN = 0.0
        MODE = 1
        FACTOR = 1.E2
        NPRINT = 0
  C
        CALL DNLS1(FCN,IOPT,M,N,X,FVEC,FJAC,LDFJAC,FTOL,XTOL,
       *           GTOL,MAXFEV,EPSFCN,DIAG,MODE,FACTOR,NPRINT,
       *           INFO,NFEV,NJEV,IPVT,QTF,WA1,WA2,WA3,WA4)
        FNORM = ENORM(M,FVEC)
        WRITE (NWRITE,1000) FNORM,NFEV,NJEV,INFO,(X(J),J=1,N)
        STOP
   1000 FORMAT (5X,' FINAL L2 NORM OF THE RESIDUALS',E15.7 //
       *        5X,' NUMBER OF FUNCTION EVALUATIONS',I10 //
       *        5X,' NUMBER OF JACOBIAN EVALUATIONS',I10 //
       *        5X,' EXIT PARAMETER',16X,I10 //
       *        5X,' FINAL APPROXIMATE SOLUTION' // 5X,3E15.7)
        END
        SUBROUTINE FCN(IFLAG,M,N,X,FVEC,DUM,IDUM)
  C     This is the form of the FCN routine if IOPT=1,
  C     that is, if the user does not calculate the Jacobian.
        INTEGER I,M,N,IFLAG
        DOUBLE PRECISION X(N),FVEC(M),Y(15)
        DOUBLE PRECISION TMP1,TMP2,TMP3,TMP4
        DATA Y(1),Y(2),Y(3),Y(4),Y(5),Y(6),Y(7),Y(8),
       *     Y(9),Y(10),Y(11),Y(12),Y(13),Y(14),Y(15)
       *     /1.4E-1,1.8E-1,2.2E-1,2.5E-1,2.9E-1,3.2E-1,3.5E-1,3.9E-1,
       *      3.7E-1,5.8E-1,7.3E-1,9.6E-1,1.34E0,2.1E0,4.39E0/
  C
        IF (IFLAG .NE. 0) GO TO 5
  C
  C     Insert print statements here when NPRINT is positive.
  C
        RETURN
      5 CONTINUE
        DO 10 I = 1, M
           TMP1 = I
           TMP2 = 16 - I
           TMP3 = TMP1
           IF (I .GT. 8) TMP3 = TMP2
           FVEC(I) = Y(I) - (X(1) + TMP1/(X(2)*TMP2 + X(3)*TMP3))
     10    CONTINUE
        RETURN
        END
 
 
        Results obtained with different compilers or machines
        may be slightly different.
 
        FINAL L2 NORM OF THE RESIDUALS  0.9063596E-01
 
        NUMBER OF FUNCTION EVALUATIONS        25
 
        NUMBER OF JACOBIAN EVALUATIONS         0
 
        EXIT PARAMETER                         1
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        FINAL APPROXIMATE SOLUTION
 
         0.8241058E-01  0.1133037E+01  0.2343695E+01
 
 
        For IOPT=2, FCN would be modified as follows to also
        calculate the full Jacobian when IFLAG=2.
 
        SUBROUTINE FCN(IFLAG,M,N,X,FVEC,FJAC,LDFJAC)
  C
  C     This is the form of the FCN routine if IOPT=2,
  C     that is, if the user calculates the full Jacobian.
  C
        INTEGER I,LDFJAC,M,N,IFLAG
        DOUBLE PRECISION X(N),FVEC(M),FJAC(LDFJAC,N),Y(15)
        DOUBLE PRECISION TMP1,TMP2,TMP3,TMP4
        DATA Y(1),Y(2),Y(3),Y(4),Y(5),Y(6),Y(7),Y(8),
       *     Y(9),Y(10),Y(11),Y(12),Y(13),Y(14),Y(15)
       *     /1.4E-1,1.8E-1,2.2E-1,2.5E-1,2.9E-1,3.2E-1,3.5E-1,3.9E-1,
       *      3.7E-1,5.8E-1,7.3E-1,9.6E-1,1.34E0,2.1E0,4.39E0/
  C
        IF (IFLAG .NE. 0) GO TO 5
  C
  C     Insert print statements here when NPRINT is positive.
  C
        RETURN
      5 CONTINUE
        IF(IFLAG.NE.1) GO TO 20
        DO 10 I = 1, M
           TMP1 = I
           TMP2 = 16 - I
           TMP3 = TMP1
           IF (I .GT. 8) TMP3 = TMP2
           FVEC(I) = Y(I) - (X(1) + TMP1/(X(2)*TMP2 + X(3)*TMP3))
     10    CONTINUE
        RETURN
  C
  C     Below, calculate the full Jacobian.
  C
     20    CONTINUE
  C
        DO 30 I = 1, M
           TMP1 = I
           TMP2 = 16 - I
           TMP3 = TMP1
           IF (I .GT. 8) TMP3 = TMP2
           TMP4 = (X(2)*TMP2 + X(3)*TMP3)**2
           FJAC(I,1) = -1.E0
           FJAC(I,2) = TMP1*TMP2/TMP4
           FJAC(I,3) = TMP1*TMP3/TMP4
     30    CONTINUE
        RETURN
        END
 
 
        For IOPT = 3, FJAC would be dimensioned as FJAC(3,3),
          LDFJAC would be set to 3, and FCN would be written as
          follows to calculate a row of the Jacobian when IFLAG=3.
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        SUBROUTINE FCN(IFLAG,M,N,X,FVEC,FJAC,LDFJAC)
  C     This is the form of the FCN routine if IOPT=3,
  C     that is, if the user calculates the Jacobian row by row.
        INTEGER I,M,N,IFLAG
        DOUBLE PRECISION X(N),FVEC(M),FJAC(N),Y(15)
        DOUBLE PRECISION TMP1,TMP2,TMP3,TMP4
        DATA Y(1),Y(2),Y(3),Y(4),Y(5),Y(6),Y(7),Y(8),
       *     Y(9),Y(10),Y(11),Y(12),Y(13),Y(14),Y(15)
       *     /1.4E-1,1.8E-1,2.2E-1,2.5E-1,2.9E-1,3.2E-1,3.5E-1,3.9E-1,
       *      3.7E-1,5.8E-1,7.3E-1,9.6E-1,1.34E0,2.1E0,4.39E0/
  C
        IF (IFLAG .NE. 0) GO TO 5
  C
  C     Insert print statements here when NPRINT is positive.
  C
        RETURN
      5 CONTINUE
        IF( IFLAG.NE.1) GO TO 20
        DO 10 I = 1, M
           TMP1 = I
           TMP2 = 16 - I
           TMP3 = TMP1
           IF (I .GT. 8) TMP3 = TMP2
           FVEC(I) = Y(I) - (X(1) + TMP1/(X(2)*TMP2 + X(3)*TMP3))
     10    CONTINUE
        RETURN
  C
  C     Below, calculate the LDFJAC-th row of the Jacobian.
  C
     20 CONTINUE
 
        I = LDFJAC
           TMP1 = I
           TMP2 = 16 - I
           TMP3 = TMP1
           IF (I .GT. 8) TMP3 = TMP2
           TMP4 = (X(2)*TMP2 + X(3)*TMP3)**2
           FJAC(1) = -1.E0
           FJAC(2) = TMP1*TMP2/TMP4
           FJAC(3) = TMP1*TMP3/TMP4
        RETURN
        END
 
 ***REFERENCES  Jorge J. More, The Levenberg-Marquardt algorithm:
                  implementation and theory.  In Numerical Analysis
                  Proceedings (Dundee, June 28 - July 1, 1977, G. A.
                  Watson, Editor), Lecture Notes in Mathematics 630,
                  Springer-Verlag, 1978.
 ***ROUTINES CALLED  D1MACH, DCKDER, DENORM, DFDJC3, DMPAR, DQRFAC,
                     DWUPDT, XERMSG
 ***REVISION HISTORY  (YYMMDD)
    800301  DATE WRITTEN
    890531  Changed all specific intrinsics to generic.  (WRB)
    890831  Modified array declarations.  (WRB)
    891006  Cosmetic changes to prologue.  (WRB)
    891006  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    900315  CALLs to XERROR changed to CALLs to XERMSG.  (THJ)
    900510  Convert XERRWV calls to XERMSG calls.  (RWC)
    920205  Corrected XERN1 declaration.  (WRB)
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    920501  Reformatted the REFERENCES section.  (WRB)
    END PROLOGUE
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DNLS1E

      SUBROUTINE DNLS1E (FCN, IOPT, M, N, X, FVEC, TOL, NPRINT, INFO,
     +   IW, WA, LWA)
 ***BEGIN PROLOGUE  DNLS1E
 ***PURPOSE  An easy-to-use code which minimizes the sum of the squares
             of M nonlinear functions in N variables by a modification
             of the Levenberg-Marquardt algorithm.
 ***LIBRARY   SLATEC
 ***CATEGORY  K1B1A1, K1B1A2
 ***TYPE      DOUBLE PRECISION (SNLS1E-S, DNLS1E-D)
 ***KEYWORDS  EASY-TO-USE, LEVENBERG-MARQUARDT, NONLINEAR DATA FITTING,
              NONLINEAR LEAST SQUARES
 ***AUTHOR  Hiebert, K. L., (SNLA)
 ***DESCRIPTION
 
  1. Purpose.
 
        The purpose of DNLS1E is to minimize the sum of the squares of M
        nonlinear functions in N variables by a modification of the
        Levenberg-Marquardt algorithm.  This is done by using the more
        general least-squares solver DNLS1.  The user must provide a
        subroutine which calculates the functions.  The user has the
        option of how the Jacobian will be supplied.  The user can
        supply the full Jacobian, or the rows of the Jacobian (to avoid
        storing the full Jacobian), or let the code approximate the
        Jacobian by forward-differencing.  This code is the combination
        of the MINPACK codes (Argonne) LMDER1, LMDIF1, and LMSTR1.
 
 
  2. Subroutine and Type Statements.
 
        SUBROUTINE DNLS1E(FCN,IOPT,M,N,X,FVEC,TOL,NPRINT,
       *                  INFO,IW,WA,LWA)
        INTEGER IOPT,M,N,NPRINT,INFO,LWAC,IW(N)
        DOUBLE PRECISION TOL,X(N),FVEC(M),WA(LWA)
        EXTERNAL FCN
 
 
  3. Parameters. ALL TYPE REAL parameters are DOUBLE PRECISION
 
        Parameters designated as input parameters must be specified on
        entry to DNLS1E and are not changed on exit, while parameters
        designated as output parameters need not be specified on entry
        and are set to appropriate values on exit from DNLS1E.
 
       FCN is the name of the user-supplied subroutine which calculates
          the functions.  If the user wants to supply the Jacobian
          (IOPT=2 or 3), then FCN must be written to calculate the
          Jacobian, as well as the functions.  See the explanation
          of the IOPT argument below.
          If the user wants the iterates printed (NPRINT positive), then
          FCN must do the printing.  See the explanation of NPRINT
          below.  FCN must be declared in an EXTERNAL statement in the
          calling program and should be written as follows.
 
 
          SUBROUTINE FCN(IFLAG,M,N,X,FVEC,FJAC,LDFJAC)
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          INTEGER IFLAG,LDFJAC,M,N
          DOUBLE PRECISION X(N),FVEC(M)
          ----------
          FJAC and LDFJAC may be ignored       , if IOPT=1.
          DOUBLE PRECISION FJAC(LDFJAC,N)      , if IOPT=2.
          DOUBLE PRECISION FJAC(N)             , if IOPT=3.
          ----------
            If IFLAG=0, the values in X and FVEC are available
            for printing.  See the explanation of NPRINT below.
            IFLAG will never be zero unless NPRINT is positive.
            The values of X and FVEC must not be changed.
          RETURN
          ----------
            If IFLAG=1, calculate the functions at X and return
            this vector in FVEC.
          RETURN
          ----------
            If IFLAG=2, calculate the full Jacobian at X and return
            this matrix in FJAC.  Note that IFLAG will never be 2 unless
            IOPT=2.  FVEC contains the function values at X and must
            not be altered.  FJAC(I,J) must be set to the derivative
            of FVEC(I) with respect to X(J).
          RETURN
          ----------
            If IFLAG=3, calculate the LDFJAC-th row of the Jacobian
            and return this vector in FJAC.  Note that IFLAG will
            never be 3 unless IOPT=3.  FVEC contains the function
            values at X and must not be altered.  FJAC(J) must be
            set to the derivative of FVEC(LDFJAC) with respect to X(J).
          RETURN
          ----------
          END
 
 
          The value of IFLAG should not be changed by FCN unless the
          user wants to terminate execution of DNLS1E.  In this case,
          set IFLAG to a negative integer.
 
 
        IOPT is an input variable which specifies how the Jacobian will
          be calculated.  If IOPT=2 or 3, then the user must supply the
          Jacobian, as well as the function values, through the
          subroutine FCN.  If IOPT=2, the user supplies the full
          Jacobian with one call to FCN.  If IOPT=3, the user supplies
          one row of the Jacobian with each call.  (In this manner,
          storage can be saved because the full Jacobian is not stored.)
          If IOPT=1, the code will approximate the Jacobian by forward
          differencing.
 
        M is a positive integer input variable set to the number of
          functions.
 
        N is a positive integer input variable set to the number of
          variables.  N must not exceed M.
 
        X is an array of length N.  On input, X must contain an initial
          estimate of the solution vector.  On output, X contains the
          final estimate of the solution vector.
 
        FVEC is an output array of length M which contains the functions
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          evaluated at the output X.
 
        TOL is a non-negative input variable.  Termination occurs when
          the algorithm estimates either that the relative error in the
          sum of squares is at most TOL or that the relative error
          between X and the solution is at most TOL.  Section 4 contains
          more details about TOL.
 
        NPRINT is an integer input variable that enables controlled
          printing of iterates if it is positive.  In this case, FCN is
          called with IFLAG = 0 at the beginning of the first iteration
          and every NPRINT iterations thereafter and immediately prior
          to return, with X and FVEC available for printing. Appropriate
          print statements must be added to FCN (see example) and
          FVEC should not be altered.  If NPRINT is not positive, no
          special calls of FCN with IFLAG = 0 are made.
 
        INFO is an integer output variable.  If the user has terminated
         execution, INFO is set to the (negative) value of IFLAG.  See
         description of FCN and JAC. Otherwise, INFO is set as follows.
 
          INFO = 0  improper input parameters.
 
          INFO = 1  algorithm estimates that the relative error in the
                    sum of squares is at most TOL.
 
          INFO = 2  algorithm estimates that the relative error between
                    X and the solution is at most TOL.
 
          INFO = 3  conditions for INFO = 1 and INFO = 2 both hold.
 
          INFO = 4  FVEC is orthogonal to the columns of the Jacobian to
                    machine precision.
 
          INFO = 5  number of calls to FCN has reached 100*(N+1)
                    for IOPT=2 or 3 or 200*(N+1) for IOPT=1.
 
          INFO = 6  TOL is too small.  No further reduction in the sum
                    of squares is possible.
 
          INFO = 7  TOL is too small.  No further improvement in the
                    approximate solution X is possible.
 
          Sections 4 and 5 contain more details about INFO.
 
        IW is an INTEGER work array of length N.
 
        WA is a work array of length LWA.
 
        LWA is a positive integer input variable not less than
          N*(M+5)+M for IOPT=1 and 2 or N*(N+5)+M for IOPT=3.
 
 
  4. Successful Completion.
 
        The accuracy of DNLS1E is controlled by the convergence parame-
        ter TOL.  This parameter is used in tests which make three types
        of comparisons between the approximation X and a solution XSOL.
        DNLS1E terminates when any of the tests is satisfied.  If TOL is
        less than the machine precision (as defined by the function
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        R1MACH(4)), then DNLS1E only attempts to satisfy the test
        defined by the machine precision.  Further progress is not usu-
        ally possible.  Unless high precision solutions are required,
        the recommended value for TOL is the square root of the machine
        precision.
 
        The tests assume that the functions are reasonably well behaved,
        and, if the Jacobian is supplied by the user, that the functions
        and the Jacobian are coded consistently.  If these conditions
        are not satisfied, then DNLS1E may incorrectly indicate conver-
        gence.  If the Jacobian is coded correctly or IOPT=1,
        then the validity of the answer can be checked, for example, by
        rerunning DNLS1E with tighter tolerances.
 
        First Convergence Test.  If ENORM(Z) denotes the Euclidean norm
          of a vector Z, then this test attempts to guarantee that
 
                ENORM(FVEC) .LE. (1+TOL)*ENORM(FVECS),
 
          where FVECS denotes the functions evaluated at XSOL.  If this
          condition is satisfied with TOL = 10**(-K), then the final
          residual norm ENORM(FVEC) has K significant decimal digits and
          INFO is set to 1 (or to 3 if the second test is also satis-
          fied).
 
        Second Convergence Test.  If D is a diagonal matrix (implicitly
          generated by DNLS1E) whose entries contain scale factors for
          the variables, then this test attempts to guarantee that
 
                ENORM(D*(X-XSOL)) .LE.  TOL*ENORM(D*XSOL).
 
          If this condition is satisfied with TOL = 10**(-K), then the
          larger components of D*X have K significant decimal digits and
          INFO is set to 2 (or to 3 if the first test is also satis-
          fied).  There is a danger that the smaller components of D*X
          may have large relative errors, but the choice of D is such
          that the accuracy of the components of X is usually related to
          their sensitivity.
 
        Third Convergence Test.  This test is satisfied when FVEC is
          orthogonal to the columns of the Jacobian to machine preci-
          sion.  There is no clear relationship between this test and
          the accuracy of DNLS1E, and furthermore, the test is equally
          well satisfied at other critical points, namely maximizers and
          saddle points.  Therefore, termination caused by this test
          (INFO = 4) should be examined carefully.
 
 
  5. Unsuccessful Completion.
 
        Unsuccessful termination of DNLS1E can be due to improper input
        parameters, arithmetic interrupts, or an excessive number of
        function evaluations.
 
        Improper Input Parameters.  INFO is set to 0 if IOPT .LT. 1
          or IOPT .GT. 3, or N .LE. 0, or M .LT. N, or TOL .LT. 0.E0,
          or for IOPT=1 or 2 LWA .LT. N*(M+5)+M, or for IOPT=3
          LWA .LT. N*(N+5)+M.
 
        Arithmetic Interrupts.  If these interrupts occur in the FCN
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          subroutine during an early stage of the computation, they may
          be caused by an unacceptable choice of X by DNLS1E.  In this
          case, it may be possible to remedy the situation by not evalu-
          ating the functions here, but instead setting the components
          of FVEC to numbers that exceed those in the initial FVEC.
 
        Excessive Number of Function Evaluations.  If the number of
          calls to FCN reaches 100*(N+1) for IOPT=2 or 3 or 200*(N+1)
          for IOPT=1, then this indicates that the routine is converging
          very slowly as measured by the progress of FVEC, and INFO is
          set to 5.  In this case, it may be helpful to restart DNLS1E,
          thereby forcing it to disregard old (and possibly harmful)
          information.
 
 
  6. Characteristics of the Algorithm.
 
        DNLS1E is a modification of the Levenberg-Marquardt algorithm.
        Two of its main characteristics involve the proper use of
        implicitly scaled variables and an optimal choice for the cor-
        rection.  The use of implicitly scaled variables achieves scale
        invariance of DNLS1E and limits the size of the correction in
        any direction where the functions are changing rapidly.  The
        optimal choice of the correction guarantees (under reasonable
        conditions) global convergence from starting points far from the
        solution and a fast rate of convergence for problems with small
        residuals.
 
        Timing.  The time required by DNLS1E to solve a given problem
          depends on M and N, the behavior of the functions, the accu-
          racy requested, and the starting point.  The number of arith-
          metic operations needed by DNLS1E is about N**3 to process
          each evaluation of the functions (call to FCN) and to process
          each evaluation of the Jacobian DNLS1E takes M*N**2 for IOPT=2
          (one call to JAC), M*N**2 for IOPT=1 (N calls to FCN) and
          1.5*M*N**2 for IOPT=3 (M calls to FCN).  Unless FCN
          can be evaluated quickly, the timing of DNLS1E will be
          strongly influenced by the time spent in FCN.
 
        Storage.  DNLS1E requires (M*N + 2*M + 6*N) for IOPT=1 or 2 and
          (N**2 + 2*M + 6*N) for IOPT=3 single precision storage
          locations and N integer storage locations, in addition to
          the storage required by the program.  There are no internally
          declared storage arrays.
 
  *Long Description:
 
  7. Example.
 
        The problem is to determine the values of X(1), X(2), and X(3)
        which provide the best fit (in the least squares sense) of
 
              X(1) + U(I)/(V(I)*X(2) + W(I)*X(3)),  I = 1, 15
 
        to the data
 
              Y = (0.14,0.18,0.22,0.25,0.29,0.32,0.35,0.39,
                   0.37,0.58,0.73,0.96,1.34,2.10,4.39),
 
        where U(I) = I, V(I) = 16 - I, and W(I) = MIN(U(I),V(I)).  The
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        I-th component of FVEC is thus defined by
 
              Y(I) - (X(1) + U(I)/(V(I)*X(2) + W(I)*X(3))).
 
        **********
 
        PROGRAM TEST
  C
  C     Driver for DNLS1E example.
  C
        INTEGER I,IOPT,M,N,NPRINT,JNFO,LWA,NWRITE
        INTEGER IW(3)
        DOUBLE PRECISION TOL,FNORM,X(3),FVEC(15),WA(75)
        DOUBLE PRECISION DENORM,D1MACH
        EXTERNAL FCN
        DATA NWRITE /6/
  C
        IOPT = 1
        M = 15
        N = 3
  C
  C     The following starting values provide a rough fit.
  C
        X(1) = 1.E0
        X(2) = 1.E0
        X(3) = 1.E0
  C
        LWA = 75
        NPRINT = 0
  C
  C     Set TOL to the square root of the machine precision.
  C     Unless high precision solutions are required,
  C     this is the recommended setting.
  C
        TOL = SQRT(R1MACH(4))
  C
        CALL DNLS1E(FCN,IOPT,M,N,X,FVEC,TOL,NPRINT,
       *            INFO,IW,WA,LWA)
        FNORM = ENORM(M,FVEC)
        WRITE (NWRITE,1000) FNORM,INFO,(X(J),J=1,N)
        STOP
   1000 FORMAT (5X,' FINAL L2 NORM OF THE RESIDUALS',E15.7 //
       *        5X,' EXIT
       *        5X,' FINAL APPROXIMATE SOLUTION' // 5X,3E15.7)
        END
        SUBROUTINE FCN(IFLAG,M,N,X,FVEC,DUM,IDUM)
  C     This is the form of the FCN routine if IOPT=1,
  C     that is, if the user does not calculate the Jacobian.
        INTEGER I,M,N,IFLAG
        DOUBLE PRECISION X(N),FVEC(M),Y(15)
        DOUBLE PRECISION TMP1,TMP2,TMP3,TMP4
        DATA Y(1),Y(2),Y(3),Y(4),Y(5),Y(6),Y(7),Y(8),
       *     Y(9),Y(10),Y(11),Y(12),Y(13),Y(14),Y(15)
       *     /1.4E-1,1.8E-1,2.2E-1,2.5E-1,2.9E-1,3.2E-1,3.5E-1,3.9E-1,
       *      3.7E-1,5.8E-1,7.3E-1,9.6E-1,1.34E0,2.1E0,4.39E0/
  C
        IF (IFLAG .NE. 0) GO TO 5
  C
  C     Insert print statements here when NPRINT is positive.
  C
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        RETURN
      5 CONTINUE
        DO 10 I = 1, M
           TMP1 = I
           TMP2 = 16 - I
           TMP3 = TMP1
           IF (I .GT. 8) TMP3 = TMP2
           FVEC(I) = Y(I) - (X(1) + TMP1/(X(2)*TMP2 + X(3)*TMP3))
     10    CONTINUE
        RETURN
        END
 
 
        Results obtained with different compilers or machines
        may be slightly different.
 
        FINAL L2 NORM OF THE RESIDUALS  0.9063596E-01
 
        EXIT PARAMETER                         1
 
        FINAL APPROXIMATE SOLUTION
 
         0.8241058E-01  0.1133037E+01  0.2343695E+01
 
 
        For IOPT=2, FCN would be modified as follows to also
        calculate the full Jacobian when IFLAG=2.
 
        SUBROUTINE FCN(IFLAG,M,N,X,FVEC,FJAC,LDFJAC)
  C
  C     This is the form of the FCN routine if IOPT=2,
  C     that is, if the user calculates the full Jacobian.
  C
        INTEGER I,LDFJAC,M,N,IFLAG
        DOUBLE PRECISION X(N),FVEC(M),FJAC(LDFJAC,N),Y(15)
        DOUBLE PRECISION TMP1,TMP2,TMP3,TMP4
        DATA Y(1),Y(2),Y(3),Y(4),Y(5),Y(6),Y(7),Y(8),
       *     Y(9),Y(10),Y(11),Y(12),Y(13),Y(14),Y(15)
       *     /1.4E-1,1.8E-1,2.2E-1,2.5E-1,2.9E-1,3.2E-1,3.5E-1,3.9E-1,
       *      3.7E-1,5.8E-1,7.3E-1,9.6E-1,1.34E0,2.1E0,4.39E0/
  C
        IF (IFLAG .NE. 0) GO TO 5
  C
  C     Insert print statements here when NPRINT is positive.
  C
        RETURN
      5 CONTINUE
        IF(IFLAG.NE.1) GO TO 20
        DO 10 I = 1, M
           TMP1 = I
           TMP2 = 16 - I
           TMP3 = TMP1
           IF (I .GT. 8) TMP3 = TMP2
           FVEC(I) = Y(I) - (X(1) + TMP1/(X(2)*TMP2 + X(3)*TMP3))
     10    CONTINUE
        RETURN
  C
  C     Below, calculate the full Jacobian.
  C
     20    CONTINUE
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  C
        DO 30 I = 1, M
           TMP1 = I
           TMP2 = 16 - I
           TMP3 = TMP1
           IF (I .GT. 8) TMP3 = TMP2
           TMP4 = (X(2)*TMP2 + X(3)*TMP3)**2
           FJAC(I,1) = -1.E0
           FJAC(I,2) = TMP1*TMP2/TMP4
           FJAC(I,3) = TMP1*TMP3/TMP4
     30    CONTINUE
        RETURN
        END
 
 
        For IOPT = 3, FJAC would be dimensioned as FJAC(3,3),
          LDFJAC would be set to 3, and FCN would be written as
          follows to calculate a row of the Jacobian when IFLAG=3.
 
        SUBROUTINE FCN(IFLAG,M,N,X,FVEC,FJAC,LDFJAC)
  C     This is the form of the FCN routine if IOPT=3,
  C     that is, if the user calculates the Jacobian row by row.
        INTEGER I,M,N,IFLAG
        DOUBLE PRECISION X(N),FVEC(M),FJAC(N),Y(15)
        DOUBLE PRECISION TMP1,TMP2,TMP3,TMP4
        DATA Y(1),Y(2),Y(3),Y(4),Y(5),Y(6),Y(7),Y(8),
       *     Y(9),Y(10),Y(11),Y(12),Y(13),Y(14),Y(15)
       *     /1.4E-1,1.8E-1,2.2E-1,2.5E-1,2.9E-1,3.2E-1,3.5E-1,3.9E-1,
       *      3.7E-1,5.8E-1,7.3E-1,9.6E-1,1.34E0,2.1E0,4.39E0/
  C
        IF (IFLAG .NE. 0) GO TO 5
  C
  C     Insert print statements here when NPRINT is positive.
  C
        RETURN
      5 CONTINUE
        IF( IFLAG.NE.1) GO TO 20
        DO 10 I = 1, M
           TMP1 = I
           TMP2 = 16 - I
           TMP3 = TMP1
           IF (I .GT. 8) TMP3 = TMP2
           FVEC(I) = Y(I) - (X(1) + TMP1/(X(2)*TMP2 + X(3)*TMP3))
     10    CONTINUE
        RETURN
  C
  C     Below, calculate the LDFJAC-th row of the Jacobian.
  C
     20 CONTINUE
 
        I = LDFJAC
           TMP1 = I
           TMP2 = 16 - I
           TMP3 = TMP1
           IF (I .GT. 8) TMP3 = TMP2
           TMP4 = (X(2)*TMP2 + X(3)*TMP3)**2
           FJAC(1) = -1.E0
           FJAC(2) = TMP1*TMP2/TMP4
           FJAC(3) = TMP1*TMP3/TMP4
        RETURN
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        END
 
 ***REFERENCES  Jorge J. More, The Levenberg-Marquardt algorithm:
                  implementation and theory.  In Numerical Analysis
                  Proceedings (Dundee, June 28 - July 1, 1977, G. A.
                  Watson, Editor), Lecture Notes in Mathematics 630,
                  Springer-Verlag, 1978.
 ***ROUTINES CALLED  DNLS1, XERMSG
 ***REVISION HISTORY  (YYMMDD)
    800301  DATE WRITTEN
    890831  Modified array declarations.  (WRB)
    891006  Cosmetic changes to prologue.  (WRB)
    891006  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    900315  CALLs to XERROR changed to CALLs to XERMSG.  (THJ)
    920501  Reformatted the REFERENCES section.  (WRB)
    END PROLOGUE
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DNRM2

      DOUBLE PRECISION FUNCTION DNRM2 (N, DX, INCX)
 ***BEGIN PROLOGUE  DNRM2
 ***PURPOSE  Compute the Euclidean length (L2 norm) of a vector.
 ***LIBRARY   SLATEC (BLAS)
 ***CATEGORY  D1A3B
 ***TYPE      DOUBLE PRECISION (SNRM2-S, DNRM2-D, SCNRM2-C)
 ***KEYWORDS  BLAS, EUCLIDEAN LENGTH, EUCLIDEAN NORM, L2,
              LINEAR ALGEBRA, UNITARY, VECTOR
 ***AUTHOR  Lawson, C. L., (JPL)
            Hanson, R. J., (SNLA)
            Kincaid, D. R., (U. of Texas)
            Krogh, F. T., (JPL)
 ***DESCRIPTION
 
                 B L A S  Subprogram
     Description of parameters
 
      --Input--
         N  number of elements in input vector(s)
        DX  double precision vector with N elements
      INCX  storage spacing between elements of DX
 
      --Output--
     DNRM2  double precision result (zero if N .LE. 0)
 
      Euclidean norm of the N-vector stored in DX with storage
      increment INCX.
      If N .LE. 0, return with result = 0.
      If N .GE. 1, then INCX must be .GE. 1
 
      Four phase method using two built-in constants that are
      hopefully applicable to all machines.
          CUTLO = maximum of  SQRT(U/EPS)  over all known machines.
          CUTHI = minimum of  SQRT(V)      over all known machines.
      where
          EPS = smallest no. such that EPS + 1. .GT. 1.
          U   = smallest positive no.   (underflow limit)
          V   = largest  no.            (overflow  limit)
 
      Brief outline of algorithm.
 
      Phase 1 scans zero components.
      move to phase 2 when a component is nonzero and .LE. CUTLO
      move to phase 3 when a component is .GT. CUTLO
      move to phase 4 when a component is .GE. CUTHI/M
      where M = N for X() real and M = 2*N for complex.
 
      Values for CUTLO and CUTHI.
      From the environmental parameters listed in the IMSL converter
      document the limiting values are as follows:
      CUTLO, S.P.   U/EPS = 2**(-102) for  Honeywell.  Close seconds are
                    Univac and DEC at 2**(-103)
                    Thus CUTLO = 2**(-51) = 4.44089E-16
      CUTHI, S.P.   V = 2**127 for Univac, Honeywell, and DEC.
                    Thus CUTHI = 2**(63.5) = 1.30438E19
      CUTLO, D.P.   U/EPS = 2**(-67) for Honeywell and DEC.
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                    Thus CUTLO = 2**(-33.5) = 8.23181D-11
      CUTHI, D.P.   same as S.P.  CUTHI = 1.30438D19
      DATA CUTLO, CUTHI /8.232D-11,  1.304D19/
      DATA CUTLO, CUTHI /4.441E-16,  1.304E19/
 
 ***REFERENCES  C. L. Lawson, R. J. Hanson, D. R. Kincaid and F. T.
                  Krogh, Basic linear algebra subprograms for Fortran
                  usage, Algorithm No. 539, Transactions on Mathematical
                  Software 5, 3 (September 1979), pp. 308-323.
 ***ROUTINES CALLED  (NONE)
 ***REVISION HISTORY  (YYMMDD)
    791001  DATE WRITTEN
    890531  Changed all specific intrinsics to generic.  (WRB)
    890831  Modified array declarations.  (WRB)
    890831  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    920501  Reformatted the REFERENCES section.  (WRB)
    END PROLOGUE
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DNSQ

      SUBROUTINE DNSQ (FCN, JAC, IOPT, N, X, FVEC, FJAC, LDFJAC, XTOL,
         MAXFEV, ML, MU, EPSFCN, DIAG, MODE, FACTOR, NPRINT, INFO, NFEV,
     +   NJEV, R, LR, QTF, WA1, WA2, WA3, WA4)
 ***BEGIN PROLOGUE  DNSQ
 ***PURPOSE  Find a zero of a system of a N nonlinear functions in N
             variables by a modification of the Powell hybrid method.
 ***LIBRARY   SLATEC
 ***CATEGORY  F2A
 ***TYPE      DOUBLE PRECISION (SNSQ-S, DNSQ-D)
 ***KEYWORDS  NONLINEAR SQUARE SYSTEM, POWELL HYBRID METHOD, ZEROS
 ***AUTHOR  Hiebert, K. L. (SNLA)
 ***DESCRIPTION
 
  1. Purpose.
 
        The purpose of DNSQ is to find a zero of a system of N nonlinear
        functions in N variables by a modification of the Powell
        hybrid method.  The user must provide a subroutine which
        calculates the functions.  The user has the option of either to
        provide a subroutine which calculates the Jacobian or to let the
        code calculate it by a forward-difference approximation.
        This code is the combination of the MINPACK codes (Argonne)
        HYBRD and HYBRDJ.
 
  2. Subroutine and Type Statements.
 
        SUBROUTINE DNSQ(FCN,JAC,IOPT,N,X,FVEC,FJAC,LDFJAC,XTOL,MAXFEV,
       *                 ML,MU,EPSFCN,DIAG,MODE,FACTOR,NPRINT,INFO,NFEV,
       *                 NJEV,R,LR,QTF,WA1,WA2,WA3,WA4)
        INTEGER IOPT,N,MAXFEV,ML,MU,MODE,NPRINT,INFO,NFEV,LDFJAC,NJEV,LR
        DOUBLE PRECISION XTOL,EPSFCN,FACTOR
        DOUBLE PRECISION
        X(N),FVEC(N),DIAG(N),FJAC(LDFJAC,N),R(LR),QTF(N),
       *     WA1(N),WA2(N),WA3(N),WA4(N)
        EXTERNAL FCN,JAC
 
  3. Parameters.
 
        Parameters designated as input parameters must be specified on
        entry to DNSQ and are not changed on exit, while parameters
        designated as output parameters need not be specified on entry
        and are set to appropriate values on exit from DNSQ.
 
        FCN is the name of the user-supplied subroutine which calculates
          the functions.  FCN must be declared in an EXTERNAL statement
          in the user calling program, and should be written as follows.
 
          SUBROUTINE FCN(N,X,FVEC,IFLAG)
          INTEGER N,IFLAG
          DOUBLE PRECISION X(N),FVEC(N)
          ----------
          CALCULATE THE FUNCTIONS AT X AND
          RETURN THIS VECTOR IN FVEC.
          ----------
          RETURN
          END
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          The value of IFLAG should not be changed by FCN unless the
          user wants to terminate execution of DNSQ.  In this case set
          IFLAG to a negative integer.
 
        JAC is the name of the user-supplied subroutine which calculates
          the Jacobian.  If IOPT=1, then JAC must be declared in an
          EXTERNAL statement in the user calling program, and should be
          written as follows.
 
          SUBROUTINE JAC(N,X,FVEC,FJAC,LDFJAC,IFLAG)
          INTEGER N,LDFJAC,IFLAG
          DOUBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,N)
          ----------
          Calculate the Jacobian at X and return this
          matrix in FJAC.  FVEC contains the function
          values at X and should not be altered.
          ----------
          RETURN
          END
 
          The value of IFLAG should not be changed by JAC unless the
          user wants to terminate execution of DNSQ.  In this case set
          IFLAG to a negative integer.
 
          If IOPT=2, JAC can be ignored (treat it as a dummy argument).
 
        IOPT is an input variable which specifies how the Jacobian will
          be calculated.  If IOPT=1, then the user must supply the
          Jacobian through the subroutine JAC.  If IOPT=2, then the
          code will approximate the Jacobian by forward-differencing.
 
        N is a positive integer input variable set to the number of
          functions and variables.
 
        X is an array of length N.  On input X must contain an initial
          estimate of the solution vector.  On output X contains the
          final estimate of the solution vector.
 
        FVEC is an output array of length N which contains the functions
          evaluated at the output X.
 
        FJAC is an output N by N array which contains the orthogonal
          matrix Q produced by the QR factorization of the final
          approximate Jacobian.
 
        LDFJAC is a positive integer input variable not less than N
          which specifies the leading dimension of the array FJAC.
 
        XTOL is a nonnegative input variable.  Termination occurs when
          the relative error between two consecutive iterates is at most
          XTOL.  Therefore, XTOL measures the relative error desired in
          the approximate solution.  Section 4 contains more details
          about XTOL.
 
        MAXFEV is a positive integer input variable.  Termination occurs
          when the number of calls to FCN is at least MAXFEV by the end
          of an iteration.
 
        ML is a nonnegative integer input variable which specifies the
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          number of subdiagonals within the band of the Jacobian matrix.
          If the Jacobian is not banded or IOPT=1, set ML to at
          least N - 1.
 
        MU is a nonnegative integer input variable which specifies the
          number of superdiagonals within the band of the Jacobian
          matrix.  If the Jacobian is not banded or IOPT=1, set MU to at
          least N - 1.
 
        EPSFCN is an input variable used in determining a suitable step
          for the forward-difference approximation.  This approximation
          assumes that the relative errors in the functions are of the
          order of EPSFCN.  If EPSFCN is less than the machine
          precision, it is assumed that the relative errors in the
          functions are of the order of the machine precision.  If
          IOPT=1, then EPSFCN can be ignored (treat it as a dummy
          argument).
 
        DIAG is an array of length N.  If MODE = 1 (see below), DIAG is
          internally set.  If MODE = 2, DIAG must contain positive
          entries that serve as implicit (multiplicative) scale factors
          for the variables.
 
        MODE is an integer input variable.  If MODE = 1, the variables
          will be scaled internally.  If MODE = 2, the scaling is
          specified by the input DIAG.  Other values of MODE are
          equivalent to MODE = 1.
 
        FACTOR is a positive input variable used in determining the
          initial step bound.  This bound is set to the product of
          FACTOR and the Euclidean norm of DIAG*X if nonzero, or else to
          FACTOR itself.  In most cases FACTOR should lie in the
          interval (.1,100.).  100. is a generally recommended value.
 
        NPRINT is an integer input variable that enables controlled
          printing of iterates if it is positive.  In this case, FCN is
          called with IFLAG = 0 at the beginning of the first iteration
          and every NPRINT iterations thereafter and immediately prior
          to return, with X and FVEC available for printing. appropriate
          print statements must be added to FCN(see example).  If NPRINT
          is not positive, no special calls of FCN with IFLAG = 0 are
          made.
 
        INFO is an integer output variable.  If the user has terminated
          execution, INFO is set to the (negative) value of IFLAG.  See
          description of FCN and JAC. Otherwise, INFO is set as follows.
 
          INFO = 0  Improper input parameters.
 
          INFO = 1  Relative error between two consecutive iterates is
                    at most XTOL.
 
          INFO = 2  Number of calls to FCN has reached or exceeded
                    MAXFEV.
 
          INFO = 3  XTOL is too small.  No further improvement in the
                    approximate solution X is possible.
 
          INFO = 4  Iteration is not making good progress, as measured
                    by the improvement from the last five Jacobian
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                    evaluations.
 
          INFO = 5  Iteration is not making good progress, as measured
                    by the improvement from the last ten iterations.
 
          Sections 4 and 5 contain more details about INFO.
 
        NFEV is an integer output variable set to the number of calls to
          FCN.
 
        NJEV is an integer output variable set to the number of calls to
          JAC. (If IOPT=2, then NJEV is set to zero.)
 
        R is an output array of length LR which contains the upper
          triangular matrix produced by the QR factorization of the
          final approximate Jacobian, stored rowwise.
 
        LR is a positive integer input variable not less than
          (N*(N+1))/2.
 
        QTF is an output array of length N which contains the vector
          (Q transpose)*FVEC.
 
        WA1, WA2, WA3, and WA4 are work arrays of length N.
 
 
  4. Successful completion.
 
        The accuracy of DNSQ is controlled by the convergence parameter
        XTOL.  This parameter is used in a test which makes a comparison
        between the approximation X and a solution XSOL.  DNSQ
        terminates when the test is satisfied.  If the convergence
        parameter is less than the machine precision (as defined by the
        function D1MACH(4)), then DNSQ only attempts to satisfy the test
        defined by the machine precision.  Further progress is not
        usually possible.
 
        The test assumes that the functions are reasonably well behaved,
        and, if the Jacobian is supplied by the user, that the functions
        and the Jacobian are coded consistently.  If these conditions
        are not satisfied, then DNSQ may incorrectly indicate
        convergence.  The coding of the Jacobian can be checked by the
        subroutine DCKDER. If the Jacobian is coded correctly or IOPT=2,
        then the validity of the answer can be checked, for example, by
        rerunning DNSQ with a tighter tolerance.
 
        Convergence Test.  If DENORM(Z) denotes the Euclidean norm of a
          vector Z and D is the diagonal matrix whose entries are
          defined by the array DIAG, then this test attempts to
          guarantee that
 
                DENORM(D*(X-XSOL)) .LE. XTOL*DENORM(D*XSOL).
 
          If this condition is satisfied with XTOL = 10**(-K), then the
          larger components of D*X have K significant decimal digits and
          INFO is set to 1.  There is a danger that the smaller
          components of D*X may have large relative errors, but the fast
          rate of convergence of DNSQ usually avoids this possibility.
          Unless high precision solutions are required, the recommended
          value for XTOL is the square root of the machine precision.
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  5. Unsuccessful Completion.
 
        Unsuccessful termination of DNSQ can be due to improper input
        parameters, arithmetic interrupts, an excessive number of
        function evaluations, or lack of good progress.
 
        Improper Input Parameters.  INFO is set to 0 if IOPT .LT .1,
          or IOPT .GT. 2, or N .LE. 0, or LDFJAC .LT. N, or
          XTOL .LT. 0.E0, or MAXFEV .LE. 0, or ML .LT. 0, or MU .LT. 0,
          or FACTOR .LE. 0.E0, or LR .LT. (N*(N+1))/2.
 
        Arithmetic Interrupts.  If these interrupts occur in the FCN
          subroutine during an early stage of the computation, they may
          be caused by an unacceptable choice of X by DNSQ.  In this
          case, it may be possible to remedy the situation by rerunning
          DNSQ with a smaller value of FACTOR.
 
        Excessive Number of Function Evaluations.  A reasonable value
          for MAXFEV is 100*(N+1) for IOPT=1 and 200*(N+1) for IOPT=2.
          If the number of calls to FCN reaches MAXFEV, then this
          indicates that the routine is converging very slowly as
          measured by the progress of FVEC, and INFO is set to 2. This
          situation should be unusual because, as indicated below, lack
          of good progress is usually diagnosed earlier by DNSQ,
          causing termination with info = 4 or INFO = 5.
 
        Lack of Good Progress.  DNSQ searches for a zero of the system
          by minimizing the sum of the squares of the functions.  In so
          doing, it can become trapped in a region where the minimum
          does not correspond to a zero of the system and, in this
          situation, the iteration eventually fails to make good
          progress.  In particular, this will happen if the system does
          not have a zero.  If the system has a zero, rerunning DNSQ
          from a different starting point may be helpful.
 
 
  6. Characteristics of The Algorithm.
 
        DNSQ is a modification of the Powell Hybrid method.  Two of its
        main characteristics involve the choice of the correction as a
        convex combination of the Newton and scaled gradient directions,
        and the updating of the Jacobian by the rank-1 method of
        Broyden.  The choice of the correction guarantees (under
        reasonable conditions) global convergence for starting points
        far from the solution and a fast rate of convergence.  The
        Jacobian is calculated at the starting point by either the
        user-supplied subroutine or a forward-difference approximation,
        but it is not recalculated until the rank-1 method fails to
        produce satisfactory progress.
 
        Timing.  The time required by DNSQ to solve a given problem
          depends on N, the behavior of the functions, the accuracy
          requested, and the starting point.  The number of arithmetic
          operations needed by DNSQ is about 11.5*(N**2) to process
          each evaluation of the functions (call to FCN) and 1.3*(N**3)
          to process each evaluation of the Jacobian (call to JAC,
          if IOPT = 1).  Unless FCN and JAC can be evaluated quickly,
          the timing of DNSQ will be strongly influenced by the time
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          spent in FCN and JAC.
 
        Storage.  DNSQ requires (3*N**2 + 17*N)/2 single precision
          storage locations, in addition to the storage required by the
          program.  There are no internally declared storage arrays.
 
  *Long Description:
 
  7. Example.
 
        The problem is to determine the values of X(1), X(2), ..., X(9),
        which solve the system of tridiagonal equations
 
        (3-2*X(1))*X(1)           -2*X(2)                   = -1
                -X(I-1) + (3-2*X(I))*X(I)         -2*X(I+1) = -1, I=2-8
                                    -X(8) + (3-2*X(9))*X(9) = -1
  C     **********
 
        PROGRAM TEST
  C
  C     Driver for DNSQ example.
  C
        INTEGER J,IOPT,N,MAXFEV,ML,MU,MODE,NPRINT,INFO,NFEV,LDFJAC,LR,
       *        NWRITE
        DOUBLE PRECISION XTOL,EPSFCN,FACTOR,FNORM
        DOUBLE PRECISION X(9),FVEC(9),DIAG(9),FJAC(9,9),R(45),QTF(9),
       *     WA1(9),WA2(9),WA3(9),WA4(9)
        DOUBLE PRECISION DENORM,D1MACH
        EXTERNAL FCN
        DATA NWRITE /6/
  C
        IOPT = 2
        N = 9
  C
  C     THE FOLLOWING STARTING VALUES PROVIDE A ROUGH SOLUTION.
  C
        DO 10 J = 1, 9
           X(J) = -1.E0
     10    CONTINUE
  C
        LDFJAC = 9
        LR = 45
  C
  C     SET XTOL TO THE SQUARE ROOT OF THE MACHINE PRECISION.
  C     UNLESS HIGH PRECISION SOLUTIONS ARE REQUIRED,
  C     THIS IS THE RECOMMENDED SETTING.
  C
        XTOL = SQRT(D1MACH(4))
  C
        MAXFEV = 2000
        ML = 1
        MU = 1
        EPSFCN = 0.E0
        MODE = 2
        DO 20 J = 1, 9
           DIAG(J) = 1.E0
     20    CONTINUE
        FACTOR = 1.E2
        NPRINT = 0
  C
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        CALL DNSQ(FCN,JAC,IOPT,N,X,FVEC,FJAC,LDFJAC,XTOL,MAXFEV,ML,MU,
       *           EPSFCN,DIAG,MODE,FACTOR,NPRINT,INFO,NFEV,NJEV,
       *           R,LR,QTF,WA1,WA2,WA3,WA4)
        FNORM = DENORM(N,FVEC)
        WRITE (NWRITE,1000) FNORM,NFEV,INFO,(X(J),J=1,N)
        STOP
   1000 FORMAT (5X,' FINAL L2 NORM OF THE RESIDUALS',E15.7 //
       *        5X,' NUMBER OF FUNCTION EVALUATIONS',I10 //
       *        5X,' EXIT PARAMETER',16X,I10 //
       *        5X,' FINAL APPROXIMATE SOLUTION' // (5X,3E15.7))
        END
        SUBROUTINE FCN(N,X,FVEC,IFLAG)
        INTEGER N,IFLAG
        DOUBLE PRECISION X(N),FVEC(N)
        INTEGER K
        DOUBLE PRECISION ONE,TEMP,TEMP1,TEMP2,THREE,TWO,ZERO
        DATA ZERO,ONE,TWO,THREE /0.E0,1.E0,2.E0,3.E0/
  C
        IF (IFLAG .NE. 0) GO TO 5
  C
  C     INSERT PRINT STATEMENTS HERE WHEN NPRINT IS POSITIVE.
  C
        RETURN
      5 CONTINUE
        DO 10 K = 1, N
           TEMP = (THREE - TWO*X(K))*X(K)
           TEMP1 = ZERO
           IF (K .NE. 1) TEMP1 = X(K-1)
           TEMP2 = ZERO
           IF (K .NE. N) TEMP2 = X(K+1)
           FVEC(K) = TEMP - TEMP1 - TWO*TEMP2 + ONE
     10    CONTINUE
        RETURN
        END
 
        Results obtained with different compilers or machines
        may be slightly different.
 
        Final L2 norm of the residuals  0.1192636E-07
 
        Number of function evaluations        14
 
        Exit parameter                         1
 
        Final approximate solution
 
        -0.5706545E+00 -0.6816283E+00 -0.7017325E+00
        -0.7042129E+00 -0.7013690E+00 -0.6918656E+00
        -0.6657920E+00 -0.5960342E+00 -0.4164121E+00
 
 ***REFERENCES  M. J. D. Powell, A hybrid method for nonlinear equa-
                  tions. In Numerical Methods for Nonlinear Algebraic
                  Equations, P. Rabinowitz, Editor.  Gordon and Breach,
                  1988.
 ***ROUTINES CALLED  D1MACH, D1MPYQ, D1UPDT, DDOGLG, DENORM, DFDJC1,
                     DQFORM, DQRFAC, XERMSG
 ***REVISION HISTORY  (YYMMDD)
    800301  DATE WRITTEN
    890531  Changed all specific intrinsics to generic.  (WRB)
    890831  Modified array declarations.  (WRB)
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    890831  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    900315  CALLs to XERROR changed to CALLs to XERMSG.  (THJ)
    920501  Reformatted the REFERENCES section.  (WRB)
    END PROLOGUE
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DNSQE

      SUBROUTINE DNSQE (FCN, JAC, IOPT, N, X, FVEC, TOL, NPRINT, INFO,
     +   WA, LWA)
 ***BEGIN PROLOGUE  DNSQE
 ***PURPOSE  An easy-to-use code to find a zero of a system of N
             nonlinear functions in N variables by a modification of
             the Powell hybrid method.
 ***LIBRARY   SLATEC
 ***CATEGORY  F2A
 ***TYPE      DOUBLE PRECISION (SNSQE-S, DNSQE-D)
 ***KEYWORDS  EASY-TO-USE, NONLINEAR SQUARE SYSTEM,
              POWELL HYBRID METHOD, ZEROS
 ***AUTHOR  Hiebert, K. L. (SNLA)
 ***DESCRIPTION
 
  1. Purpose.
 
        The purpose of DNSQE is to find a zero of a system of N
        nonlinear functions in N variables by a modification of the
        Powell hybrid method.  This is done by using the more general
        nonlinear equation solver DNSQ.  The user must provide a
        subroutine which calculates the functions.  The user has the
        option of either to provide a subroutine which calculates the
        Jacobian or to let the code calculate it by a forward-difference
        approximation.  This code is the combination of the MINPACK
        codes (Argonne) HYBRD1 and HYBRJ1.
 
  2. Subroutine and Type Statements.
 
        SUBROUTINE DNSQE(FCN,JAC,IOPT,N,X,FVEC,TOL,NPRINT,INFO,
       *                  WA,LWA)
        INTEGER IOPT,N,NPRINT,INFO,LWA
        DOUBLE PRECISION TOL
        DOUBLE PRECISION X(N),FVEC(N),WA(LWA)
        EXTERNAL FCN,JAC
 
  3. Parameters.
 
        Parameters designated as input parameters must be specified on
        entry to DNSQE and are not changed on exit, while parameters
        designated as output parameters need not be specified on entry
        and are set to appropriate values on exit from DNSQE.
 
        FCN is the name of the user-supplied subroutine which calculates
          the functions.  FCN must be declared in an external statement
          in the user calling program, and should be written as follows.
 
          SUBROUTINE FCN(N,X,FVEC,IFLAG)
          INTEGER N,IFLAG
          DOUBLE PRECISION X(N),FVEC(N)
          ----------
          Calculate the functions at X and
          return this vector in FVEC.
          ----------
          RETURN
          END
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          The value of IFLAG should not be changed by FCN unless the
          user wants to terminate execution of DNSQE.  In this case set
          IFLAG to a negative integer.
 
        JAC is the name of the user-supplied subroutine which calculates
          the Jacobian.  If IOPT=1, then JAC must be declared in an
          external statement in the user calling program, and should be
          written as follows.
 
          SUBROUTINE JAC(N,X,FVEC,FJAC,LDFJAC,IFLAG)
          INTEGER N,LDFJAC,IFLAG
          DOUBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,N)
          ----------
          Calculate the Jacobian at X and return this
          matrix in FJAC.  FVEC contains the function
          values at X and should not be altered.
          ----------
          RETURN
          END
 
          The value of IFLAG should not be changed by JAC unless the
          user wants to terminate execution of DNSQE. In this case set
          IFLAG to a negative integer.
 
          If IOPT=2, JAC can be ignored (treat it as a dummy argument).
 
        IOPT is an input variable which specifies how the Jacobian will
          be calculated.  If IOPT=1, then the user must supply the
          Jacobian through the subroutine JAC.  If IOPT=2, then the
          code will approximate the Jacobian by forward-differencing.
 
        N is a positive integer input variable set to the number of
          functions and variables.
 
        X is an array of length N.  On input X must contain an initial
          estimate of the solution vector.  On output X contains the
          final estimate of the solution vector.
 
        FVEC is an output array of length N which contains the functions
          evaluated at the output X.
 
        TOL is a nonnegative input variable.  Termination occurs when
          the algorithm estimates that the relative error between X and
          the solution is at most TOL.  Section 4 contains more details
          about TOL.
 
        NPRINT is an integer input variable that enables controlled
          printing of iterates if it is positive.  In this case, FCN is
          called with IFLAG = 0 at the beginning of the first iteration
          and every NPRINT iterations thereafter and immediately prior
          to return, with X and FVEC available for printing. Appropriate
          print statements must be added to FCN(see example).  If NPRINT
          is not positive, no special calls of FCN with IFLAG = 0 are
          made.
 
        INFO is an integer output variable.  If the user has terminated
          execution, INFO is set to the (negative) value of IFLAG.  See
          description of FCN and JAC. Otherwise, INFO is set as follows.
 
          INFO = 0  Improper input parameters.
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          INFO = 1  Algorithm estimates that the relative error between
                    X and the solution is at most TOL.
 
          INFO = 2  Number of calls to FCN has reached or exceeded
                    100*(N+1) for IOPT=1 or 200*(N+1) for IOPT=2.
 
          INFO = 3  TOL is too small.  No further improvement in the
                    approximate solution X is possible.
 
          INFO = 4  Iteration is not making good progress.
 
          Sections 4 and 5 contain more details about INFO.
 
        WA is a work array of length LWA.
 
        LWA is a positive integer input variable not less than
          (3*N**2+13*N))/2.
 
  4. Successful Completion.
 
        The accuracy of DNSQE is controlled by the convergence parameter
        TOL.  This parameter is used in a test which makes a comparison
        between the approximation X and a solution XSOL.  DNSQE
        terminates when the test is satisfied.  If TOL is less than the
        machine precision (as defined by the  function D1MACH(4)), then
        DNSQE only attempts to satisfy the test defined by the machine
        precision.  Further progress is not usually possible.  Unless
        high precision solutions are required, the recommended value
        for TOL is the square root of the machine precision.
 
        The test assumes that the functions are reasonably well behaved,
        and, if the Jacobian is supplied by the user, that the functions
        and the Jacobian are coded consistently. If these conditions are
        not satisfied, then DNSQE may incorrectly indicate convergence.
        The coding of the Jacobian can be checked by the subroutine
        DCKDER.  If the Jacobian is coded correctly or IOPT=2, then
        the validity of the answer can be checked, for example, by
        rerunning DNSQE with a tighter tolerance.
 
        Convergence Test.  If DENORM(Z) denotes the Euclidean norm of a
          vector Z, then this test attempts to guarantee that
 
                DENORM(X-XSOL) .LE. TOL*DENORM(XSOL).
 
          If this condition is satisfied with TOL = 10**(-K), then the
          larger components of X have K significant decimal digits and
          INFO is set to 1.  There is a danger that the smaller
          components of X may have large relative errors, but the fast
          rate of convergence of DNSQE usually avoids this possibility.
 
  5. Unsuccessful Completion.
 
        Unsuccessful termination of DNSQE can be due to improper input
        parameters, arithmetic interrupts, an excessive number of
        function evaluations, errors in the functions, or lack of good
        progress.
 
        Improper Input Parameters.  INFO is set to 0 if IOPT .LT. 1, or
          IOPT .GT. 2, or N .LE. 0, or TOL .LT. 0.E0, or

SLATEC3 (DACOSH through DS2Y) - 415



          LWA .LT. (3*N**2+13*N)/2.
 
        Arithmetic Interrupts.  If these interrupts occur in the FCN
          subroutine during an early stage of the computation, they may
          be caused by an unacceptable choice of X by DNSQE.  In this
          case, it may be possible to remedy the situation by not
          evaluating the functions here, but instead setting the
          components of FVEC to numbers that exceed those in the initial
          FVEC.
 
        Excessive Number of Function Evaluations.  If the number of
          calls to FCN reaches 100*(N+1) for IOPT=1 or 200*(N+1) for
          IOPT=2, then this indicates that the routine is converging
          very slowly as measured by the progress of FVEC, and INFO is
          set to 2.  This situation should be unusual because, as
          indicated below, lack of good progress is usually diagnosed
          earlier by DNSQE, causing termination with INFO = 4.
 
        Errors In the Functions.  When IOPT=2, the choice of step length
          in the forward-difference approximation to the Jacobian
          assumes that the relative errors in the functions are of the
          order of the machine precision.  If this is not the case,
          DNSQE may fail (usually with INFO = 4).  The user should
          then either use DNSQ and set the step length or use IOPT=1
          and supply the Jacobian.
 
        Lack of Good Progress.  DNSQE searches for a zero of the system
          by minimizing the sum of the squares of the functions.  In so
          doing, it can become trapped in a region where the minimum
          does not correspond to a zero of the system and, in this
          situation, the iteration eventually fails to make good
          progress.  In particular, this will happen if the system does
          not have a zero.  If the system has a zero, rerunning DNSQE
          from a different starting point may be helpful.
 
  6. Characteristics of The Algorithm.
 
        DNSQE is a modification of the Powell Hybrid method.  Two of
        its main characteristics involve the choice of the correction as
        a convex combination of the Newton and scaled gradient
        directions, and the updating of the Jacobian by the rank-1
        method of Broyden.  The choice of the correction guarantees
        (under reasonable conditions) global convergence for starting
        points far from the solution and a fast rate of convergence.
        The Jacobian is calculated at the starting point by either the
        user-supplied subroutine or a forward-difference approximation,
        but it is not recalculated until the rank-1 method fails to
        produce satisfactory progress.
 
        Timing.  The time required by DNSQE to solve a given problem
          depends on N, the behavior of the functions, the accuracy
          requested, and the starting point.  The number of arithmetic
          operations needed by DNSQE is about 11.5*(N**2) to process
          each evaluation of the functions (call to FCN) and 1.3*(N**3)
          to process each evaluation of the Jacobian (call to JAC,
          if IOPT = 1).  Unless FCN and JAC can be evaluated quickly,
          the timing of DNSQE will be strongly influenced by the time
          spent in FCN and JAC.
 
        Storage.  DNSQE requires (3*N**2 + 17*N)/2 single precision
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          storage locations, in addition to the storage required by the
          program.  There are no internally declared storage arrays.
 
  *Long Description:
 
  7. Example.
 
        The problem is to determine the values of X(1), X(2), ..., X(9),
        which solve the system of tridiagonal equations
 
        (3-2*X(1))*X(1)           -2*X(2)                   = -1
                -X(I-1) + (3-2*X(I))*X(I)         -2*X(I+1) = -1, I=2-8
                                    -X(8) + (3-2*X(9))*X(9) = -1
 
        **********
 
        PROGRAM TEST
  C
  C     DRIVER FOR DNSQE EXAMPLE.
  C
        INTEGER J,N,IOPT,NPRINT,INFO,LWA,NWRITE
        DOUBLE PRECISION TOL,FNORM
        DOUBLE PRECISION X(9),FVEC(9),WA(180)
        DOUBLE PRECISION DENORM,D1MACH
        EXTERNAL FCN
        DATA NWRITE /6/
  C
        IOPT = 2
        N = 9
  C
  C     THE FOLLOWING STARTING VALUES PROVIDE A ROUGH SOLUTION.
  C
        DO 10 J = 1, 9
           X(J) = -1.E0
     10    CONTINUE
 
        LWA = 180
        NPRINT = 0
  C
  C     SET TOL TO THE SQUARE ROOT OF THE MACHINE PRECISION.
  C     UNLESS HIGH PRECISION SOLUTIONS ARE REQUIRED,
  C     THIS IS THE RECOMMENDED SETTING.
  C
        TOL = SQRT(D1MACH(4))
  C
        CALL DNSQE(FCN,JAC,IOPT,N,X,FVEC,TOL,NPRINT,INFO,WA,LWA)
        FNORM = DENORM(N,FVEC)
        WRITE (NWRITE,1000) FNORM,INFO,(X(J),J=1,N)
        STOP
   1000 FORMAT (5X,' FINAL L2 NORM OF THE RESIDUALS',E15.7 //
       *        5X,' EXIT PARAMETER',16X,I10 //
       *        5X,' FINAL APPROXIMATE SOLUTION' // (5X,3E15.7))
        END
        SUBROUTINE FCN(N,X,FVEC,IFLAG)
        INTEGER N,IFLAG
        DOUBLE PRECISION X(N),FVEC(N)
        INTEGER K
        DOUBLE PRECISION ONE,TEMP,TEMP1,TEMP2,THREE,TWO,ZERO
        DATA ZERO,ONE,TWO,THREE /0.E0,1.E0,2.E0,3.E0/
  C

SLATEC3 (DACOSH through DS2Y) - 417



        DO 10 K = 1, N
           TEMP = (THREE - TWO*X(K))*X(K)
           TEMP1 = ZERO
           IF (K .NE. 1) TEMP1 = X(K-1)
           TEMP2 = ZERO
           IF (K .NE. N) TEMP2 = X(K+1)
           FVEC(K) = TEMP - TEMP1 - TWO*TEMP2 + ONE
     10    CONTINUE
        RETURN
        END
 
        RESULTS OBTAINED WITH DIFFERENT COMPILERS OR MACHINES
        MAY BE SLIGHTLY DIFFERENT.
 
        FINAL L2 NORM OF THE RESIDUALS  0.1192636E-07
 
        EXIT PARAMETER                         1
 
        FINAL APPROXIMATE SOLUTION
 
        -0.5706545E+00 -0.6816283E+00 -0.7017325E+00
        -0.7042129E+00 -0.7013690E+00 -0.6918656E+00
        -0.6657920E+00 -0.5960342E+00 -0.4164121E+00
 
 ***REFERENCES  M. J. D. Powell, A hybrid method for nonlinear equa-
                  tions. In Numerical Methods for Nonlinear Algebraic
                  Equations, P. Rabinowitz, Editor.  Gordon and Breach,
                  1988.
 ***ROUTINES CALLED  DNSQ, XERMSG
 ***REVISION HISTORY  (YYMMDD)
    800301  DATE WRITTEN
    890531  Changed all specific intrinsics to generic.  (WRB)
    890831  Modified array declarations.  (WRB)
    890831  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    900315  CALLs to XERROR changed to CALLs to XERMSG.  (THJ)
    920501  Reformatted the REFERENCES section.  (WRB)
    END PROLOGUE
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DOMN

      SUBROUTINE DOMN(N, B, X, NELT, IA, JA, A, ISYM, MATVEC, MSOLVE,
     +     NSAVE, ITOL, TOL, ITMAX, ITER, ERR, IERR, IUNIT, R,
     +     Z, P, AP, EMAP, DZ, CSAV, RWORK, IWORK)
 ***BEGIN PROLOGUE  DOMN
 ***PURPOSE  Preconditioned Orthomin Sparse Iterative Ax=b Solver.
             Routine to solve a general linear system  Ax = b  using
             the Preconditioned Orthomin method.
 ***LIBRARY   SLATEC (SLAP)
 ***CATEGORY  D2A4, D2B4
 ***TYPE      DOUBLE PRECISION (SOMN-S, DOMN-D)
 ***KEYWORDS  ITERATIVE PRECONDITION, NON-SYMMETRIC LINEAR SYSTEM,
              ORTHOMIN, SLAP, SPARSE
 ***AUTHOR  Greenbaum, Anne, (Courant Institute)
            Seager, Mark K., (LLNL)
              Lawrence Livermore National Laboratory
              PO BOX 808, L-60
              Livermore, CA 94550 (510) 423-3141
              seager@llnl.gov
 ***DESCRIPTION
 
  *Usage:
      INTEGER  N, NELT, IA(NELT), JA(NELT), ISYM, NSAVE, ITOL, ITMAX
      INTEGER  ITER, IERR, IUNIT, IWORK(USER DEFINED)
      DOUBLE PRECISION B(N), X(N), A(NELT), TOL, ERR, R(N), Z(N)
      DOUBLE PRECISION P(N,0:NSAVE), AP(N,0:NSAVE), EMAP(N,0:NSAVE)
      DOUBLE PRECISION DZ(N), CSAV(NSAVE), RWORK(USER DEFINED)
      EXTERNAL MATVEC, MSOLVE
 
      CALL DOMN(N, B, X, NELT, IA, JA, A, ISYM, MATVEC, MSOLVE,
     $     NSAVE, ITOL, TOL, ITMAX, ITER, ERR, IERR, IUNIT, R,
     $     Z, P, AP, EMAP, DZ, CSAV, RWORK, IWORK)
 
  *Arguments:
  N      :IN       Integer.
          Order of the Matrix.
  B      :IN       Double Precision B(N).
          Right-hand side vector.
  X      :INOUT    Double Precision X(N).
          On input X is your initial guess for solution vector.
          On output X is the final approximate solution.
  NELT   :IN       Integer.
          Number of Non-Zeros stored in A.
  IA     :IN       Integer IA(NELT).
  JA     :IN       Integer JA(NELT).
  A      :IN       Double Precision A(NELT).
          These arrays contain the matrix data structure for A.
          It could take any form.  See "Description", below, for more
          details.
  ISYM   :IN       Integer.
          Flag to indicate symmetric storage format.
          If ISYM=0, all non-zero entries of the matrix are stored.
          If ISYM=1, the matrix is symmetric, and only the upper
          or lower triangle of the matrix is stored.
  MATVEC :EXT      External.
          Name of a routine which performs the matrix vector multiply
          Y = A*X given A and X.  The name of the MATVEC routine must

SLATEC3 (DACOSH through DS2Y) - 419



          be declared external in the calling program.  The calling
          sequence to MATVEC is:
              CALL MATVEC( N, X, Y, NELT, IA, JA, A, ISYM )
          Where N is the number of unknowns, Y is the product A*X
          upon return X is an input vector, NELT is the number of
          non-zeros in the SLAP IA, JA, A storage for the matrix A.
          ISYM is a flag which, if non-zero, denotest that A is
          symmetric and only the lower or upper triangle is stored.
  MSOLVE :EXT      External.
          Name of a routine which solves a linear system MZ = R for
          Z given R with the preconditioning matrix M (M is supplied via
          RWORK and IWORK arrays).  The name of the MSOLVE routine must
          be declared external in the calling program.  The calling
          sequence to MSOLVE is:
              CALL MSOLVE(N, R, Z, NELT, IA, JA, A, ISYM, RWORK, IWORK)
          Where N is the number of unknowns, R is the right-hand side
          vector and Z is the solution upon return.  NELT, IA, JA, A and
          ISYM are defined as above.  RWORK is a double precision array
          that can be used to pass necessary preconditioning information
          and/or workspace to MSOLVE.  IWORK is an integer work array
          for the same purpose as RWORK.
  NSAVE  :IN       Integer.
          Number of  direction vectors to save and orthogonalize
          against.  NSAVE >= 0.
  ITOL   :IN       Integer.
          Flag to indicate type of convergence criterion.
          If ITOL=1, iteration stops when the 2-norm of the residual
          divided by the 2-norm of the right-hand side is less than TOL.
          If ITOL=2, iteration stops when the 2-norm of M-inv times the
          residual divided by the 2-norm of M-inv times the right hand
          side is less than TOL, where M-inv is the inverse of the
          diagonal of A.
          ITOL=11 is often useful for checking and comparing different
          routines.  For this case, the user must supply the "exact"
          solution or a very accurate approximation (one with an error
          much less than TOL) through a common block,
              COMMON /DSLBLK/ SOLN( )
          If ITOL=11, iteration stops when the 2-norm of the difference
          between the iterative approximation and the user-supplied
          solution divided by the 2-norm of the user-supplied solution
          is less than TOL.  Note that this requires the user to set up
          the "COMMON /DSLBLK/ SOLN(LENGTH)" in the calling routine.
          The routine with this declaration should be loaded before the
          stop test so that the correct length is used by the loader.
          This procedure is not standard Fortran and may not work
          correctly on your system (although it has worked on every
          system the authors have tried).  If ITOL is not 11 then this
          common block is indeed standard Fortran.
  TOL    :INOUT    Double Precision.
          Convergence criterion, as described above.  (Reset if IERR=4.)
  ITMAX  :IN       Integer.
          Maximum number of iterations.
  ITER   :OUT      Integer.
          Number of iterations required to reach convergence, or
          ITMAX+1 if convergence criterion could not be achieved in
          ITMAX iterations.
  ERR    :OUT      Double Precision.
          Error estimate of error in final approximate solution, as
          defined by ITOL.
  IERR   :OUT      Integer.
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          Return error flag.
            IERR = 0 => All went well.
            IERR = 1 => Insufficient space allocated for WORK or IWORK.
            IERR = 2 => Method failed to converge in ITMAX steps.
            IERR = 3 => Error in user input.
                        Check input values of N, ITOL.
            IERR = 4 => User error tolerance set too tight.
                        Reset to 500*D1MACH(3).  Iteration proceeded.
            IERR = 5 => Preconditioning matrix, M, is not positive
                        definite.  (r,z) < 0.
            IERR = 6 => Breakdown of method detected.
                        (p,Ap) < epsilon**2.
  IUNIT  :IN       Integer.
          Unit number on which to write the error at each iteration,
          if this is desired for monitoring convergence.  If unit
          number is 0, no writing will occur.
  R      :WORK     Double Precision R(N).
  Z      :WORK     Double Precision Z(N).
  P      :WORK     Double Precision P(N,0:NSAVE).
  AP     :WORK     Double Precision AP(N,0:NSAVE).
  EMAP   :WORK     Double Precision EMAP(N,0:NSAVE).
  DZ     :WORK     Double Precision DZ(N).
  CSAV   :WORK     Double Precision CSAV(NSAVE)
          Double Precision arrays used for workspace.
  RWORK  :WORK     Double Precision RWORK(USER DEFINED).
          Double Precision array that can be used for workspace in
          MSOLVE.
  IWORK  :WORK     Integer IWORK(USER DEFINED).
          Integer array that can be used for workspace in MSOLVE.
 
  *Description
        This routine does  not care  what matrix data   structure is
        used for  A and M.  It simply   calls  the MATVEC and MSOLVE
        routines, with  the arguments as  described above.  The user
        could write any type of structure and the appropriate MATVEC
        and MSOLVE routines.  It is assumed  that A is stored in the
        IA, JA, A  arrays in some fashion and  that M (or INV(M)) is
        stored  in  IWORK  and  RWORK)  in  some fashion.   The SLAP
        routines DSDOMN and DSLUOM are examples of this procedure.
 
        Two  examples  of  matrix  data structures  are the: 1) SLAP
        Triad  format and 2) SLAP Column format.
 
        =================== S L A P Triad format ===================
        In  this   format only the  non-zeros are  stored.  They may
        appear  in *ANY* order.   The user  supplies three arrays of
        length NELT, where  NELT  is the number  of non-zeros in the
        matrix:  (IA(NELT), JA(NELT),  A(NELT)).  For each  non-zero
        the  user puts   the row  and  column index   of that matrix
        element in the IA and JA arrays.  The  value of the non-zero
        matrix  element is  placed in  the corresponding location of
        the A  array.  This is  an extremely easy data  structure to
        generate.  On  the other hand it  is  not too  efficient  on
        vector  computers   for the  iterative  solution  of  linear
        systems.  Hence, SLAP  changes this input  data structure to
        the SLAP   Column  format for the  iteration (but   does not
        change it back).
 
        Here is an example of the  SLAP Triad   storage format for a
        5x5 Matrix.  Recall that the entries may appear in any order.
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            5x5 Matrix      SLAP Triad format for 5x5 matrix on left.
                               1  2  3  4  5  6  7  8  9 10 11
        |11 12  0  0 15|   A: 51 12 11 33 15 53 55 22 35 44 21
        |21 22  0  0  0|  IA:  5  1  1  3  1  5  5  2  3  4  2
        | 0  0 33  0 35|  JA:  1  2  1  3  5  3  5  2  5  4  1
        | 0  0  0 44  0|
        |51  0 53  0 55|
 
        =================== S L A P Column format ==================
 
        In  this format   the non-zeros are    stored counting  down
        columns (except  for the diagonal  entry, which must  appear
        first  in each "column") and are  stored in the  double pre-
        cision array  A. In  other  words,  for each  column  in the
        matrix  first put  the diagonal entry in A.  Then put in the
        other non-zero  elements going  down the column  (except the
        diagonal)  in order.  The IA array  holds the  row index for
        each non-zero.  The JA array  holds the offsets into the IA,
        A  arrays  for  the  beginning  of  each  column.  That  is,
        IA(JA(ICOL)),A(JA(ICOL)) are the first elements of the ICOL-
        th column in IA and A, and IA(JA(ICOL+1)-1), A(JA(ICOL+1)-1)
        are  the last elements of the ICOL-th column.   Note that we
        always have JA(N+1)=NELT+1, where N is the number of columns
        in the matrix  and NELT  is the number  of non-zeros  in the
        matrix.
 
        Here is an example of the  SLAP Column  storage format for a
        5x5 Matrix (in the A and IA arrays '|'  denotes the end of a
        column):
 
            5x5 Matrix      SLAP Column format for 5x5 matrix on left.
                               1  2  3    4  5    6  7    8    9 10 11
        |11 12  0  0 15|   A: 11 21 51 | 22 12 | 33 53 | 44 | 55 15 35
        |21 22  0  0  0|  IA:  1  2  5 |  2  1 |  3  5 |  4 |  5  1  3
        | 0  0 33  0 35|  JA:  1  4  6    8  9   12
        | 0  0  0 44  0|
        |51  0 53  0 55|
 
  *Cautions:
      This routine will attempt to write to the Fortran logical output
      unit IUNIT, if IUNIT .ne. 0.  Thus, the user must make sure that
      this logical unit is attached to a file or terminal before calling
      this routine with a non-zero value for IUNIT.  This routine does
      not check for the validity of a non-zero IUNIT unit number.
 
 ***SEE ALSO  DSDOMN, DSLUOM, ISDOMN
 ***REFERENCES  1. Mark K. Seager, A SLAP for the Masses, in
                   G. F. Carey, Ed., Parallel Supercomputing: Methods,
                   Algorithms and Applications, Wiley, 1989, pp.135-155.
 ***ROUTINES CALLED  D1MACH, DAXPY, DCOPY, DDOT, ISDOMN
 ***REVISION HISTORY  (YYMMDD)
    890404  DATE WRITTEN
    890404  Previous REVISION DATE
    890915  Made changes requested at July 1989 CML Meeting.  (MKS)
    890922  Numerous changes to prologue to make closer to SLATEC
            standard.  (FNF)
    890929  Numerous changes to reduce SP/DP differences.  (FNF)
    891004  Added new reference.
    910411  Prologue converted to Version 4.0 format.  (BAB)
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    910502  Removed MATVEC and MSOLVE from ROUTINES CALLED list.  (FNF)
    920407  COMMON BLOCK renamed DSLBLK.  (WRB)
    920511  Added complete declaration section.  (WRB)
    920929  Corrected format of reference.  (FNF)
    921019  Changed 500.0 to 500 to reduce SP/DP differences.  (FNF)
    921113  Corrected C***CATEGORY line.  (FNF)
    930326  Removed unused variable.  (FNF)
    END PROLOGUE
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DP1VLU

      SUBROUTINE DP1VLU (L, NDER, X, YFIT, YP, A)
 ***BEGIN PROLOGUE  DP1VLU
 ***PURPOSE  Use the coefficients generated by DPOLFT to evaluate the
             polynomial fit of degree L, along with the first NDER of
             its derivatives, at a specified point.
 ***LIBRARY   SLATEC
 ***CATEGORY  K6
 ***TYPE      DOUBLE PRECISION (PVALUE-S, DP1VLU-D)
 ***KEYWORDS  CURVE FITTING, LEAST SQUARES, POLYNOMIAL APPROXIMATION
 ***AUTHOR  Shampine, L. F., (SNLA)
            Davenport, S. M., (SNLA)
 ***DESCRIPTION
 
      Abstract
 
      The subroutine  DP1VLU  uses the coefficients generated by  DPOLFT
      to evaluate the polynomial fit of degree  L , along with the first
      NDER  of its derivatives, at a specified point.  Computationally
      stable recurrence relations are used to perform this task.
 
      The parameters for  DP1VLU  are
 
      Input -- ALL TYPE REAL variables are DOUBLE PRECISION
          L -      the degree of polynomial to be evaluated.  L  may be
                   any non-negative integer which is less than or equal
                   to  NDEG , the highest degree polynomial provided
                   by  DPOLFT .
          NDER -   the number of derivatives to be evaluated.  NDER
                   may be 0 or any positive value.  If NDER is less
                   than 0, it will be treated as 0.
          X -      the argument at which the polynomial and its
                   derivatives are to be evaluated.
          A -      work and output array containing values from last
                   call to  DPOLFT .
 
      Output -- ALL TYPE REAL variables are DOUBLE PRECISION
          YFIT -   value of the fitting polynomial of degree  L  at  X
          YP -     array containing the first through  NDER  derivatives
                   of the polynomial of degree  L .  YP  must be
                   dimensioned at least  NDER  in the calling program.
 
 ***REFERENCES  L. F. Shampine, S. M. Davenport and R. E. Huddleston,
                  Curve fitting by polynomials in one variable, Report
                  SLA-74-0270, Sandia Laboratories, June 1974.
 ***ROUTINES CALLED  XERMSG
 ***REVISION HISTORY  (YYMMDD)
    740601  DATE WRITTEN
    890531  Changed all specific intrinsics to generic.  (WRB)
    890911  Removed unnecessary intrinsics.  (WRB)
    891006  Cosmetic changes to prologue.  (WRB)
    891006  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    900315  CALLs to XERROR changed to CALLs to XERMSG.  (THJ)
    900510  Convert XERRWV calls to XERMSG calls.  (RWC)
    920501  Reformatted the REFERENCES section.  (WRB)
    END PROLOGUE
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DPBCO

      SUBROUTINE DPBCO (ABD, LDA, N, M, RCOND, Z, INFO)
 ***BEGIN PROLOGUE  DPBCO
 ***PURPOSE  Factor a real symmetric positive definite matrix stored in
             band form and estimate the condition number of the matrix.
 ***LIBRARY   SLATEC (LINPACK)
 ***CATEGORY  D2B2
 ***TYPE      DOUBLE PRECISION (SPBCO-S, DPBCO-D, CPBCO-C)
 ***KEYWORDS  BANDED, CONDITION NUMBER, LINEAR ALGEBRA, LINPACK,
              MATRIX FACTORIZATION, POSITIVE DEFINITE
 ***AUTHOR  Moler, C. B., (U. of New Mexico)
 ***DESCRIPTION
 
      DPBCO factors a double precision symmetric positive definite
      matrix stored in band form and estimates the condition of the
      matrix.
 
      If  RCOND  is not needed, DPBFA is slightly faster.
      To solve  A*X = B , follow DPBCO by DPBSL.
      To compute  INVERSE(A)*C , follow DPBCO by DPBSL.
      To compute  DETERMINANT(A) , follow DPBCO by DPBDI.
 
      On Entry
 
         ABD     DOUBLE PRECISION(LDA, N)
                 the matrix to be factored.  The columns of the upper
                 triangle are stored in the columns of ABD and the
                 diagonals of the upper triangle are stored in the
                 rows of ABD .  See the comments below for details.
 
         LDA     INTEGER
                 the leading dimension of the array  ABD .
                 LDA must be .GE. M + 1 .
 
         N       INTEGER
                 the order of the matrix  A .
 
         M       INTEGER
                 the number of diagonals above the main diagonal.
                 0 .LE. M .LT.  N .
 
      On Return
 
         ABD     an upper triangular matrix  R , stored in band
                 form, so that  A = TRANS(R)*R .
                 If  INFO .NE. 0 , the factorization is not complete.
 
         RCOND   DOUBLE PRECISION
                 an estimate of the reciprocal condition of  A .
                 For the system  A*X = B , relative perturbations
                 in  A  and  B  of size  EPSILON  may cause
                 relative perturbations in  X  of size  EPSILON/RCOND .
                 If  RCOND  is so small that the logical expression
                            1.0 + RCOND .EQ. 1.0
                 is true, then  A  may be singular to working
                 precision.  In particular,  RCOND  is zero  if
                 exact singularity is detected or the estimate

SLATEC3 (DACOSH through DS2Y) - 425



                 underflows.  If INFO .NE. 0 , RCOND is unchanged.
 
         Z       DOUBLE PRECISION(N)
                 a work vector whose contents are usually unimportant.
                 If  A  is singular to working precision, then  Z  is
                 an approximate null vector in the sense that
                 NORM(A*Z) = RCOND*NORM(A)*NORM(Z) .
                 If  INFO .NE. 0 , Z  is unchanged.
 
         INFO    INTEGER
                 = 0  for normal return.
                 = K  signals an error condition.  The leading minor
                      of order  K  is not positive definite.
 
      Band Storage
 
            If  A  is a symmetric positive definite band matrix,
            the following program segment will set up the input.
 
                    M = (band width above diagonal)
                    DO 20 J = 1, N
                       I1 = MAX(1, J-M)
                       DO 10 I = I1, J
                          K = I-J+M+1
                          ABD(K,J) = A(I,J)
                 10    CONTINUE
                 20 CONTINUE
 
            This uses  M + 1  rows of  A , except for the  M by M
            upper left triangle, which is ignored.
 
      Example:  If the original matrix is
 
            11 12 13  0  0  0
            12 22 23 24  0  0
            13 23 33 34 35  0
             0 24 34 44 45 46
             0  0 35 45 55 56
             0  0  0 46 56 66
 
      then  N = 6 , M = 2  and  ABD  should contain
 
             *  * 13 24 35 46
             * 12 23 34 45 56
            11 22 33 44 55 66
 
 ***REFERENCES  J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
                  Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED  DASUM, DAXPY, DDOT, DPBFA, DSCAL
 ***REVISION HISTORY  (YYMMDD)
    780814  DATE WRITTEN
    890531  Changed all specific intrinsics to generic.  (WRB)
    890831  Modified array declarations.  (WRB)
    890831  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    900326  Removed duplicate information from DESCRIPTION section.
            (WRB)
    920501  Reformatted the REFERENCES section.  (WRB)
    END PROLOGUE
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DPBDI

      SUBROUTINE DPBDI (ABD, LDA, N, M, DET)
 ***BEGIN PROLOGUE  DPBDI
 ***PURPOSE  Compute the determinant of a symmetric positive definite
             band matrix using the factors computed by DPBCO or DPBFA.
 ***LIBRARY   SLATEC (LINPACK)
 ***CATEGORY  D3B2
 ***TYPE      DOUBLE PRECISION (SPBDI-S, DPBDI-D, CPBDI-C)
 ***KEYWORDS  BANDED, DETERMINANT, INVERSE, LINEAR ALGEBRA, LINPACK,
              MATRIX, POSITIVE DEFINITE
 ***AUTHOR  Moler, C. B., (U. of New Mexico)
 ***DESCRIPTION
 
      DPBDI computes the determinant
      of a double precision symmetric positive definite band matrix
      using the factors computed by DPBCO or DPBFA.
      If the inverse is needed, use DPBSL  N  times.
 
      On Entry
 
         ABD     DOUBLE PRECISION(LDA, N)
                 the output from DPBCO or DPBFA.
 
         LDA     INTEGER
                 the leading dimension of the array  ABD .
 
         N       INTEGER
                 the order of the matrix  A .
 
         M       INTEGER
                 the number of diagonals above the main diagonal.
 
      On Return
 
         DET     DOUBLE PRECISION(2)
                 determinant of original matrix in the form
                 DETERMINANT = DET(1) * 10.0**DET(2)
                 with  1.0 .LE. DET(1) .LT. 10.0
                 or  DET(1) .EQ. 0.0 .
 
 ***REFERENCES  J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
                  Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED  (NONE)
 ***REVISION HISTORY  (YYMMDD)
    780814  DATE WRITTEN
    890831  Modified array declarations.  (WRB)
    890831  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    900326  Removed duplicate information from DESCRIPTION section.
            (WRB)
    920501  Reformatted the REFERENCES section.  (WRB)
    END PROLOGUE
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DPBFA

      SUBROUTINE DPBFA (ABD, LDA, N, M, INFO)
 ***BEGIN PROLOGUE  DPBFA
 ***PURPOSE  Factor a real symmetric positive definite matrix stored in
             in band form.
 ***LIBRARY   SLATEC (LINPACK)
 ***CATEGORY  D2B2
 ***TYPE      DOUBLE PRECISION (SPBFA-S, DPBFA-D, CPBFA-C)
 ***KEYWORDS  BANDED, LINEAR ALGEBRA, LINPACK, MATRIX FACTORIZATION,
              POSITIVE DEFINITE
 ***AUTHOR  Moler, C. B., (U. of New Mexico)
 ***DESCRIPTION
 
      DPBFA factors a double precision symmetric positive definite
      matrix stored in band form.
 
      DPBFA is usually called by DPBCO, but it can be called
      directly with a saving in time if  RCOND  is not needed.
 
      On Entry
 
         ABD     DOUBLE PRECISION(LDA, N)
                 the matrix to be factored.  The columns of the upper
                 triangle are stored in the columns of ABD and the
                 diagonals of the upper triangle are stored in the
                 rows of ABD .  See the comments below for details.
 
         LDA     INTEGER
                 the leading dimension of the array  ABD .
                 LDA must be .GE. M + 1 .
 
         N       INTEGER
                 the order of the matrix  A .
 
         M       INTEGER
                 the number of diagonals above the main diagonal.
                 0 .LE. M .LT. N .
 
      On Return
 
         ABD     an upper triangular matrix  R , stored in band
                 form, so that  A = TRANS(R)*R .
 
         INFO    INTEGER
                 = 0  for normal return.
                 = K  if the leading minor of order  K  is not
                      positive definite.
 
      Band Storage
 
            If  A  is a symmetric positive definite band matrix,
            the following program segment will set up the input.
 
                    M = (band width above diagonal)
                    DO 20 J = 1, N
                       I1 = MAX(1, J-M)
                       DO 10 I = I1, J

SLATEC3 (DACOSH through DS2Y) - 428



                          K = I-J+M+1
                          ABD(K,J) = A(I,J)
                 10    CONTINUE
                 20 CONTINUE
 
 ***REFERENCES  J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
                  Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED  DDOT
 ***REVISION HISTORY  (YYMMDD)
    780814  DATE WRITTEN
    890531  Changed all specific intrinsics to generic.  (WRB)
    890831  Modified array declarations.  (WRB)
    890831  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    900326  Removed duplicate information from DESCRIPTION section.
            (WRB)
    920501  Reformatted the REFERENCES section.  (WRB)
    END PROLOGUE
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DPBSL

      SUBROUTINE DPBSL (ABD, LDA, N, M, B)
 ***BEGIN PROLOGUE  DPBSL
 ***PURPOSE  Solve a real symmetric positive definite band system
             using the factors computed by DPBCO or DPBFA.
 ***LIBRARY   SLATEC (LINPACK)
 ***CATEGORY  D2B2
 ***TYPE      DOUBLE PRECISION (SPBSL-S, DPBSL-D, CPBSL-C)
 ***KEYWORDS  BANDED, LINEAR ALGEBRA, LINPACK, MATRIX,
              POSITIVE DEFINITE, SOLVE
 ***AUTHOR  Moler, C. B., (U. of New Mexico)
 ***DESCRIPTION
 
      DPBSL solves the double precision symmetric positive definite
      band system  A*X = B
      using the factors computed by DPBCO or DPBFA.
 
      On Entry
 
         ABD     DOUBLE PRECISION(LDA, N)
                 the output from DPBCO or DPBFA.
 
         LDA     INTEGER
                 the leading dimension of the array  ABD .
 
         N       INTEGER
                 the order of the matrix  A .
 
         M       INTEGER
                 the number of diagonals above the main diagonal.
 
         B       DOUBLE PRECISION(N)
                 the right hand side vector.
 
      On Return
 
         B       the solution vector  X .
 
      Error Condition
 
         A division by zero will occur if the input factor contains
         a zero on the diagonal.  Technically this indicates
         singularity, but it is usually caused by improper subroutine
         arguments.  It will not occur if the subroutines are called
         correctly, and  INFO .EQ. 0 .
 
      To compute  INVERSE(A) * C  where  C  is a matrix
      with  P  columns
            CALL DPBCO(ABD,LDA,N,RCOND,Z,INFO)
            IF (RCOND is too small .OR. INFO .NE. 0) GO TO ...
            DO 10 J = 1, P
               CALL DPBSL(ABD,LDA,N,C(1,J))
         10 CONTINUE
 
 ***REFERENCES  J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
                  Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED  DAXPY, DDOT
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 ***REVISION HISTORY  (YYMMDD)
    780814  DATE WRITTEN
    890531  Changed all specific intrinsics to generic.  (WRB)
    890831  Modified array declarations.  (WRB)
    890831  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    900326  Removed duplicate information from DESCRIPTION section.
            (WRB)
    920501  Reformatted the REFERENCES section.  (WRB)
    END PROLOGUE
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DPCHBS

      SUBROUTINE DPCHBS (N, X, F, D, INCFD, KNOTYP, NKNOTS, T, BCOEF,
     +   NDIM, KORD, IERR)
 ***BEGIN PROLOGUE  DPCHBS
 ***PURPOSE  Piecewise Cubic Hermite to B-Spline converter.
 ***LIBRARY   SLATEC (PCHIP)
 ***CATEGORY  E3
 ***TYPE      DOUBLE PRECISION (PCHBS-S, DPCHBS-D)
 ***KEYWORDS  B-SPLINES, CONVERSION, CUBIC HERMITE INTERPOLATION,
              PIECEWISE CUBIC INTERPOLATION
 ***AUTHOR  Fritsch, F. N., (LLNL)
              Computing and Mathematics Research Division
              Lawrence Livermore National Laboratory
              P.O. Box 808  (L-316)
              Livermore, CA  94550
              FTS 532-4275, (510) 422-4275
 ***DESCRIPTION
 
  *Usage:
 
         INTEGER  N, INCFD, KNOTYP, NKNOTS, NDIM, KORD, IERR
         PARAMETER  (INCFD = ...)
         DOUBLE PRECISION  X(nmax), F(INCFD,nmax), D(INCFD,nmax),
        *      T(2*nmax+4), BCOEF(2*nmax)
 
         CALL DPCHBS (N, X, F, D, INCFD, KNOTYP, NKNOTS, T, BCOEF,
        *             NDIM, KORD, IERR)
 
  *Arguments:
 
      N:IN  is the number of data points, N.ge.2 .  (not checked)
 
      X:IN  is the real array of independent variable values.  The
            elements of X must be strictly increasing:
                 X(I-1) .LT. X(I),  I = 2(1)N.   (not checked)
            nmax, the dimension of X, must be .ge.N.
 
      F:IN  is the real array of dependent variable values.
            F(1+(I-1)*INCFD) is the value corresponding to X(I).
            nmax, the second dimension of F, must be .ge.N.
 
      D:IN  is the real array of derivative values at the data points.
            D(1+(I-1)*INCFD) is the value corresponding to X(I).
            nmax, the second dimension of D, must be .ge.N.
 
      INCFD:IN  is the increment between successive values in F and D.
            This argument is provided primarily for 2-D applications.
            It may have the value 1 for one-dimensional applications,
            in which case F and D may be singly-subscripted arrays.
 
      KNOTYP:IN  is a flag to control the knot sequence.
            The knot sequence T is normally computed from X by putting
            a double knot at each X and setting the end knot pairs
            according to the value of KNOTYP:
               KNOTYP = 0:  Quadruple knots at X(1) and X(N).  (default)
               KNOTYP = 1:  Replicate lengths of extreme subintervals:
                            T( 1 ) = T( 2 ) = X(1) - (X(2)-X(1))  ;
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                            T(M+4) = T(M+3) = X(N) + (X(N)-X(N-1)).
               KNOTYP = 2:  Periodic placement of boundary knots:
                            T( 1 ) = T( 2 ) = X(1) - (X(N)-X(N-1));
                            T(M+4) = T(M+3) = X(N) + (X(2)-X(1))  .
               Here M=NDIM=2*N.
            If the input value of KNOTYP is negative, however, it is
            assumed that NKNOTS and T were set in a previous call.
            This option is provided for improved efficiency when used
            in a parametric setting.
 
      NKNOTS:INOUT  is the number of knots.
            If KNOTYP.GE.0, then NKNOTS will be set to NDIM+4.
            If KNOTYP.LT.0, then NKNOTS is an input variable, and an
               error return will be taken if it is not equal to NDIM+4.
 
      T:INOUT  is the array of 2*N+4 knots for the B-representation.
            If KNOTYP.GE.0, T will be returned by DPCHBS with the
               interior double knots equal to the X-values and the
               boundary knots set as indicated above.
            If KNOTYP.LT.0, it is assumed that T was set by a
               previous call to DPCHBS.  (This routine does **not**
               verify that T forms a legitimate knot sequence.)
 
      BCOEF:OUT  is the array of 2*N B-spline coefficients.
 
      NDIM:OUT  is the dimension of the B-spline space.  (Set to 2*N.)
 
      KORD:OUT  is the order of the B-spline.  (Set to 4.)
 
      IERR:OUT  is an error flag.
            Normal return:
               IERR = 0  (no errors).
            "Recoverable" errors:
               IERR = -4  if KNOTYP.GT.2 .
               IERR = -5  if KNOTYP.LT.0 and NKNOTS.NE.(2*N+4).
 
  *Description:
      DPCHBS computes the B-spline representation of the PCH function
      determined by N,X,F,D.  To be compatible with the rest of PCHIP,
      DPCHBS includes INCFD, the increment between successive values of
      the F- and D-arrays.
 
      The output is the B-representation for the function:  NKNOTS, T,
      BCOEF, NDIM, KORD.
 
  *Caution:
      Since it is assumed that the input PCH function has been
      computed by one of the other routines in the package PCHIP,
      input arguments N, X, INCFD are **not** checked for validity.
 
  *Restrictions/assumptions:
      1. N.GE.2 .  (not checked)
      2. X(i).LT.X(i+1), i=1,...,N .  (not checked)
      3. INCFD.GT.0 .  (not checked)
      4. KNOTYP.LE.2 .  (error return if not)
     *5. NKNOTS = NDIM+4 = 2*N+4 .  (error return if not)
     *6. T(2*k+1) = T(2*k) = X(k), k=1,...,N .  (not checked)
 
        * Indicates this applies only if KNOTYP.LT.0 .
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  *Portability:
      Argument INCFD is used only to cause the compiler to generate
      efficient code for the subscript expressions (1+(I-1)*INCFD) .
      The normal usage, in which DPCHBS is called with one-dimensional
      arrays F and D, is probably non-Fortran 77, in the strict sense,
      but it works on all systems on which DPCHBS has been tested.
 
  *See Also:
      PCHIC, PCHIM, or PCHSP can be used to determine an interpolating
         PCH function from a set of data.
      The B-spline routine DBVALU can be used to evaluate the
         B-representation that is output by DPCHBS.
         (See BSPDOC for more information.)
 
 ***REFERENCES  F. N. Fritsch, "Representations for parametric cubic
                  splines," Computer Aided Geometric Design 6 (1989),
                  pp.79-82.
 ***ROUTINES CALLED  DPCHKT, XERMSG
 ***REVISION HISTORY  (YYMMDD)
    870701  DATE WRITTEN
    900405  Converted Fortran to upper case.
    900405  Removed requirement that X be dimensioned N+1.
    900406  Modified to make PCHKT a subsidiary routine to simplify
            usage.  In the process, added argument INCFD to be com-
            patible with the rest of PCHIP.
    900410  Converted prologue to SLATEC 4.0 format.
    900410  Added calls to XERMSG and changed constant 3. to 3 to
            reduce single/double differences.
    900411  Added reference.
    900430  Produced double precision version.
    900501  Corrected declarations.
    930317  Minor cosmetic changes.  (FNF)
    930514  Corrected problems with dimensioning of arguments and
            clarified DESCRIPTION.  (FNF)
    930604  Removed  NKNOTS from DPCHKT call list.  (FNF)
    END PROLOGUE
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DPCHCM

      SUBROUTINE DPCHCM (N, X, F, D, INCFD, SKIP, ISMON, IERR)
 ***BEGIN PROLOGUE  DPCHCM
 ***PURPOSE  Check a cubic Hermite function for monotonicity.
 ***LIBRARY   SLATEC (PCHIP)
 ***CATEGORY  E3
 ***TYPE      DOUBLE PRECISION (PCHCM-S, DPCHCM-D)
 ***KEYWORDS  CUBIC HERMITE INTERPOLATION, MONOTONE INTERPOLATION,
              PCHIP, PIECEWISE CUBIC INTERPOLATION, UTILITY ROUTINE
 ***AUTHOR  Fritsch, F. N., (LLNL)
              Computing & Mathematics Research Division
              Lawrence Livermore National Laboratory
              P.O. Box 808  (L-316)
              Livermore, CA  94550
              FTS 532-4275, (510) 422-4275
 ***DESCRIPTION
 
  *Usage:
 
         PARAMETER  (INCFD = ...)
         INTEGER  N, ISMON(N), IERR
         DOUBLE PRECISION  X(N), F(INCFD,N), D(INCFD,N)
         LOGICAL  SKIP
 
         CALL  DPCHCM (N, X, F, D, INCFD, SKIP, ISMON, IERR)
 
  *Arguments:
 
      N:IN  is the number of data points.  (Error return if N.LT.2 .)
 
      X:IN  is a real*8 array of independent variable values.  The
            elements of X must be strictly increasing:
                 X(I-1) .LT. X(I),  I = 2(1)N.
            (Error return if not.)
 
      F:IN  is a real*8 array of function values.  F(1+(I-1)*INCFD) is
            the value corresponding to X(I).
 
      D:IN  is a real*8 array of derivative values.  D(1+(I-1)*INCFD) is
            is the value corresponding to X(I).
 
      INCFD:IN  is the increment between successive values in F and D.
            (Error return if  INCFD.LT.1 .)
 
      SKIP:INOUT  is a logical variable which should be set to
            .TRUE. if the user wishes to skip checks for validity of
            preceding parameters, or to .FALSE. otherwise.
            This will save time in case these checks have already
            been performed.
            SKIP will be set to .TRUE. on normal return.
 
      ISMON:OUT  is an integer array indicating on which intervals the
            PCH function defined by  N, X, F, D  is monotonic.
            For data interval [X(I),X(I+1)],
              ISMON(I) = -3  if function is probably decreasing;
              ISMON(I) = -1  if function is strictly decreasing;
              ISMON(I) =  0  if function is constant;
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              ISMON(I) =  1  if function is strictly increasing;
              ISMON(I) =  2  if function is non-monotonic;
              ISMON(I) =  3  if function is probably increasing.
                 If ABS(ISMON)=3, this means that the D-values are near
                 the boundary of the monotonicity region.  A small
                 increase produces non-monotonicity; decrease, strict
                 monotonicity.
            The above applies to I=1(1)N-1.  ISMON(N) indicates whether
               the entire function is monotonic on [X(1),X(N)].
 
      IERR:OUT  is an error flag.
            Normal return:
               IERR = 0  (no errors).
            "Recoverable" errors:
               IERR = -1  if N.LT.2 .
               IERR = -2  if INCFD.LT.1 .
               IERR = -3  if the X-array is not strictly increasing.
           (The ISMON-array has not been changed in any of these cases.)
                NOTE:  The above errors are checked in the order listed,
                    and following arguments have **NOT** been validated.
 
  *Description:
 
           DPCHCM:  Piecewise Cubic Hermite -- Check Monotonicity.
 
      Checks the piecewise cubic Hermite function defined by  N,X,F,D
      for monotonicity.
 
      To provide compatibility with DPCHIM and DPCHIC, includes an
      increment between successive values of the F- and D-arrays.
 
  *Cautions:
      This provides the same capability as old DPCHMC, except that a
      new output value, -3, was added February 1989.  (Formerly, -3
      and +3 were lumped together in the single value 3.)  Codes that
      flag nonmonotonicity by "IF (ISMON.EQ.2)" need not be changed.
      Codes that check via "IF (ISMON.GE.3)" should change the test to
      "IF (IABS(ISMON).GE.3)".  Codes that declare monotonicity via
      "IF (ISMON.LE.1)" should change to "IF (IABS(ISMON).LE.1)".
 
 ***REFERENCES  F. N. Fritsch and R. E. Carlson, Monotone piecewise
                  cubic interpolation, SIAM Journal on Numerical Ana-
                  lysis 17, 2 (April 1980), pp. 238-246.
 ***ROUTINES CALLED  DCHFCM, XERMSG
 ***REVISION HISTORY  (YYMMDD)
    820518  DATE WRITTEN
    820804  Converted to SLATEC library version.
    831201  Reversed order of subscripts of F and D, so that the
            routine will work properly when INCFD.GT.1 .  (Bug!)
    870707  Corrected XERROR calls for d.p. name(s).
    890206  Corrected XERROR calls.
    890209  Added possible ISMON value of -3 and modified code so
            that 1,3,-1 produces ISMON(N)=2, rather than 3.
    890306  Added caution about changed output.
    890407  Changed name from DPCHMC to DPCHCM, as requested at the
            March 1989 SLATEC CML meeting, and made a few other
            minor modifications necessitated by this change.
    890407  Converted to new SLATEC format.
    890407  Modified DESCRIPTION to LDOC format.
    900315  CALLs to XERROR changed to CALLs to XERMSG.  (THJ)
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    920429  Revised format and order of references.  (WRB,FNF)
    END PROLOGUE
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DPCHFD

      SUBROUTINE DPCHFD (N, X, F, D, INCFD, SKIP, NE, XE, FE, DE, IERR)
 ***BEGIN PROLOGUE  DPCHFD
 ***PURPOSE  Evaluate a piecewise cubic Hermite function and its first
             derivative at an array of points.  May be used by itself
             for Hermite interpolation, or as an evaluator for DPCHIM
             or DPCHIC. If only function values are required, use
             DPCHFE instead.
 ***LIBRARY   SLATEC (PCHIP)
 ***CATEGORY  E3, H1
 ***TYPE      DOUBLE PRECISION (PCHFD-S, DPCHFD-D)
 ***KEYWORDS  CUBIC HERMITE DIFFERENTIATION, CUBIC HERMITE EVALUATION,
              HERMITE INTERPOLATION, PCHIP, PIECEWISE CUBIC EVALUATION
 ***AUTHOR  Fritsch, F. N., (LLNL)
              Lawrence Livermore National Laboratory
              P.O. Box 808  (L-316)
              Livermore, CA  94550
              FTS 532-4275, (510) 422-4275
 ***DESCRIPTION
 
           DPCHFD:  Piecewise Cubic Hermite Function and Derivative
                   evaluator
 
      Evaluates the cubic Hermite function defined by  N, X, F, D,  to-
      gether with its first derivative, at the points  XE(J), J=1(1)NE.
 
      If only function values are required, use DPCHFE, instead.
 
      To provide compatibility with DPCHIM and DPCHIC, includes an
      increment between successive values of the F- and D-arrays.
 
  ----------------------------------------------------------------------
 
   Calling sequence:
 
         PARAMETER  (INCFD = ...)
         INTEGER  N, NE, IERR
         DOUBLE PRECISION  X(N), F(INCFD,N), D(INCFD,N), XE(NE), FE(NE),
                           DE(NE)
         LOGICAL  SKIP
 
         CALL  DPCHFD (N, X, F, D, INCFD, SKIP, NE, XE, FE, DE, IERR)
 
    Parameters:
 
      N -- (input) number of data points.  (Error return if N.LT.2 .)
 
      X -- (input) real*8 array of independent variable values.  The
            elements of X must be strictly increasing:
                 X(I-1) .LT. X(I),  I = 2(1)N.
            (Error return if not.)
 
      F -- (input) real*8 array of function values.  F(1+(I-1)*INCFD) is
            the value corresponding to X(I).
 
      D -- (input) real*8 array of derivative values.  D(1+(I-1)*INCFD)
            is the value corresponding to X(I).
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      INCFD -- (input) increment between successive values in F and D.
            (Error return if  INCFD.LT.1 .)
 
      SKIP -- (input/output) logical variable which should be set to
            .TRUE. if the user wishes to skip checks for validity of
            preceding parameters, or to .FALSE. otherwise.
            This will save time in case these checks have already
            been performed (say, in DPCHIM or DPCHIC).
            SKIP will be set to .TRUE. on normal return.
 
      NE -- (input) number of evaluation points.  (Error return if
            NE.LT.1 .)
 
      XE -- (input) real*8 array of points at which the functions are to
            be evaluated.
 
 
           NOTES:
            1. The evaluation will be most efficient if the elements
               of XE are increasing relative to X;
               that is,   XE(J) .GE. X(I)
               implies    XE(K) .GE. X(I),  all K.GE.J .
            2. If any of the XE are outside the interval [X(1),X(N)],
               values are extrapolated from the nearest extreme cubic,
               and a warning error is returned.
 
      FE -- (output) real*8 array of values of the cubic Hermite
            function defined by  N, X, F, D  at the points  XE.
 
      DE -- (output) real*8 array of values of the first derivative of
            the same function at the points  XE.
 
      IERR -- (output) error flag.
            Normal return:
               IERR = 0  (no errors).
            Warning error:
               IERR.GT.0  means that extrapolation was performed at
                  IERR points.
            "Recoverable" errors:
               IERR = -1  if N.LT.2 .
               IERR = -2  if INCFD.LT.1 .
               IERR = -3  if the X-array is not strictly increasing.
               IERR = -4  if NE.LT.1 .
            (Output arrays have not been changed in any of these cases.)
                NOTE:  The above errors are checked in the order listed,
                    and following arguments have **NOT** been validated.
               IERR = -5  if an error has occurred in the lower-level
                          routine DCHFDV.  NB: this should never happen.
                          Notify the author **IMMEDIATELY** if it does.
 
 ***REFERENCES  (NONE)
 ***ROUTINES CALLED  DCHFDV, XERMSG
 ***REVISION HISTORY  (YYMMDD)
    811020  DATE WRITTEN
    820803  Minor cosmetic changes for release 1.
    870707  Corrected XERROR calls for d.p. name(s).
    890206  Corrected XERROR calls.
    890531  Changed all specific intrinsics to generic.  (WRB)
    890831  Modified array declarations.  (WRB)
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    891006  Cosmetic changes to prologue.  (WRB)
    891006  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    900315  CALLs to XERROR changed to CALLs to XERMSG.  (THJ)
    END PROLOGUE
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DPCHFE

      SUBROUTINE DPCHFE (N, X, F, D, INCFD, SKIP, NE, XE, FE, IERR)
 ***BEGIN PROLOGUE  DPCHFE
 ***PURPOSE  Evaluate a piecewise cubic Hermite function at an array of
             points.  May be used by itself for Hermite interpolation,
             or as an evaluator for DPCHIM or DPCHIC.
 ***LIBRARY   SLATEC (PCHIP)
 ***CATEGORY  E3
 ***TYPE      DOUBLE PRECISION (PCHFE-S, DPCHFE-D)
 ***KEYWORDS  CUBIC HERMITE EVALUATION, HERMITE INTERPOLATION, PCHIP,
              PIECEWISE CUBIC EVALUATION
 ***AUTHOR  Fritsch, F. N., (LLNL)
              Lawrence Livermore National Laboratory
              P.O. Box 808  (L-316)
              Livermore, CA  94550
              FTS 532-4275, (510) 422-4275
 ***DESCRIPTION
 
           DPCHFE:  Piecewise Cubic Hermite Function Evaluator
 
      Evaluates the cubic Hermite function defined by  N, X, F, D  at
      the points  XE(J), J=1(1)NE.
 
      To provide compatibility with DPCHIM and DPCHIC, includes an
      increment between successive values of the F- and D-arrays.
 
  ----------------------------------------------------------------------
 
   Calling sequence:
 
         PARAMETER  (INCFD = ...)
         INTEGER  N, NE, IERR
         DOUBLE PRECISION  X(N), F(INCFD,N), D(INCFD,N), XE(NE), FE(NE)
         LOGICAL  SKIP
 
         CALL  DPCHFE (N, X, F, D, INCFD, SKIP, NE, XE, FE, IERR)
 
    Parameters:
 
      N -- (input) number of data points.  (Error return if N.LT.2 .)
 
      X -- (input) real*8 array of independent variable values.  The
            elements of X must be strictly increasing:
                 X(I-1) .LT. X(I),  I = 2(1)N.
            (Error return if not.)
 
      F -- (input) real*8 array of function values.  F(1+(I-1)*INCFD) is
            the value corresponding to X(I).
 
      D -- (input) real*8 array of derivative values.  D(1+(I-1)*INCFD)
            is the value corresponding to X(I).
 
      INCFD -- (input) increment between successive values in F and D.
            (Error return if  INCFD.LT.1 .)
 
      SKIP -- (input/output) logical variable which should be set to
            .TRUE. if the user wishes to skip checks for validity of

SLATEC3 (DACOSH through DS2Y) - 441



            preceding parameters, or to .FALSE. otherwise.
            This will save time in case these checks have already
            been performed (say, in DPCHIM or DPCHIC).
            SKIP will be set to .TRUE. on normal return.
 
      NE -- (input) number of evaluation points.  (Error return if
            NE.LT.1 .)
 
      XE -- (input) real*8 array of points at which the function is to
            be evaluated.
 
           NOTES:
            1. The evaluation will be most efficient if the elements
               of XE are increasing relative to X;
               that is,   XE(J) .GE. X(I)
               implies    XE(K) .GE. X(I),  all K.GE.J .
            2. If any of the XE are outside the interval [X(1),X(N)],
               values are extrapolated from the nearest extreme cubic,
               and a warning error is returned.
 
      FE -- (output) real*8 array of values of the cubic Hermite
            function defined by  N, X, F, D  at the points  XE.
 
      IERR -- (output) error flag.
            Normal return:
               IERR = 0  (no errors).
            Warning error:
               IERR.GT.0  means that extrapolation was performed at
                  IERR points.
            "Recoverable" errors:
               IERR = -1  if N.LT.2 .
               IERR = -2  if INCFD.LT.1 .
               IERR = -3  if the X-array is not strictly increasing.
               IERR = -4  if NE.LT.1 .
              (The FE-array has not been changed in any of these cases.)
                NOTE:  The above errors are checked in the order listed,
                    and following arguments have **NOT** been validated.
 
 ***REFERENCES  (NONE)
 ***ROUTINES CALLED  DCHFEV, XERMSG
 ***REVISION HISTORY  (YYMMDD)
    811020  DATE WRITTEN
    820803  Minor cosmetic changes for release 1.
    870707  Corrected XERROR calls for d.p. name(s).
    890206  Corrected XERROR calls.
    890531  Changed all specific intrinsics to generic.  (WRB)
    890831  Modified array declarations.  (WRB)
    891006  Cosmetic changes to prologue.  (WRB)
    891006  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    900315  CALLs to XERROR changed to CALLs to XERMSG.  (THJ)
    END PROLOGUE
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DPCHIA

      DOUBLE PRECISION FUNCTION DPCHIA (N, X, F, D, INCFD, SKIP, A, B,
     +   IERR)
 ***BEGIN PROLOGUE  DPCHIA
 ***PURPOSE  Evaluate the definite integral of a piecewise cubic
             Hermite function over an arbitrary interval.
 ***LIBRARY   SLATEC (PCHIP)
 ***CATEGORY  E3, H2A1B2
 ***TYPE      DOUBLE PRECISION (PCHIA-S, DPCHIA-D)
 ***KEYWORDS  CUBIC HERMITE INTERPOLATION, NUMERICAL INTEGRATION, PCHIP,
              QUADRATURE
 ***AUTHOR  Fritsch, F. N., (LLNL)
              Lawrence Livermore National Laboratory
              P.O. Box 808  (L-316)
              Livermore, CA  94550
              FTS 532-4275, (510) 422-4275
 ***DESCRIPTION
 
           DPCHIA:  Piecewise Cubic Hermite Integrator, Arbitrary limits
 
      Evaluates the definite integral of the cubic Hermite function
      defined by  N, X, F, D  over the interval [A, B].
 
      To provide compatibility with DPCHIM and DPCHIC, includes an
      increment between successive values of the F- and D-arrays.
 
  ----------------------------------------------------------------------
 
   Calling sequence:
 
         PARAMETER  (INCFD = ...)
         INTEGER  N, IERR
         DOUBLE PRECISION  X(N), F(INCFD,N), D(INCFD,N), A, B
         DOUBLE PRECISION  VALUE, DPCHIA
         LOGICAL  SKIP
 
         VALUE = DPCHIA (N, X, F, D, INCFD, SKIP, A, B, IERR)
 
    Parameters:
 
      VALUE -- (output) value of the requested integral.
 
      N -- (input) number of data points.  (Error return if N.LT.2 .)
 
      X -- (input) real*8 array of independent variable values.  The
            elements of X must be strictly increasing:
                 X(I-1) .LT. X(I),  I = 2(1)N.
            (Error return if not.)
 
      F -- (input) real*8 array of function values.  F(1+(I-1)*INCFD) is
            the value corresponding to X(I).
 
      D -- (input) real*8 array of derivative values.  D(1+(I-1)*INCFD)
            is the value corresponding to X(I).
 
      INCFD -- (input) increment between successive values in F and D.
            (Error return if  INCFD.LT.1 .)
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      SKIP -- (input/output) logical variable which should be set to
            .TRUE. if the user wishes to skip checks for validity of
            preceding parameters, or to .FALSE. otherwise.
            This will save time in case these checks have already
            been performed (say, in DPCHIM or DPCHIC).
            SKIP will be set to .TRUE. on return with IERR.GE.0 .
 
      A,B -- (input) the limits of integration.
            NOTE:  There is no requirement that [A,B] be contained in
                   [X(1),X(N)].  However, the resulting integral value
                   will be highly suspect, if not.
 
      IERR -- (output) error flag.
            Normal return:
               IERR = 0  (no errors).
            Warning errors:
               IERR = 1  if  A  is outside the interval [X(1),X(N)].
               IERR = 2  if  B  is outside the interval [X(1),X(N)].
               IERR = 3  if both of the above are true.  (Note that this
                         means that either [A,B] contains data interval
                         or the intervals do not intersect at all.)
            "Recoverable" errors:
               IERR = -1  if N.LT.2 .
               IERR = -2  if INCFD.LT.1 .
               IERR = -3  if the X-array is not strictly increasing.
                 (VALUE will be zero in any of these cases.)
                NOTE:  The above errors are checked in the order listed,
                    and following arguments have **NOT** been validated.
               IERR = -4  in case of an error return from DPCHID (which
                          should never occur).
 
 ***REFERENCES  (NONE)
 ***ROUTINES CALLED  DCHFIE, DPCHID, XERMSG
 ***REVISION HISTORY  (YYMMDD)
    820730  DATE WRITTEN
    820804  Converted to SLATEC library version.
    870707  Corrected XERROR calls for d.p. name(s).
    870707  Corrected conversion to double precision.
    870813  Minor cosmetic changes.
    890206  Corrected XERROR calls.
    890411  Added SAVE statements (Vers. 3.2).
    890531  Changed all specific intrinsics to generic.  (WRB)
    890703  Corrected category record.  (WRB)
    890831  Modified array declarations.  (WRB)
    891006  Cosmetic changes to prologue.  (WRB)
    891006  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    900315  CALLs to XERROR changed to CALLs to XERMSG.  (THJ)
    930503  Corrected to set VALUE=0 when IERR.lt.0.  (FNF)
    930504  Changed DCHFIV to DCHFIE.  (FNF)
    END PROLOGUE
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DPCHIC

      SUBROUTINE DPCHIC (IC, VC, SWITCH, N, X, F, D, INCFD, WK, NWK,
     +   IERR)
 ***BEGIN PROLOGUE  DPCHIC
 ***PURPOSE  Set derivatives needed to determine a piecewise monotone
             piecewise cubic Hermite interpolant to given data.
             User control is available over boundary conditions and/or
             treatment of points where monotonicity switches direction.
 ***LIBRARY   SLATEC (PCHIP)
 ***CATEGORY  E1A
 ***TYPE      DOUBLE PRECISION (PCHIC-S, DPCHIC-D)
 ***KEYWORDS  CUBIC HERMITE INTERPOLATION, MONOTONE INTERPOLATION,
              PCHIP, PIECEWISE CUBIC INTERPOLATION,
              SHAPE-PRESERVING INTERPOLATION
 ***AUTHOR  Fritsch, F. N., (LLNL)
              Lawrence Livermore National Laboratory
              P.O. Box 808  (L-316)
              Livermore, CA  94550
              FTS 532-4275, (510) 422-4275
 ***DESCRIPTION
 
          DPCHIC:  Piecewise Cubic Hermite Interpolation Coefficients.
 
      Sets derivatives needed to determine a piecewise monotone piece-
      wise cubic interpolant to the data given in X and F satisfying the
      boundary conditions specified by IC and VC.
 
      The treatment of points where monotonicity switches direction is
      controlled by argument SWITCH.
 
      To facilitate two-dimensional applications, includes an increment
      between successive values of the F- and D-arrays.
 
      The resulting piecewise cubic Hermite function may be evaluated
      by DPCHFE or DPCHFD.
 
  ----------------------------------------------------------------------
 
   Calling sequence:
 
         PARAMETER  (INCFD = ...)
         INTEGER  IC(2), N, NWK, IERR
         DOUBLE PRECISION  VC(2), SWITCH, X(N), F(INCFD,N), D(INCFD,N),
                           WK(NWK)
 
         CALL DPCHIC (IC, VC, SWITCH, N, X, F, D, INCFD, WK, NWK, IERR)
 
    Parameters:
 
      IC -- (input) integer array of length 2 specifying desired
            boundary conditions:
            IC(1) = IBEG, desired condition at beginning of data.
            IC(2) = IEND, desired condition at end of data.
 
            IBEG = 0  for the default boundary condition (the same as
                      used by DPCHIM).
            If IBEG.NE.0, then its sign indicates whether the boundary
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                      derivative is to be adjusted, if necessary, to be
                      compatible with monotonicity:
               IBEG.GT.0  if no adjustment is to be performed.
               IBEG.LT.0  if the derivative is to be adjusted for
                      monotonicity.
 
            Allowable values for the magnitude of IBEG are:
            IBEG = 1  if first derivative at X(1) is given in VC(1).
            IBEG = 2  if second derivative at X(1) is given in VC(1).
            IBEG = 3  to use the 3-point difference formula for D(1).
                      (Reverts to the default b.c. if N.LT.3 .)
            IBEG = 4  to use the 4-point difference formula for D(1).
                      (Reverts to the default b.c. if N.LT.4 .)
            IBEG = 5  to set D(1) so that the second derivative is con-
               tinuous at X(2). (Reverts to the default b.c. if N.LT.4.)
               This option is somewhat analogous to the "not a knot"
               boundary condition provided by DPCHSP.
 
           NOTES (IBEG):
            1. An error return is taken if ABS(IBEG).GT.5 .
            2. Only in case  IBEG.LE.0  is it guaranteed that the
               interpolant will be monotonic in the first interval.
               If the returned value of D(1) lies between zero and
               3*SLOPE(1), the interpolant will be monotonic.  This
               is **NOT** checked if IBEG.GT.0 .
            3. If IBEG.LT.0 and D(1) had to be changed to achieve mono-
               tonicity, a warning error is returned.
 
            IEND may take on the same values as IBEG, but applied to
            derivative at X(N).  In case IEND = 1 or 2, the value is
            given in VC(2).
 
           NOTES (IEND):
            1. An error return is taken if ABS(IEND).GT.5 .
            2. Only in case  IEND.LE.0  is it guaranteed that the
               interpolant will be monotonic in the last interval.
               If the returned value of D(1+(N-1)*INCFD) lies between
               zero and 3*SLOPE(N-1), the interpolant will be monotonic.
               This is **NOT** checked if IEND.GT.0 .
            3. If IEND.LT.0 and D(1+(N-1)*INCFD) had to be changed to
               achieve monotonicity, a warning error is returned.
 
      VC -- (input) real*8 array of length 2 specifying desired boundary
            values, as indicated above.
            VC(1) need be set only if IC(1) = 1 or 2 .
            VC(2) need be set only if IC(2) = 1 or 2 .
 
      SWITCH -- (input) indicates desired treatment of points where
            direction of monotonicity switches:
            Set SWITCH to zero if interpolant is required to be mono-
            tonic in each interval, regardless of monotonicity of data.
              NOTES:
               1. This will cause D to be set to zero at all switch
                  points, thus forcing extrema there.
               2. The result of using this option with the default boun-
                  dary conditions will be identical to using DPCHIM, but
                  will generally cost more compute time.
                  This option is provided only to facilitate comparison
                  of different switch and/or boundary conditions.
            Set SWITCH nonzero to use a formula based on the 3-point
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               difference formula in the vicinity of switch points.
            If SWITCH is positive, the interpolant on each interval
               containing an extremum is controlled to not deviate from
               the data by more than SWITCH*DFLOC, where DFLOC is the
               maximum of the change of F on this interval and its two
               immediate neighbors.
            If SWITCH is negative, no such control is to be imposed.
 
      N -- (input) number of data points.  (Error return if N.LT.2 .)
 
      X -- (input) real*8 array of independent variable values.  The
            elements of X must be strictly increasing:
                 X(I-1) .LT. X(I),  I = 2(1)N.
            (Error return if not.)
 
      F -- (input) real*8 array of dependent variable values to be
            interpolated.  F(1+(I-1)*INCFD) is value corresponding to
            X(I).
 
      D -- (output) real*8 array of derivative values at the data
            points.  These values will determine a monotone cubic
            Hermite function on each subinterval on which the data
            are monotonic, except possibly adjacent to switches in
            monotonicity. The value corresponding to X(I) is stored in
                 D(1+(I-1)*INCFD),  I=1(1)N.
            No other entries in D are changed.
 
      INCFD -- (input) increment between successive values in F and D.
            This argument is provided primarily for 2-D applications.
            (Error return if  INCFD.LT.1 .)
 
      WK -- (scratch) real*8 array of working storage.  The user may
            wish to know that the returned values are:
               WK(I)     = H(I)     = X(I+1) - X(I) ;
               WK(N-1+I) = SLOPE(I) = (F(1,I+1) - F(1,I)) / H(I)
            for  I = 1(1)N-1.
 
      NWK -- (input) length of work array.
            (Error return if  NWK.LT.2*(N-1) .)
 
      IERR -- (output) error flag.
            Normal return:
               IERR = 0  (no errors).
            Warning errors:
               IERR = 1  if IBEG.LT.0 and D(1) had to be adjusted for
                         monotonicity.
               IERR = 2  if IEND.LT.0 and D(1+(N-1)*INCFD) had to be
                         adjusted for monotonicity.
               IERR = 3  if both of the above are true.
            "Recoverable" errors:
               IERR = -1  if N.LT.2 .
               IERR = -2  if INCFD.LT.1 .
               IERR = -3  if the X-array is not strictly increasing.
               IERR = -4  if ABS(IBEG).GT.5 .
               IERR = -5  if ABS(IEND).GT.5 .
               IERR = -6  if both of the above are true.
               IERR = -7  if NWK.LT.2*(N-1) .
              (The D-array has not been changed in any of these cases.)
                NOTE:  The above errors are checked in the order listed,
                    and following arguments have **NOT** been validated.
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 ***REFERENCES  1. F. N. Fritsch, Piecewise Cubic Hermite Interpolation
                  Package, Report UCRL-87285, Lawrence Livermore Natio-
                  nal Laboratory, July 1982.  [Poster presented at the
                  SIAM 30th Anniversary Meeting, 19-23 July 1982.]
                2. F. N. Fritsch and J. Butland, A method for construc-
                  ting local monotone piecewise cubic interpolants, SIAM
                  Journal on Scientific and Statistical Computing 5, 2
                  (June 1984), pp. 300-304.
                3. F. N. Fritsch and R. E. Carlson, Monotone piecewise
                  cubic interpolation, SIAM Journal on Numerical Ana-
                  lysis 17, 2 (April 1980), pp. 238-246.
 ***ROUTINES CALLED  DPCHCE, DPCHCI, DPCHCS, XERMSG
 ***REVISION HISTORY  (YYMMDD)
    820218  DATE WRITTEN
    820804  Converted to SLATEC library version.
    870707  Corrected XERROR calls for d.p. name(s).
    870813  Updated Reference 2.
    890206  Corrected XERROR calls.
    890411  Added SAVE statements (Vers. 3.2).
    890531  Changed all specific intrinsics to generic.  (WRB)
    890703  Corrected category record.  (WRB)
    890831  Modified array declarations.  (WRB)
    891006  Cosmetic changes to prologue.  (WRB)
    891006  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    900315  CALLs to XERROR changed to CALLs to XERMSG.  (THJ)
    920429  Revised format and order of references.  (WRB,FNF)
    END PROLOGUE
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DPCHID

      DOUBLE PRECISION FUNCTION DPCHID (N, X, F, D, INCFD, SKIP, IA, IB,
     +   IERR)
 ***BEGIN PROLOGUE  DPCHID
 ***PURPOSE  Evaluate the definite integral of a piecewise cubic
             Hermite function over an interval whose endpoints are data
             points.
 ***LIBRARY   SLATEC (PCHIP)
 ***CATEGORY  E3, H2A1B2
 ***TYPE      DOUBLE PRECISION (PCHID-S, DPCHID-D)
 ***KEYWORDS  CUBIC HERMITE INTERPOLATION, NUMERICAL INTEGRATION, PCHIP,
              QUADRATURE
 ***AUTHOR  Fritsch, F. N., (LLNL)
              Lawrence Livermore National Laboratory
              P.O. Box 808  (L-316)
              Livermore, CA  94550
              FTS 532-4275, (510) 422-4275
 ***DESCRIPTION
 
           DPCHID:  Piecewise Cubic Hermite Integrator, Data limits
 
      Evaluates the definite integral of the cubic Hermite function
      defined by  N, X, F, D  over the interval [X(IA), X(IB)].
 
      To provide compatibility with DPCHIM and DPCHIC, includes an
      increment between successive values of the F- and D-arrays.
 
  ----------------------------------------------------------------------
 
   Calling sequence:
 
         PARAMETER  (INCFD = ...)
         INTEGER  N, IA, IB, IERR
         DOUBLE PRECISION  X(N), F(INCFD,N), D(INCFD,N)
         LOGICAL  SKIP
 
         VALUE = DPCHID (N, X, F, D, INCFD, SKIP, IA, IB, IERR)
 
    Parameters:
 
      VALUE -- (output) value of the requested integral.
 
      N -- (input) number of data points.  (Error return if N.LT.2 .)
 
      X -- (input) real*8 array of independent variable values.  The
            elements of X must be strictly increasing:
                 X(I-1) .LT. X(I),  I = 2(1)N.
            (Error return if not.)
 
      F -- (input) real*8 array of function values.  F(1+(I-1)*INCFD) is
            the value corresponding to X(I).
 
      D -- (input) real*8 array of derivative values.  D(1+(I-1)*INCFD)
            is the value corresponding to X(I).
 
      INCFD -- (input) increment between successive values in F and D.
            (Error return if  INCFD.LT.1 .)
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      SKIP -- (input/output) logical variable which should be set to
            .TRUE. if the user wishes to skip checks for validity of
            preceding parameters, or to .FALSE. otherwise.
            This will save time in case these checks have already
            been performed (say, in DPCHIM or DPCHIC).
            SKIP will be set to .TRUE. on return with IERR = 0 or -4.
 
      IA,IB -- (input) indices in X-array for the limits of integration.
            both must be in the range [1,N].  (Error return if not.)
            No restrictions on their relative values.
 
      IERR -- (output) error flag.
            Normal return:
               IERR = 0  (no errors).
            "Recoverable" errors:
               IERR = -1  if N.LT.2 .
               IERR = -2  if INCFD.LT.1 .
               IERR = -3  if the X-array is not strictly increasing.
               IERR = -4  if IA or IB is out of range.
                 (VALUE will be zero in any of these cases.)
                NOTE:  The above errors are checked in the order listed,
                    and following arguments have **NOT** been validated.
 
 ***REFERENCES  (NONE)
 ***ROUTINES CALLED  XERMSG
 ***REVISION HISTORY  (YYMMDD)
    820723  DATE WRITTEN
    820804  Converted to SLATEC library version.
    870707  Corrected XERROR calls for d.p. name(s).
    870813  Minor cosmetic changes.
    890206  Corrected XERROR calls.
    890411  Added SAVE statements (Vers. 3.2).
    890531  Changed all specific intrinsics to generic.  (WRB)
    890703  Corrected category record.  (WRB)
    890831  Modified array declarations.  (WRB)
    891006  Cosmetic changes to prologue.  (WRB)
    891006  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    900315  CALLs to XERROR changed to CALLs to XERMSG.  (THJ)
    930504  Corrected to set VALUE=0 when IERR.ne.0.  (FNF)
    END PROLOGUE
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DPCHIM

      SUBROUTINE DPCHIM (N, X, F, D, INCFD, IERR)
 ***BEGIN PROLOGUE  DPCHIM
 ***PURPOSE  Set derivatives needed to determine a monotone piecewise
             cubic Hermite interpolant to given data.  Boundary values
             are provided which are compatible with monotonicity.  The
             interpolant will have an extremum at each point where mono-
             tonicity switches direction.  (See DPCHIC if user control
             is desired over boundary or switch conditions.)
 ***LIBRARY   SLATEC (PCHIP)
 ***CATEGORY  E1A
 ***TYPE      DOUBLE PRECISION (PCHIM-S, DPCHIM-D)
 ***KEYWORDS  CUBIC HERMITE INTERPOLATION, MONOTONE INTERPOLATION,
              PCHIP, PIECEWISE CUBIC INTERPOLATION
 ***AUTHOR  Fritsch, F. N., (LLNL)
              Lawrence Livermore National Laboratory
              P.O. Box 808  (L-316)
              Livermore, CA  94550
              FTS 532-4275, (510) 422-4275
 ***DESCRIPTION
 
           DPCHIM:  Piecewise Cubic Hermite Interpolation to
                   Monotone data.
 
      Sets derivatives needed to determine a monotone piecewise cubic
      Hermite interpolant to the data given in X and F.
 
      Default boundary conditions are provided which are compatible
      with monotonicity.  (See DPCHIC if user control of boundary con-
      ditions is desired.)
 
      If the data are only piecewise monotonic, the interpolant will
      have an extremum at each point where monotonicity switches direc-
      tion.  (See DPCHIC if user control is desired in such cases.)
 
      To facilitate two-dimensional applications, includes an increment
      between successive values of the F- and D-arrays.
 
      The resulting piecewise cubic Hermite function may be evaluated
      by DPCHFE or DPCHFD.
 
  ----------------------------------------------------------------------
 
   Calling sequence:
 
         PARAMETER  (INCFD = ...)
         INTEGER  N, IERR
         DOUBLE PRECISION  X(N), F(INCFD,N), D(INCFD,N)
 
         CALL  DPCHIM (N, X, F, D, INCFD, IERR)
 
    Parameters:
 
      N -- (input) number of data points.  (Error return if N.LT.2 .)
            If N=2, simply does linear interpolation.
 
      X -- (input) real*8 array of independent variable values.  The
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            elements of X must be strictly increasing:
                 X(I-1) .LT. X(I),  I = 2(1)N.
            (Error return if not.)
 
      F -- (input) real*8 array of dependent variable values to be
            interpolated.  F(1+(I-1)*INCFD) is value corresponding to
            X(I).  DPCHIM is designed for monotonic data, but it will
            work for any F-array.  It will force extrema at points where
            monotonicity switches direction.  If some other treatment of
            switch points is desired, DPCHIC should be used instead.
                                      -----
      D -- (output) real*8 array of derivative values at the data
            points.  If the data are monotonic, these values will
            determine a monotone cubic Hermite function.
            The value corresponding to X(I) is stored in
                 D(1+(I-1)*INCFD),  I=1(1)N.
            No other entries in D are changed.
 
      INCFD -- (input) increment between successive values in F and D.
            This argument is provided primarily for 2-D applications.
            (Error return if  INCFD.LT.1 .)
 
      IERR -- (output) error flag.
            Normal return:
               IERR = 0  (no errors).
            Warning error:
               IERR.GT.0  means that IERR switches in the direction
                  of monotonicity were detected.
            "Recoverable" errors:
               IERR = -1  if N.LT.2 .
               IERR = -2  if INCFD.LT.1 .
               IERR = -3  if the X-array is not strictly increasing.
              (The D-array has not been changed in any of these cases.)
                NOTE:  The above errors are checked in the order listed,
                    and following arguments have **NOT** been validated.
 
 ***REFERENCES  1. F. N. Fritsch and J. Butland, A method for construc-
                  ting local monotone piecewise cubic interpolants, SIAM
                  Journal on Scientific and Statistical Computing 5, 2
                  (June 1984), pp. 300-304.
                2. F. N. Fritsch and R. E. Carlson, Monotone piecewise
                  cubic interpolation, SIAM Journal on Numerical Ana-
                  lysis 17, 2 (April 1980), pp. 238-246.
 ***ROUTINES CALLED  DPCHST, XERMSG
 ***REVISION HISTORY  (YYMMDD)
    811103  DATE WRITTEN
    820201  1. Introduced  DPCHST  to reduce possible over/under-
              flow problems.
            2. Rearranged derivative formula for same reason.
    820602  1. Modified end conditions to be continuous functions
              of data when monotonicity switches in next interval.
            2. Modified formulas so end conditions are less prone
              of over/underflow problems.
    820803  Minor cosmetic changes for release 1.
    870707  Corrected XERROR calls for d.p. name(s).
    870813  Updated Reference 1.
    890206  Corrected XERROR calls.
    890411  Added SAVE statements (Vers. 3.2).
    890531  Changed all specific intrinsics to generic.  (WRB)
    890703  Corrected category record.  (WRB)
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    890831  Modified array declarations.  (WRB)
    891006  Cosmetic changes to prologue.  (WRB)
    891006  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    900315  CALLs to XERROR changed to CALLs to XERMSG.  (THJ)
    920429  Revised format and order of references.  (WRB,FNF)
    END PROLOGUE
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DPCHSP

      SUBROUTINE DPCHSP (IC, VC, N, X, F, D, INCFD, WK, NWK, IERR)
 ***BEGIN PROLOGUE  DPCHSP
 ***PURPOSE  Set derivatives needed to determine the Hermite represen-
             tation of the cubic spline interpolant to given data, with
             specified boundary conditions.
 ***LIBRARY   SLATEC (PCHIP)
 ***CATEGORY  E1A
 ***TYPE      DOUBLE PRECISION (PCHSP-S, DPCHSP-D)
 ***KEYWORDS  CUBIC HERMITE INTERPOLATION, PCHIP,
              PIECEWISE CUBIC INTERPOLATION, SPLINE INTERPOLATION
 ***AUTHOR  Fritsch, F. N., (LLNL)
              Lawrence Livermore National Laboratory
              P.O. Box 808  (L-316)
              Livermore, CA  94550
              FTS 532-4275, (510) 422-4275
 ***DESCRIPTION
 
           DPCHSP:   Piecewise Cubic Hermite Spline
 
      Computes the Hermite representation of the cubic spline inter-
      polant to the data given in X and F satisfying the boundary
      conditions specified by IC and VC.
 
      To facilitate two-dimensional applications, includes an increment
      between successive values of the F- and D-arrays.
 
      The resulting piecewise cubic Hermite function may be evaluated
      by DPCHFE or DPCHFD.
 
      NOTE:  This is a modified version of C. de Boor's cubic spline
             routine CUBSPL.
 
  ----------------------------------------------------------------------
 
   Calling sequence:
 
         PARAMETER  (INCFD = ...)
         INTEGER  IC(2), N, NWK, IERR
         DOUBLE PRECISION  VC(2), X(N), F(INCFD,N), D(INCFD,N), WK(NWK)
 
         CALL  DPCHSP (IC, VC, N, X, F, D, INCFD, WK, NWK, IERR)
 
    Parameters:
 
      IC -- (input) integer array of length 2 specifying desired
            boundary conditions:
            IC(1) = IBEG, desired condition at beginning of data.
            IC(2) = IEND, desired condition at end of data.
 
            IBEG = 0  to set D(1) so that the third derivative is con-
               tinuous at X(2).  This is the "not a knot" condition
               provided by de Boor's cubic spline routine CUBSPL.
               < This is the default boundary condition. >
            IBEG = 1  if first derivative at X(1) is given in VC(1).
            IBEG = 2  if second derivative at X(1) is given in VC(1).
            IBEG = 3  to use the 3-point difference formula for D(1).
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                      (Reverts to the default b.c. if N.LT.3 .)
            IBEG = 4  to use the 4-point difference formula for D(1).
                      (Reverts to the default b.c. if N.LT.4 .)
           NOTES:
            1. An error return is taken if IBEG is out of range.
            2. For the "natural" boundary condition, use IBEG=2 and
               VC(1)=0.
 
            IEND may take on the same values as IBEG, but applied to
            derivative at X(N).  In case IEND = 1 or 2, the value is
            given in VC(2).
 
           NOTES:
            1. An error return is taken if IEND is out of range.
            2. For the "natural" boundary condition, use IEND=2 and
               VC(2)=0.
 
      VC -- (input) real*8 array of length 2 specifying desired boundary
            values, as indicated above.
            VC(1) need be set only if IC(1) = 1 or 2 .
            VC(2) need be set only if IC(2) = 1 or 2 .
 
      N -- (input) number of data points.  (Error return if N.LT.2 .)
 
      X -- (input) real*8 array of independent variable values.  The
            elements of X must be strictly increasing:
                 X(I-1) .LT. X(I),  I = 2(1)N.
            (Error return if not.)
 
      F -- (input) real*8 array of dependent variable values to be
            interpolated.  F(1+(I-1)*INCFD) is value corresponding to
            X(I).
 
      D -- (output) real*8 array of derivative values at the data
            points.  These values will determine the cubic spline
            interpolant with the requested boundary conditions.
            The value corresponding to X(I) is stored in
                 D(1+(I-1)*INCFD),  I=1(1)N.
            No other entries in D are changed.
 
      INCFD -- (input) increment between successive values in F and D.
            This argument is provided primarily for 2-D applications.
            (Error return if  INCFD.LT.1 .)
 
      WK -- (scratch) real*8 array of working storage.
 
      NWK -- (input) length of work array.
            (Error return if NWK.LT.2*N .)
 
      IERR -- (output) error flag.
            Normal return:
               IERR = 0  (no errors).
            "Recoverable" errors:
               IERR = -1  if N.LT.2 .
               IERR = -2  if INCFD.LT.1 .
               IERR = -3  if the X-array is not strictly increasing.
               IERR = -4  if IBEG.LT.0 or IBEG.GT.4 .
               IERR = -5  if IEND.LT.0 of IEND.GT.4 .
               IERR = -6  if both of the above are true.
               IERR = -7  if NWK is too small.

SLATEC3 (DACOSH through DS2Y) - 455



                NOTE:  The above errors are checked in the order listed,
                    and following arguments have **NOT** been validated.
              (The D-array has not been changed in any of these cases.)
               IERR = -8  in case of trouble solving the linear system
                          for the interior derivative values.
              (The D-array may have been changed in this case.)
              (             Do **NOT** use it!                )
 
 ***REFERENCES  Carl de Boor, A Practical Guide to Splines, Springer-
                  Verlag, New York, 1978, pp. 53-59.
 ***ROUTINES CALLED  DPCHDF, XERMSG
 ***REVISION HISTORY  (YYMMDD)
    820503  DATE WRITTEN
    820804  Converted to SLATEC library version.
    870707  Corrected XERROR calls for d.p. name(s).
    890206  Corrected XERROR calls.
    890411  Added SAVE statements (Vers. 3.2).
    890703  Corrected category record.  (WRB)
    890831  Modified array declarations.  (WRB)
    891006  Cosmetic changes to prologue.  (WRB)
    891006  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    900315  CALLs to XERROR changed to CALLs to XERMSG.  (THJ)
    920429  Revised format and order of references.  (WRB,FNF)
    END PROLOGUE
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DPCOEF

      SUBROUTINE DPCOEF (L, C, TC, A)
 ***BEGIN PROLOGUE  DPCOEF
 ***PURPOSE  Convert the DPOLFT coefficients to Taylor series form.
 ***LIBRARY   SLATEC
 ***CATEGORY  K1A1A2
 ***TYPE      DOUBLE PRECISION (PCOEF-S, DPCOEF-D)
 ***KEYWORDS  CURVE FITTING, DATA FITTING, LEAST SQUARES, POLYNOMIAL FIT
 ***AUTHOR  Shampine, L. F., (SNLA)
            Davenport, S. M., (SNLA)
 ***DESCRIPTION
 
      Abstract
 
      DPOLFT  computes the least squares polynomial fit of degree  L  as
      a sum of orthogonal polynomials.  DPCOEF  changes this fit to its
      Taylor expansion about any point  C , i.e. writes the polynomial
      as a sum of powers of (X-C).  Taking  C=0.  gives the polynomial
      in powers of X, but a suitable non-zero  C  often leads to
      polynomials which are better scaled and more accurately evaluated.
 
      The parameters for  DPCOEF  are
 
      INPUT -- All TYPE REAL variables are DOUBLE PRECISION
          L -      Indicates the degree of polynomial to be changed to
                   its Taylor expansion.  To obtain the Taylor
                   coefficients in reverse order, input  L  as the
                   negative of the degree desired.  The absolute value
                   of L  must be less than or equal to NDEG, the highest
                   degree polynomial fitted by  DPOLFT .
          C -      The point about which the Taylor expansion is to be
                   made.
          A -      Work and output array containing values from last
                   call to  DPOLFT .
 
      OUTPUT -- All TYPE REAL variables are DOUBLE PRECISION
          TC -     Vector containing the first LL+1 Taylor coefficients
                   where LL=ABS(L).  If  L.GT.0 , the coefficients are
                   in the usual Taylor series order, i.e.
                     P(X) = TC(1) + TC(2)*(X-C) + ... + TC(N+1)*(X-C)**N
                   If L .LT. 0, the coefficients are in reverse order,
                   i.e.
                     P(X) = TC(1)*(X-C)**N + ... + TC(N)*(X-C) + TC(N+1)
 
 ***REFERENCES  L. F. Shampine, S. M. Davenport and R. E. Huddleston,
                  Curve fitting by polynomials in one variable, Report
                  SLA-74-0270, Sandia Laboratories, June 1974.
 ***ROUTINES CALLED  DP1VLU
 ***REVISION HISTORY  (YYMMDD)
    740601  DATE WRITTEN
    890531  Changed all specific intrinsics to generic.  (WRB)
    891006  Cosmetic changes to prologue.  (WRB)
    891006  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    920501  Reformatted the REFERENCES section.  (WRB)
    END PROLOGUE
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DPFQAD

      SUBROUTINE DPFQAD (F, LDC, C, XI, LXI, K, ID, X1, X2, TOL, QUAD,
     +   IERR)
 ***BEGIN PROLOGUE  DPFQAD
 ***PURPOSE  Compute the integral on (X1,X2) of a product of a
             function F and the ID-th derivative of a B-spline,
             (PP-representation).
 ***LIBRARY   SLATEC
 ***CATEGORY  H2A2A1, E3, K6
 ***TYPE      DOUBLE PRECISION (PFQAD-S, DPFQAD-D)
 ***KEYWORDS  B-SPLINE, DATA FITTING, INTERPOLATION, QUADRATURE, SPLINES
 ***AUTHOR  Amos, D. E., (SNLA)
 ***DESCRIPTION
 
      Abstract    **** a double precision routine ****
          DPFQAD computes the integral on (X1,X2) of a product of a
          function F and the ID-th derivative of a B-spline, using the
          PP-representation (C,XI,LXI,K).  (X1,X2) is normally a sub-
          interval of XI(1) .LE. X .LE. XI(LXI+1).  An integration
          routine, DPPGQ8 (a modification of GAUS8), integrates the
          product on subintervals of (X1,X2) formed by the included
          break points.  Integration outside of (XI(1),XI(LXI+1)) is
          permitted provided F is defined.
 
          The maximum number of significant digits obtainable in
          DBSQAD is the smaller of 18 and the number of digits
          carried in double precision arithmetic.
 
      Description of arguments
          Input      F,C,XI,X1,X2,TOL are double precision
            F      - external function of one argument for the
                     integrand PF(X)=F(X)*DPPVAL(LDC,C,XI,LXI,K,ID,X,
                     INPPV)
            LDC    - leading dimension of matrix C, LDC .GE. K
            C(I,J) - right Taylor derivatives at XI(J), I=1,K , J=1,LXI
            XI(*)  - break point array of length LXI+1
            LXI    - number of polynomial pieces
            K      - order of B-spline, K .GE. 1
            ID     - order of the spline derivative, 0 .LE. ID .LE. K-1
                     ID=0 gives the spline function
            X1,X2  - end points of quadrature interval, normally in
                     XI(1) .LE. X .LE. XI(LXI+1)
            TOL    - desired accuracy for the quadrature, suggest
                     10.*DTOL .LT. TOL .LE. 0.1 where DTOL is the
                     maximum of 1.0D-18 and double precision unit
                     roundoff for the machine = D1MACH(4)
 
          Output     QUAD is double precision
            QUAD   - integral of PF(X) on (X1,X2)
            IERR   - a status code
                     IERR=1 normal return
                          2 some quadrature does not meet the
                            requested tolerance
 
      Error Conditions
          Improper input is a fatal error.
          Some quadrature does not meet the requested tolerance.
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 ***REFERENCES  D. E. Amos, Quadrature subroutines for splines and
                  B-splines, Report SAND79-1825, Sandia Laboratories,
                  December 1979.
 ***ROUTINES CALLED  D1MACH, DINTRV, DPPGQ8, XERMSG
 ***REVISION HISTORY  (YYMMDD)
    800901  DATE WRITTEN
    890531  Changed all specific intrinsics to generic.  (WRB)
    890531  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    900315  CALLs to XERROR changed to CALLs to XERMSG.  (THJ)
    900326  Removed duplicate information from DESCRIPTION section.
            (WRB)
    920501  Reformatted the REFERENCES section.  (WRB)
    END PROLOGUE
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DPLINT

      SUBROUTINE DPLINT (N, X, Y, C)
 ***BEGIN PROLOGUE  DPLINT
 ***PURPOSE  Produce the polynomial which interpolates a set of discrete
             data points.
 ***LIBRARY   SLATEC
 ***CATEGORY  E1B
 ***TYPE      DOUBLE PRECISION (POLINT-S, DPLINT-D)
 ***KEYWORDS  POLYNOMIAL INTERPOLATION
 ***AUTHOR  Huddleston, R. E., (SNLL)
 ***DESCRIPTION
 
      Abstract
         Subroutine DPLINT is designed to produce the polynomial which
      interpolates the data  (X(I),Y(I)), I=1,...,N.  DPLINT sets up
      information in the array C which can be used by subroutine DPOLVL
      to evaluate the polynomial and its derivatives and by subroutine
      DPOLCF to produce the coefficients.
 
      Formal Parameters
      *** All TYPE REAL variables are DOUBLE PRECISION ***
      N  - the number of data points  (N .GE. 1)
      X  - the array of abscissas (all of which must be distinct)
      Y  - the array of ordinates
      C  - an array of information used by subroutines
      *******  Dimensioning Information  *******
      Arrays X,Y, and C must be dimensioned at least N in the calling
      program.
 
 ***REFERENCES  L. F. Shampine, S. M. Davenport and R. E. Huddleston,
                  Curve fitting by polynomials in one variable, Report
                  SLA-74-0270, Sandia Laboratories, June 1974.
 ***ROUTINES CALLED  XERMSG
 ***REVISION HISTORY  (YYMMDD)
    740601  DATE WRITTEN
    891006  Cosmetic changes to prologue.  (WRB)
    891006  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    900315  CALLs to XERROR changed to CALLs to XERMSG.  (THJ)
    920501  Reformatted the REFERENCES section.  (WRB)
    END PROLOGUE
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DPOCH

      DOUBLE PRECISION FUNCTION DPOCH (A, X)
 ***BEGIN PROLOGUE  DPOCH
 ***PURPOSE  Evaluate a generalization of Pochhammer's symbol.
 ***LIBRARY   SLATEC (FNLIB)
 ***CATEGORY  C1, C7A
 ***TYPE      DOUBLE PRECISION (POCH-S, DPOCH-D)
 ***KEYWORDS  FNLIB, POCHHAMMER, SPECIAL FUNCTIONS
 ***AUTHOR  Fullerton, W., (LANL)
 ***DESCRIPTION
 
  Evaluate a double precision generalization of Pochhammer's symbol
  (A)-sub-X = GAMMA(A+X)/GAMMA(A) for double precision A and X.
  For X a non-negative integer, POCH(A,X) is just Pochhammer's symbol.
  This is a preliminary version that does not handle wrong arguments
  properly and may not properly handle the case when the result is
  computed to less than half of double precision.
 
 ***REFERENCES  (NONE)
 ***ROUTINES CALLED  D9LGMC, DFAC, DGAMMA, DGAMR, DLGAMS, DLNREL, XERMSG
 ***REVISION HISTORY  (YYMMDD)
    770701  DATE WRITTEN
    890531  Changed all specific intrinsics to generic.  (WRB)
    890911  Removed unnecessary intrinsics.  (WRB)
    890911  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    900315  CALLs to XERROR changed to CALLs to XERMSG.  (THJ)
    900727  Added EXTERNAL statement.  (WRB)
    END PROLOGUE
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DPOCH1

      DOUBLE PRECISION FUNCTION DPOCH1 (A, X)
 ***BEGIN PROLOGUE  DPOCH1
 ***PURPOSE  Calculate a generalization of Pochhammer's symbol starting
             from first order.
 ***LIBRARY   SLATEC (FNLIB)
 ***CATEGORY  C1, C7A
 ***TYPE      DOUBLE PRECISION (POCH1-S, DPOCH1-D)
 ***KEYWORDS  FIRST ORDER, FNLIB, POCHHAMMER, SPECIAL FUNCTIONS
 ***AUTHOR  Fullerton, W., (LANL)
 ***DESCRIPTION
 
  Evaluate a double precision generalization of Pochhammer's symbol
  for double precision A and X for special situations that require
  especially accurate values when X is small in
         POCH1(A,X) = (POCH(A,X)-1)/X
                    = (GAMMA(A+X)/GAMMA(A) - 1.0)/X .
  This specification is particularly suited for stably computing
  expressions such as
         (GAMMA(A+X)/GAMMA(A) - GAMMA(B+X)/GAMMA(B))/X
              = POCH1(A,X) - POCH1(B,X)
  Note that POCH1(A,0.0) = PSI(A)
 
  When ABS(X) is so small that substantial cancellation will occur if
  the straightforward formula is used, we use an expansion due
  to Fields and discussed by Y. L. Luke, The Special Functions and Their
  Approximations, Vol. 1, Academic Press, 1969, page 34.
 
  The ratio POCH(A,X) = GAMMA(A+X)/GAMMA(A) is written by Luke as
         (A+(X-1)/2)**X * polynomial in (A+(X-1)/2)**(-2) .
  In order to maintain significance in POCH1, we write for positive a
         (A+(X-1)/2)**X = EXP(X*LOG(A+(X-1)/2)) = EXP(Q)
                        = 1.0 + Q*EXPREL(Q) .
  Likewise the polynomial is written
         POLY = 1.0 + X*POLY1(A,X) .
  Thus,
         POCH1(A,X) = (POCH(A,X) - 1) / X
                    = EXPREL(Q)*(Q/X + Q*POLY1(A,X)) + POLY1(A,X)
 
 ***REFERENCES  (NONE)
 ***ROUTINES CALLED  D1MACH, DCOT, DEXPRL, DPOCH, DPSI, XERMSG
 ***REVISION HISTORY  (YYMMDD)
    770801  DATE WRITTEN
    890531  Changed all specific intrinsics to generic.  (WRB)
    890911  Removed unnecessary intrinsics.  (WRB)
    890911  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    900315  CALLs to XERROR changed to CALLs to XERMSG.  (THJ)
    900727  Added EXTERNAL statement.  (WRB)
    END PROLOGUE
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DPOCO

      SUBROUTINE DPOCO (A, LDA, N, RCOND, Z, INFO)
 ***BEGIN PROLOGUE  DPOCO
 ***PURPOSE  Factor a real symmetric positive definite matrix
             and estimate the condition of the matrix.
 ***LIBRARY   SLATEC (LINPACK)
 ***CATEGORY  D2B1B
 ***TYPE      DOUBLE PRECISION (SPOCO-S, DPOCO-D, CPOCO-C)
 ***KEYWORDS  CONDITION NUMBER, LINEAR ALGEBRA, LINPACK,
              MATRIX FACTORIZATION, POSITIVE DEFINITE
 ***AUTHOR  Moler, C. B., (U. of New Mexico)
 ***DESCRIPTION
 
      DPOCO factors a double precision symmetric positive definite
      matrix and estimates the condition of the matrix.
 
      If  RCOND  is not needed, DPOFA is slightly faster.
      To solve  A*X = B , follow DPOCO by DPOSL.
      To compute  INVERSE(A)*C , follow DPOCO by DPOSL.
      To compute  DETERMINANT(A) , follow DPOCO by DPODI.
      To compute  INVERSE(A) , follow DPOCO by DPODI.
 
      On Entry
 
         A       DOUBLE PRECISION(LDA, N)
                 the symmetric matrix to be factored.  Only the
                 diagonal and upper triangle are used.
 
         LDA     INTEGER
                 the leading dimension of the array  A .
 
         N       INTEGER
                 the order of the matrix  A .
 
      On Return
 
         A       an upper triangular matrix  R  so that  A = TRANS(R)*R
                 where  TRANS(R)  is the transpose.
                 The strict lower triangle is unaltered.
                 If  INFO .NE. 0 , the factorization is not complete.
 
         RCOND   DOUBLE PRECISION
                 an estimate of the reciprocal condition of  A .
                 For the system  A*X = B , relative perturbations
                 in  A  and  B  of size  EPSILON  may cause
                 relative perturbations in  X  of size  EPSILON/RCOND .
                 If  RCOND  is so small that the logical expression
                            1.0 + RCOND .EQ. 1.0
                 is true, then  A  may be singular to working
                 precision.  In particular,  RCOND  is zero  if
                 exact singularity is detected or the estimate
                 underflows.  If INFO .NE. 0 , RCOND is unchanged.
 
         Z       DOUBLE PRECISION(N)
                 a work vector whose contents are usually unimportant.
                 If  A  is close to a singular matrix, then  Z  is
                 an approximate null vector in the sense that
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                 NORM(A*Z) = RCOND*NORM(A)*NORM(Z) .
                 If  INFO .NE. 0 , Z  is unchanged.
 
         INFO    INTEGER
                 = 0  for normal return.
                 = K  signals an error condition.  The leading minor
                      of order  K  is not positive definite.
 
 ***REFERENCES  J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
                  Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED  DASUM, DAXPY, DDOT, DPOFA, DSCAL
 ***REVISION HISTORY  (YYMMDD)
    780814  DATE WRITTEN
    890531  Changed all specific intrinsics to generic.  (WRB)
    890831  Modified array declarations.  (WRB)
    890831  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    900326  Removed duplicate information from DESCRIPTION section.
            (WRB)
    920501  Reformatted the REFERENCES section.  (WRB)
    END PROLOGUE
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DPODI

      SUBROUTINE DPODI (A, LDA, N, DET, JOB)
 ***BEGIN PROLOGUE  DPODI
 ***PURPOSE  Compute the determinant and inverse of a certain real
             symmetric positive definite matrix using the factors
             computed by DPOCO, DPOFA or DQRDC.
 ***LIBRARY   SLATEC (LINPACK)
 ***CATEGORY  D2B1B, D3B1B
 ***TYPE      DOUBLE PRECISION (SPODI-S, DPODI-D, CPODI-C)
 ***KEYWORDS  DETERMINANT, INVERSE, LINEAR ALGEBRA, LINPACK, MATRIX,
              POSITIVE DEFINITE
 ***AUTHOR  Moler, C. B., (U. of New Mexico)
 ***DESCRIPTION
 
      DPODI computes the determinant and inverse of a certain
      double precision symmetric positive definite matrix (see below)
      using the factors computed by DPOCO, DPOFA or DQRDC.
 
      On Entry
 
         A       DOUBLE PRECISION(LDA, N)
                 the output  A  from DPOCO or DPOFA
                 or the output  X  from DQRDC.
 
         LDA     INTEGER
                 the leading dimension of the array  A .
 
         N       INTEGER
                 the order of the matrix  A .
 
         JOB     INTEGER
                 = 11   both determinant and inverse.
                 = 01   inverse only.
                 = 10   determinant only.
 
      On Return
 
         A       If DPOCO or DPOFA was used to factor  A , then
                 DPODI produces the upper half of INVERSE(A) .
                 If DQRDC was used to decompose  X , then
                 DPODI produces the upper half of inverse(TRANS(X)*X)
                 where TRANS(X) is the transpose.
                 Elements of  A  below the diagonal are unchanged.
                 If the units digit of JOB is zero,  A  is unchanged.
 
         DET     DOUBLE PRECISION(2)
                 determinant of  A  or of  TRANS(X)*X  if requested.
                 Otherwise not referenced.
                 Determinant = DET(1) * 10.0**DET(2)
                 with  1.0 .LE. DET(1) .LT. 10.0
                 or  DET(1) .EQ. 0.0 .
 
      Error Condition
 
         A division by zero will occur if the input factor contains
         a zero on the diagonal and the inverse is requested.
         It will not occur if the subroutines are called correctly
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         and if DPOCO or DPOFA has set INFO .EQ. 0 .
 
 ***REFERENCES  J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
                  Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED  DAXPY, DSCAL
 ***REVISION HISTORY  (YYMMDD)
    780814  DATE WRITTEN
    890831  Modified array declarations.  (WRB)
    890831  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    900326  Removed duplicate information from DESCRIPTION section.
            (WRB)
    920501  Reformatted the REFERENCES section.  (WRB)
    END PROLOGUE
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DPOFA

      SUBROUTINE DPOFA (A, LDA, N, INFO)
 ***BEGIN PROLOGUE  DPOFA
 ***PURPOSE  Factor a real symmetric positive definite matrix.
 ***LIBRARY   SLATEC (LINPACK)
 ***CATEGORY  D2B1B
 ***TYPE      DOUBLE PRECISION (SPOFA-S, DPOFA-D, CPOFA-C)
 ***KEYWORDS  LINEAR ALGEBRA, LINPACK, MATRIX FACTORIZATION,
              POSITIVE DEFINITE
 ***AUTHOR  Moler, C. B., (U. of New Mexico)
 ***DESCRIPTION
 
      DPOFA factors a double precision symmetric positive definite
      matrix.
 
      DPOFA is usually called by DPOCO, but it can be called
      directly with a saving in time if  RCOND  is not needed.
      (time for DPOCO) = (1 + 18/N)*(time for DPOFA) .
 
      On Entry
 
         A       DOUBLE PRECISION(LDA, N)
                 the symmetric matrix to be factored.  Only the
                 diagonal and upper triangle are used.
 
         LDA     INTEGER
                 the leading dimension of the array  A .
 
         N       INTEGER
                 the order of the matrix  A .
 
      On Return
 
         A       an upper triangular matrix  R  so that  A = TRANS(R)*R
                 where  TRANS(R)  is the transpose.
                 The strict lower triangle is unaltered.
                 If  INFO .NE. 0 , the factorization is not complete.
 
         INFO    INTEGER
                 = 0  for normal return.
                 = K  signals an error condition.  The leading minor
                      of order  K  is not positive definite.
 
 ***REFERENCES  J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
                  Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED  DDOT
 ***REVISION HISTORY  (YYMMDD)
    780814  DATE WRITTEN
    890531  Changed all specific intrinsics to generic.  (WRB)
    890831  Modified array declarations.  (WRB)
    890831  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    900326  Removed duplicate information from DESCRIPTION section.
            (WRB)
    920501  Reformatted the REFERENCES section.  (WRB)
    END PROLOGUE
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DPOFS

      SUBROUTINE DPOFS (A, LDA, N, V, ITASK, IND, WORK)
 ***BEGIN PROLOGUE  DPOFS
 ***PURPOSE  Solve a positive definite symmetric system of linear
             equations.
 ***LIBRARY   SLATEC
 ***CATEGORY  D2B1B
 ***TYPE      DOUBLE PRECISION (SPOFS-S, DPOFS-D, CPOFS-C)
 ***KEYWORDS  HERMITIAN, LINEAR EQUATIONS, POSITIVE DEFINITE, SYMMETRIC
 ***AUTHOR  Voorhees, E. A., (LANL)
 ***DESCRIPTION
 
     Subroutine DPOFS solves a  positive definite symmetric
     NxN system of double precision linear equations using
     LINPACK subroutines DPOCO and DPOSL.  That is, if A is an
     NxN double precision positive definite symmetric matrix and if
     X and B are double precision N-vectors, then DPOFS solves
     the equation
 
                           A*X=B.
 
     The matrix A is first factored into upper and lower tri-
     angular matrices R and R-TRANPOSE.  These factors are used to
     find the solution vector X.  An approximate condition number is
     calculated to provide a rough estimate of the number of
     digits of accuracy in the computed solution.
 
     If the equation A*X=B is to be solved for more than one vector
     B, the factoring of A does not need to be performed again and
     the option only to solve (ITASK .GT. 1) will be faster for
     the succeeding solutions.  In this case, the contents of A,
     LDA, and N must not have been altered by the user following
     factorization (ITASK=1).  IND will not be changed by DPOFS
     in this case.
 
   Argument Description ***
 
     A      DOUBLE PRECISION(LDA,N)
              on entry, the doubly subscripted array with dimension
                (LDA,N) which contains the coefficient matrix.  Only
                the upper triangle, including the diagonal, of the
                coefficient matrix need be entered and will subse-
                quently be referenced and changed by the routine.
              on return, A contains in its upper triangle an upper
                triangular matrix R such that A = (R-TRANPOSE) * R .
     LDA    INTEGER
              the leading dimension of the array A.  LDA must be great-
              er than or equal to N.  (terminal error message IND=-1)
     N      INTEGER
              the order of the matrix A.  N must be greater
              than or equal to 1.  (terminal error message IND=-2)
     V      DOUBLE PRECISION(N)
              on entry, the singly subscripted array(vector) of di-
                mension N which contains the right hand side B of a
                system of simultaneous linear equations  A*X=B.
              on return, V contains the solution vector, X .
     ITASK  INTEGER
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              If ITASK = 1, the matrix A is factored and then the
                linear equation is solved.
              If ITASK .GT. 1, the equation is solved using the existing
                factored matrix A.
              If ITASK .LT. 1, then terminal error message IND=-3 is
                printed.
     IND    INTEGER
              GT. 0  IND is a rough estimate of the number of digits
                      of accuracy in the solution, X.
              LT. 0  See error message corresponding to IND below.
     WORK   DOUBLE PRECISION(N)
              a singly subscripted array of dimension at least N.
 
   Error Messages Printed ***
 
     IND=-1  Terminal   N is greater than LDA.
     IND=-2  Terminal   N is less than 1.
     IND=-3  Terminal   ITASK is less than 1.
     IND=-4  Terminal   The matrix A is computationally singular or
                          is not positive definite.  A solution
                          has not been computed.
     IND=-10 Warning    The solution has no apparent significance.
                          The solution may be inaccurate or the
                          matrix A may be poorly scaled.
 
                Note-  The above Terminal(*fatal*) Error Messages are
                       designed to be handled by XERMSG in which
                       LEVEL=1 (recoverable) and IFLAG=2 .  LEVEL=0
                       for warning error messages from XERMSG.  Unless
                       the user provides otherwise, an error message
                       will be printed followed by an abort.
 
 ***REFERENCES  J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
                  Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED  D1MACH, DPOCO, DPOSL, XERMSG
 ***REVISION HISTORY  (YYMMDD)
    800514  DATE WRITTEN
    890531  Changed all specific intrinsics to generic.  (WRB)
    890831  Modified array declarations.  (WRB)
    890831  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    900315  CALLs to XERROR changed to CALLs to XERMSG.  (THJ)
    900510  Convert XERRWV calls to XERMSG calls.  (RWC)
    920501  Reformatted the REFERENCES section.  (WRB)
    END PROLOGUE
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DPOLCF

      SUBROUTINE DPOLCF (XX, N, X, C, D, WORK)
 ***BEGIN PROLOGUE  DPOLCF
 ***PURPOSE  Compute the coefficients of the polynomial fit (including
             Hermite polynomial fits) produced by a previous call to
             POLINT.
 ***LIBRARY   SLATEC
 ***CATEGORY  E1B
 ***TYPE      DOUBLE PRECISION (POLCOF-S, DPOLCF-D)
 ***KEYWORDS  COEFFICIENTS, POLYNOMIAL
 ***AUTHOR  Huddleston, R. E., (SNLL)
 ***DESCRIPTION
 
      Abstract
         Subroutine DPOLCF computes the coefficients of the polynomial
      fit (including Hermite polynomial fits ) produced by a previous
      call to DPLINT.  The coefficients of the polynomial, expanded
      about XX, are stored in the array D. The expansion is of the form
      P(Z) = D(1) + D(2)*(Z-XX) +D(3)*((Z-XX)**2) + ... +
                                                   D(N)*((Z-XX)**(N-1)).
      Between the call to DPLINT and the call to DPOLCF the variable N
      and the arrays X and C must not be altered.
 
      *****  INPUT PARAMETERS
       *** All TYPE REAL variables are DOUBLE PRECISION ***
 
      XX   - The point about which the Taylor expansion is to be made.
 
      N    - ****
             *     N, X, and C must remain unchanged between the
      X    - *     call to DPLINT and the call to DPOLCF.
      C    - ****
 
      *****  OUTPUT PARAMETER
       *** All TYPE REAL variables are DOUBLE PRECISION ***
 
      D    - The array of coefficients for the Taylor expansion as
             explained in the abstract
 
      *****  STORAGE PARAMETER
 
      WORK - This is an array to provide internal working storage. It
             must be dimensioned by at least 2*N in the calling program.
 
 
      **** Note - There are two methods for evaluating the fit produced
      by DPLINT. You may call DPOLVL to perform the task, or you may
      call DPOLCF to obtain the coefficients of the Taylor expansion and
      then write your own evaluation scheme. Due to the inherent errors
      in the computations of the Taylor expansion from the Newton
      coefficients produced by DPLINT, much more accuracy may be
      expected by calling DPOLVL as opposed to writing your own scheme.
 
 ***REFERENCES  (NONE)
 ***ROUTINES CALLED  (NONE)
 ***REVISION HISTORY  (YYMMDD)
    890213  DATE WRITTEN
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    891006  Cosmetic changes to prologue.  (WRB)
    891024  Corrected KEYWORD section.  (WRB)
    891024  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    END PROLOGUE
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DPOLFT

      SUBROUTINE DPOLFT (N, X, Y, W, MAXDEG, NDEG, EPS, R, IERR, A)
 ***BEGIN PROLOGUE  DPOLFT
 ***PURPOSE  Fit discrete data in a least squares sense by polynomials
             in one variable.
 ***LIBRARY   SLATEC
 ***CATEGORY  K1A1A2
 ***TYPE      DOUBLE PRECISION (POLFIT-S, DPOLFT-D)
 ***KEYWORDS  CURVE FITTING, DATA FITTING, LEAST SQUARES, POLYNOMIAL FIT
 ***AUTHOR  Shampine, L. F., (SNLA)
            Davenport, S. M., (SNLA)
            Huddleston, R. E., (SNLL)
 ***DESCRIPTION
 
      Abstract
 
      Given a collection of points X(I) and a set of values Y(I) which
      correspond to some function or measurement at each of the X(I),
      subroutine  DPOLFT  computes the weighted least-squares polynomial
      fits of all degrees up to some degree either specified by the user
      or determined by the routine.  The fits thus obtained are in
      orthogonal polynomial form.  Subroutine  DP1VLU  may then be
      called to evaluate the fitted polynomials and any of their
      derivatives at any point.  The subroutine  DPCOEF  may be used to
      express the polynomial fits as powers of (X-C) for any specified
      point C.
 
      The parameters for  DPOLFT  are
 
      Input -- All TYPE REAL variables are DOUBLE PRECISION
          N -      the number of data points.  The arrays X, Y and W
                   must be dimensioned at least  N  (N .GE. 1).
          X -      array of values of the independent variable.  These
                   values may appear in any order and need not all be
                   distinct.
          Y -      array of corresponding function values.
          W -      array of positive values to be used as weights.  If
                   W(1) is negative,  DPOLFT  will set all the weights
                   to 1.0, which means unweighted least squares error
                   will be minimized.  To minimize relative error, the
                   user should set the weights to:  W(I) = 1.0/Y(I)**2,
                   I = 1,...,N .
          MAXDEG - maximum degree to be allowed for polynomial fit.
                   MAXDEG  may be any non-negative integer less than  N.
                   Note -- MAXDEG  cannot be equal to  N-1  when a
                   statistical test is to be used for degree selection,
                   i.e., when input value of  EPS  is negative.
          EPS -    specifies the criterion to be used in determining
                   the degree of fit to be computed.
                   (1)  If  EPS  is input negative,  DPOLFT  chooses the
                        degree based on a statistical F test of
                        significance.  One of three possible
                        significance levels will be used:  .01, .05 or
                        .10.  If  EPS=-1.0 , the routine will
                        automatically select one of these levels based
                        on the number of data points and the maximum
                        degree to be considered.  If  EPS  is input as
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                        -.01, -.05, or -.10, a significance level of
                        .01, .05, or .10, respectively, will be used.
                   (2)  If  EPS  is set to 0.,  DPOLFT  computes the
                        polynomials of degrees 0 through  MAXDEG .
                   (3)  If  EPS  is input positive,  EPS  is the RMS
                        error tolerance which must be satisfied by the
                        fitted polynomial.  DPOLFT  will increase the
                        degree of fit until this criterion is met or
                        until the maximum degree is reached.
 
      Output -- All TYPE REAL variables are DOUBLE PRECISION
          NDEG -   degree of the highest degree fit computed.
          EPS -    RMS error of the polynomial of degree  NDEG .
          R -      vector of dimension at least NDEG containing values
                   of the fit of degree  NDEG  at each of the  X(I) .
                   Except when the statistical test is used, these
                   values are more accurate than results from subroutine
                   DP1VLU  normally are.
          IERR -   error flag with the following possible values.
              1 -- indicates normal execution, i.e., either
                   (1)  the input value of  EPS  was negative, and the
                        computed polynomial fit of degree  NDEG
                        satisfies the specified F test, or
                   (2)  the input value of  EPS  was 0., and the fits of
                        all degrees up to  MAXDEG  are complete, or
                   (3)  the input value of  EPS  was positive, and the
                        polynomial of degree  NDEG  satisfies the RMS
                        error requirement.
              2 -- invalid input parameter.  At least one of the input
                   parameters has an illegal value and must be corrected
                   before  DPOLFT  can proceed.  Valid input results
                   when the following restrictions are observed
                        N .GE. 1
                        0 .LE. MAXDEG .LE. N-1  for  EPS .GE. 0.
                        0 .LE. MAXDEG .LE. N-2  for  EPS .LT. 0.
                        W(1)=-1.0  or  W(I) .GT. 0., I=1,...,N .
              3 -- cannot satisfy the RMS error requirement with a
                   polynomial of degree no greater than  MAXDEG .  Best
                   fit found is of degree  MAXDEG .
              4 -- cannot satisfy the test for significance using
                   current value of  MAXDEG .  Statistically, the
                   best fit found is of order  NORD .  (In this case,
                   NDEG will have one of the values:  MAXDEG-2,
                   MAXDEG-1, or MAXDEG).  Using a higher value of
                   MAXDEG  may result in passing the test.
          A -      work and output array having at least 3N+3MAXDEG+3
                   locations
 
      Note - DPOLFT  calculates all fits of degrees up to and including
             NDEG .  Any or all of these fits can be evaluated or
             expressed as powers of (X-C) using  DP1VLU  and  DPCOEF
             after just one call to  DPOLFT .
 
 ***REFERENCES  L. F. Shampine, S. M. Davenport and R. E. Huddleston,
                  Curve fitting by polynomials in one variable, Report
                  SLA-74-0270, Sandia Laboratories, June 1974.
 ***ROUTINES CALLED  DP1VLU, XERMSG
 ***REVISION HISTORY  (YYMMDD)
    740601  DATE WRITTEN
    890531  Changed all specific intrinsics to generic.  (WRB)
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    891006  Cosmetic changes to prologue.  (WRB)
    891006  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    900315  CALLs to XERROR changed to CALLs to XERMSG.  (THJ)
    900911  Added variable YP to DOUBLE PRECISION declaration.  (WRB)
    920501  Reformatted the REFERENCES section.  (WRB)
    920527  Corrected erroneous statements in DESCRIPTION.  (WRB)
    END PROLOGUE
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DPOLVL

      SUBROUTINE DPOLVL (NDER, XX, YFIT, YP, N, X, C, WORK, IERR)
 ***BEGIN PROLOGUE  DPOLVL
 ***PURPOSE  Calculate the value of a polynomial and its first NDER
             derivatives where the polynomial was produced by a previous
             call to DPLINT.
 ***LIBRARY   SLATEC
 ***CATEGORY  E3
 ***TYPE      DOUBLE PRECISION (POLYVL-S, DPOLVL-D)
 ***KEYWORDS  POLYNOMIAL EVALUATION
 ***AUTHOR  Huddleston, R. E., (SNLL)
 ***DESCRIPTION
 
      Abstract -
         Subroutine DPOLVL calculates the value of the polynomial and
      its first NDER derivatives where the polynomial was produced by
      a previous call to DPLINT.
         The variable N and the arrays X and C must not be altered
      between the call to DPLINT and the call to DPOLVL.
 
      ******  Dimensioning Information *******
 
      YP   must be dimensioned by at least NDER
      X    must be dimensioned by at least N (see the abstract )
      C    must be dimensioned by at least N (see the abstract )
      WORK must be dimensioned by at least 2*N if NDER is .GT. 0.
 
      *** Note ***
        If NDER=0, neither YP nor WORK need to be dimensioned variables.
        If NDER=1, YP does not need to be a dimensioned variable.
 
 
      *****  Input parameters
        ***  All TYPE REAL variables are DOUBLE PRECISION ***
 
      NDER - the number of derivatives to be evaluated
 
      XX   - the argument at which the polynomial and its derivatives
             are to be evaluated.
 
      N    - *****
             *       N, X, and C must not be altered between the call
      X    - *       to DPLINT and the call to DPOLVL.
      C    - *****
 
 
      *****  Output Parameters
        ***  All TYPE REAL variables are DOUBLE PRECISION ***
 
      YFIT - the value of the polynomial at XX
 
      YP   - the derivatives of the polynomial at XX.  The derivative of
             order J at XX is stored in  YP(J) , J = 1,...,NDER.
 
      IERR - Output error flag with the following possible values.
           = 1  indicates normal execution
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      ***** Storage Parameters
 
      WORK  = this is an array to provide internal working storage for
              DPOLVL.  It must be dimensioned by at least 2*N if NDER is
              .GT. 0.  If NDER=0, WORK does not need to be a dimensioned
              variable.
 
 ***REFERENCES  L. F. Shampine, S. M. Davenport and R. E. Huddleston,
                  Curve fitting by polynomials in one variable, Report
                  SLA-74-0270, Sandia Laboratories, June 1974.
 ***ROUTINES CALLED  (NONE)
 ***REVISION HISTORY  (YYMMDD)
    740601  DATE WRITTEN
    890531  Changed all specific intrinsics to generic.  (WRB)
    891006  Cosmetic changes to prologue.  (WRB)
    891006  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    920501  Reformatted the REFERENCES section.  (WRB)
    END PROLOGUE
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DPOSL

      SUBROUTINE DPOSL (A, LDA, N, B)
 ***BEGIN PROLOGUE  DPOSL
 ***PURPOSE  Solve the real symmetric positive definite linear system
             using the factors computed by DPOCO or DPOFA.
 ***LIBRARY   SLATEC (LINPACK)
 ***CATEGORY  D2B1B
 ***TYPE      DOUBLE PRECISION (SPOSL-S, DPOSL-D, CPOSL-C)
 ***KEYWORDS  LINEAR ALGEBRA, LINPACK, MATRIX, POSITIVE DEFINITE, SOLVE
 ***AUTHOR  Moler, C. B., (U. of New Mexico)
 ***DESCRIPTION
 
      DPOSL solves the double precision symmetric positive definite
      system A * X = B
      using the factors computed by DPOCO or DPOFA.
 
      On Entry
 
         A       DOUBLE PRECISION(LDA, N)
                 the output from DPOCO or DPOFA.
 
         LDA     INTEGER
                 the leading dimension of the array  A .
 
         N       INTEGER
                 the order of the matrix  A .
 
         B       DOUBLE PRECISION(N)
                 the right hand side vector.
 
      On Return
 
         B       the solution vector  X .
 
      Error Condition
 
         A division by zero will occur if the input factor contains
         a zero on the diagonal.  Technically this indicates
         singularity, but it is usually caused by improper subroutine
         arguments.  It will not occur if the subroutines are called
         correctly and  INFO .EQ. 0 .
 
      To compute  INVERSE(A) * C  where  C  is a matrix
      with  P  columns
            CALL DPOCO(A,LDA,N,RCOND,Z,INFO)
            IF (RCOND is too small .OR. INFO .NE. 0) GO TO ...
            DO 10 J = 1, P
               CALL DPOSL(A,LDA,N,C(1,J))
         10 CONTINUE
 
 ***REFERENCES  J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
                  Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED  DAXPY, DDOT
 ***REVISION HISTORY  (YYMMDD)
    780814  DATE WRITTEN
    890831  Modified array declarations.  (WRB)
    890831  REVISION DATE from Version 3.2
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    891214  Prologue converted to Version 4.0 format.  (BAB)
    900326  Removed duplicate information from DESCRIPTION section.
            (WRB)
    920501  Reformatted the REFERENCES section.  (WRB)
    END PROLOGUE
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DPPCO

      SUBROUTINE DPPCO (AP, N, RCOND, Z, INFO)
 ***BEGIN PROLOGUE  DPPCO
 ***PURPOSE  Factor a symmetric positive definite matrix stored in
             packed form and estimate the condition number of the
             matrix.
 ***LIBRARY   SLATEC (LINPACK)
 ***CATEGORY  D2B1B
 ***TYPE      DOUBLE PRECISION (SPPCO-S, DPPCO-D, CPPCO-C)
 ***KEYWORDS  CONDITION NUMBER, LINEAR ALGEBRA, LINPACK,
              MATRIX FACTORIZATION, PACKED, POSITIVE DEFINITE
 ***AUTHOR  Moler, C. B., (U. of New Mexico)
 ***DESCRIPTION
 
      DPPCO factors a double precision symmetric positive definite
      matrix stored in packed form
      and estimates the condition of the matrix.
 
      If  RCOND  is not needed, DPPFA is slightly faster.
      To solve  A*X = B , follow DPPCO by DPPSL.
      To compute  INVERSE(A)*C , follow DPPCO by DPPSL.
      To compute  DETERMINANT(A) , follow DPPCO by DPPDI.
      To compute  INVERSE(A) , follow DPPCO by DPPDI.
 
      On Entry
 
         AP      DOUBLE PRECISION (N*(N+1)/2)
                 the packed form of a symmetric matrix  A .  The
                 columns of the upper triangle are stored sequentially
                 in a one-dimensional array of length  N*(N+1)/2 .
                 See comments below for details.
 
         N       INTEGER
                 the order of the matrix  A .
 
      On Return
 
         AP      an upper triangular matrix  R , stored in packed
                 form, so that  A = TRANS(R)*R .
                 If  INFO .NE. 0 , the factorization is not complete.
 
         RCOND   DOUBLE PRECISION
                 an estimate of the reciprocal condition of  A .
                 For the system  A*X = B , relative perturbations
                 in  A  and  B  of size  EPSILON  may cause
                 relative perturbations in  X  of size  EPSILON/RCOND .
                 If  RCOND  is so small that the logical expression
                            1.0 + RCOND .EQ. 1.0
                 is true, then  A  may be singular to working
                 precision.  In particular,  RCOND  is zero  if
                 exact singularity is detected or the estimate
                 underflows.  If INFO .NE. 0 , RCOND is unchanged.
 
         Z       DOUBLE PRECISION(N)
                 a work vector whose contents are usually unimportant.
                 If  A  is singular to working precision, then  Z  is
                 an approximate null vector in the sense that
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                 NORM(A*Z) = RCOND*NORM(A)*NORM(Z) .
                 If  INFO .NE. 0 , Z  is unchanged.
 
         INFO    INTEGER
                 = 0  for normal return.
                 = K  signals an error condition.  The leading minor
                      of order  K  is not positive definite.
 
      Packed Storage
 
           The following program segment will pack the upper
           triangle of a symmetric matrix.
 
                 K = 0
                 DO 20 J = 1, N
                    DO 10 I = 1, J
                       K = K + 1
                       AP(K) = A(I,J)
              10    CONTINUE
              20 CONTINUE
 
 ***REFERENCES  J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
                  Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED  DASUM, DAXPY, DDOT, DPPFA, DSCAL
 ***REVISION HISTORY  (YYMMDD)
    780814  DATE WRITTEN
    890531  Changed all specific intrinsics to generic.  (WRB)
    890831  Modified array declarations.  (WRB)
    890831  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    900326  Removed duplicate information from DESCRIPTION section.
            (WRB)
    920501  Reformatted the REFERENCES section.  (WRB)
    END PROLOGUE
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DPPDI

      SUBROUTINE DPPDI (AP, N, DET, JOB)
 ***BEGIN PROLOGUE  DPPDI
 ***PURPOSE  Compute the determinant and inverse of a real symmetric
             positive definite matrix using factors from DPPCO or DPPFA.
 ***LIBRARY   SLATEC (LINPACK)
 ***CATEGORY  D2B1B, D3B1B
 ***TYPE      DOUBLE PRECISION (SPPDI-S, DPPDI-D, CPPDI-C)
 ***KEYWORDS  DETERMINANT, INVERSE, LINEAR ALGEBRA, LINPACK, MATRIX,
              PACKED, POSITIVE DEFINITE
 ***AUTHOR  Moler, C. B., (U. of New Mexico)
 ***DESCRIPTION
 
      DPPDI computes the determinant and inverse
      of a double precision symmetric positive definite matrix
      using the factors computed by DPPCO or DPPFA .
 
      On Entry
 
         AP      DOUBLE PRECISION (N*(N+1)/2)
                 the output from DPPCO or DPPFA.
 
         N       INTEGER
                 the order of the matrix  A .
 
         JOB     INTEGER
                 = 11   both determinant and inverse.
                 = 01   inverse only.
                 = 10   determinant only.
 
      On Return
 
         AP      the upper triangular half of the inverse .
                 The strict lower triangle is unaltered.
 
         DET     DOUBLE PRECISION(2)
                 determinant of original matrix if requested.
                 Otherwise not referenced.
                 DETERMINANT = DET(1) * 10.0**DET(2)
                 with  1.0 .LE. DET(1) .LT. 10.0
                 or  DET(1) .EQ. 0.0 .
 
      Error Condition
 
         A division by zero will occur if the input factor contains
         a zero on the diagonal and the inverse is requested.
         It will not occur if the subroutines are called correctly
         and if DPOCO or DPOFA has set INFO .EQ. 0 .
 
 ***REFERENCES  J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
                  Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED  DAXPY, DSCAL
 ***REVISION HISTORY  (YYMMDD)
    780814  DATE WRITTEN
    890831  Modified array declarations.  (WRB)
    890831  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
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    900326  Removed duplicate information from DESCRIPTION section.
            (WRB)
    920501  Reformatted the REFERENCES section.  (WRB)
    END PROLOGUE
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DPPERM

      SUBROUTINE DPPERM (DX, N, IPERM, IER)
 ***BEGIN PROLOGUE  DPPERM
 ***PURPOSE  Rearrange a given array according to a prescribed
             permutation vector.
 ***LIBRARY   SLATEC
 ***CATEGORY  N8
 ***TYPE      DOUBLE PRECISION (SPPERM-S, DPPERM-D, IPPERM-I, HPPERM-H)
 ***KEYWORDS  PERMUTATION, REARRANGEMENT
 ***AUTHOR  McClain, M. A., (NIST)
            Rhoads, G. S., (NBS)
 ***DESCRIPTION
 
          DPPERM rearranges the data vector DX according to the
          permutation IPERM: DX(I) <--- DX(IPERM(I)).  IPERM could come
          from one of the sorting routines IPSORT, SPSORT, DPSORT or
          HPSORT.
 
      Description of Parameters
          DX - input/output -- double precision array of values to be
                    rearranged.
          N - input -- number of values in double precision array DX.
          IPERM - input -- permutation vector.
          IER - output -- error indicator:
              =  0  if no error,
              =  1  if N is zero or negative,
              =  2  if IPERM is not a valid permutation.
 
 ***REFERENCES  (NONE)
 ***ROUTINES CALLED  XERMSG
 ***REVISION HISTORY  (YYMMDD)
    901004  DATE WRITTEN
    920507  Modified by M. McClain to revise prologue text.
    END PROLOGUE
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DPPFA

      SUBROUTINE DPPFA (AP, N, INFO)
 ***BEGIN PROLOGUE  DPPFA
 ***PURPOSE  Factor a real symmetric positive definite matrix stored in
             packed form.
 ***LIBRARY   SLATEC (LINPACK)
 ***CATEGORY  D2B1B
 ***TYPE      DOUBLE PRECISION (SPPFA-S, DPPFA-D, CPPFA-C)
 ***KEYWORDS  LINEAR ALGEBRA, LINPACK, MATRIX FACTORIZATION, PACKED,
              POSITIVE DEFINITE
 ***AUTHOR  Moler, C. B., (U. of New Mexico)
 ***DESCRIPTION
 
      DPPFA factors a double precision symmetric positive definite
      matrix stored in packed form.
 
      DPPFA is usually called by DPPCO, but it can be called
      directly with a saving in time if  RCOND  is not needed.
      (time for DPPCO) = (1 + 18/N)*(time for DPPFA) .
 
      On Entry
 
         AP      DOUBLE PRECISION (N*(N+1)/2)
                 the packed form of a symmetric matrix  A .  The
                 columns of the upper triangle are stored sequentially
                 in a one-dimensional array of length  N*(N+1)/2 .
                 See comments below for details.
 
         N       INTEGER
                 the order of the matrix  A .
 
      On Return
 
         AP      an upper triangular matrix  R , stored in packed
                 form, so that  A = TRANS(R)*R .
 
         INFO    INTEGER
                 = 0  for normal return.
                 = K  if the leading minor of order  K  is not
                      positive definite.
 
 
      Packed Storage
 
           The following program segment will pack the upper
           triangle of a symmetric matrix.
 
                 K = 0
                 DO 20 J = 1, N
                    DO 10 I = 1, J
                       K = K + 1
                       AP(K) = A(I,J)
              10    CONTINUE
              20 CONTINUE
 
 ***REFERENCES  J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
                  Stewart, LINPACK Users' Guide, SIAM, 1979.
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 ***ROUTINES CALLED  DDOT
 ***REVISION HISTORY  (YYMMDD)
    780814  DATE WRITTEN
    890531  Changed all specific intrinsics to generic.  (WRB)
    890831  Modified array declarations.  (WRB)
    890831  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    900326  Removed duplicate information from DESCRIPTION section.
            (WRB)
    920501  Reformatted the REFERENCES section.  (WRB)
    END PROLOGUE
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DPPQAD

      SUBROUTINE DPPQAD (LDC, C, XI, LXI, K, X1, X2, PQUAD)
 ***BEGIN PROLOGUE  DPPQAD
 ***PURPOSE  Compute the integral on (X1,X2) of a K-th order B-spline
             using the piecewise polynomial (PP) representation.
 ***LIBRARY   SLATEC
 ***CATEGORY  H2A2A1, E3, K6
 ***TYPE      DOUBLE PRECISION (PPQAD-S, DPPQAD-D)
 ***KEYWORDS  B-SPLINE, DATA FITTING, INTERPOLATION, QUADRATURE, SPLINES
 ***AUTHOR  Amos, D. E., (SNLA)
 ***DESCRIPTION
 
      Abstract    **** a double precision routine ****
          DPPQAD computes the integral on (X1,X2) of a K-th order
          B-spline using the piecewise polynomial representation
          (C,XI,LXI,K).  Here the Taylor expansion about the left
          end point XI(J) of the J-th interval is integrated and
          evaluated on subintervals of (X1,X2) which are formed by
          included break points.  Integration outside (XI(1),XI(LXI+1))
          is permitted.
 
      Description of Arguments
          Input      C,XI,X1,X2 are double precision
            LDC    - leading dimension of matrix C, LDC .GE. K
            C(I,J) - right Taylor derivatives at XI(J), I=1,K , J=1,LXI
            XI(*)  - break point array of length LXI+1
            LXI    - number of polynomial pieces
            K      - order of B-spline, K .GE. 1
            X1,X2  - end points of quadrature interval, normally in
                     XI(1) .LE. X .LE. XI(LXI+1)
 
          Output     PQUAD is double precision
            PQUAD  - integral of the PP representation over (X1,X2)
 
      Error Conditions
          Improper input is a fatal error
 
 ***REFERENCES  D. E. Amos, Quadrature subroutines for splines and
                  B-splines, Report SAND79-1825, Sandia Laboratories,
                  December 1979.
 ***ROUTINES CALLED  DINTRV, XERMSG
 ***REVISION HISTORY  (YYMMDD)
    800901  DATE WRITTEN
    890531  Changed all specific intrinsics to generic.  (WRB)
    890911  Removed unnecessary intrinsics.  (WRB)
    890911  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    900315  CALLs to XERROR changed to CALLs to XERMSG.  (THJ)
    920501  Reformatted the REFERENCES section.  (WRB)
    END PROLOGUE
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DPPSL

      SUBROUTINE DPPSL (AP, N, B)
 ***BEGIN PROLOGUE  DPPSL
 ***PURPOSE  Solve the real symmetric positive definite system using
             the factors computed by DPPCO or DPPFA.
 ***LIBRARY   SLATEC (LINPACK)
 ***CATEGORY  D2B1B
 ***TYPE      DOUBLE PRECISION (SPPSL-S, DPPSL-D, CPPSL-C)
 ***KEYWORDS  LINEAR ALGEBRA, LINPACK, MATRIX, PACKED,
              POSITIVE DEFINITE, SOLVE
 ***AUTHOR  Moler, C. B., (U. of New Mexico)
 ***DESCRIPTION
 
      DPPSL solves the double precision symmetric positive definite
      system A * X = B
      using the factors computed by DPPCO or DPPFA.
 
      On Entry
 
         AP      DOUBLE PRECISION (N*(N+1)/2)
                 the output from DPPCO or DPPFA.
 
         N       INTEGER
                 the order of the matrix  A .
 
         B       DOUBLE PRECISION(N)
                 the right hand side vector.
 
      On Return
 
         B       the solution vector  X .
 
      Error Condition
 
         A division by zero will occur if the input factor contains
         a zero on the diagonal.  Technically this indicates
         singularity, but it is usually caused by improper subroutine
         arguments.  It will not occur if the subroutines are called
         correctly and  INFO .EQ. 0 .
 
      To compute  INVERSE(A) * C  where  C  is a matrix
      with  P  columns
            CALL DPPCO(AP,N,RCOND,Z,INFO)
            IF (RCOND is too small .OR. INFO .NE. 0) GO TO ...
            DO 10 J = 1, P
               CALL DPPSL(AP,N,C(1,J))
         10 CONTINUE
 
 ***REFERENCES  J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
                  Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED  DAXPY, DDOT
 ***REVISION HISTORY  (YYMMDD)
    780814  DATE WRITTEN
    890831  Modified array declarations.  (WRB)
    890831  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    900326  Removed duplicate information from DESCRIPTION section.
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            (WRB)
    920501  Reformatted the REFERENCES section.  (WRB)
    END PROLOGUE
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DPPVAL

      DOUBLE PRECISION FUNCTION DPPVAL (LDC, C, XI, LXI, K, IDERIV, X,
     +   INPPV)
 ***BEGIN PROLOGUE  DPPVAL
 ***PURPOSE  Calculate the value of the IDERIV-th derivative of the
             B-spline from the PP-representation.
 ***LIBRARY   SLATEC
 ***CATEGORY  E3, K6
 ***TYPE      DOUBLE PRECISION (PPVAL-S, DPPVAL-D)
 ***KEYWORDS  B-SPLINE, DATA FITTING, INTERPOLATION, SPLINES
 ***AUTHOR  Amos, D. E., (SNLA)
 ***DESCRIPTION
 
      Written by Carl de Boor and modified by D. E. Amos
 
      Abstract    **** a double precision routine ****
          DPPVAL is the PPVALU function of the reference.
 
          DPPVAL calculates (at X) the value of the IDERIV-th
          derivative of the B-spline from the PP-representation
          (C,XI,LXI,K).  The Taylor expansion about XI(J) for X in
          the interval XI(J) .LE. X .LT. XI(J+1) is evaluated, J=1,LXI.
          Right limiting values at X=XI(J) are obtained.  DPPVAL will
          extrapolate beyond XI(1) and XI(LXI+1).
 
          To obtain left limiting values (left derivatives) at XI(J)
          replace LXI by J-1 and set X=XI(J),J=2,LXI+1.
 
      Description of Arguments
 
          Input      C,XI,X are double precision
           LDC     - leading dimension of C matrix, LDC .GE. K
           C       - matrix of dimension at least (K,LXI) containing
                     right derivatives at break points XI(*).
           XI      - break point vector of length LXI+1
           LXI     - number of polynomial pieces
           K       - order of B-spline, K .GE. 1
           IDERIV  - order of the derivative, 0 .LE. IDERIV .LE. K-1
                     IDERIV=0 gives the B-spline value
           X       - argument, XI(1) .LE. X .LE. XI(LXI+1)
           INPPV   - an initialization parameter which must be set
                     to 1 the first time DPPVAL is called.
 
          Output     DPPVAL is double precision
           INPPV   - INPPV contains information for efficient process-
                     ing after the initial call and INPPV must not
                     be changed by the user.  Distinct splines require
                     distinct INPPV parameters.
           DPPVAL  - value of the IDERIV-th derivative at X
 
      Error Conditions
          Improper input is a fatal error
 
 ***REFERENCES  Carl de Boor, Package for calculating with B-splines,
                  SIAM Journal on Numerical Analysis 14, 3 (June 1977),
                  pp. 441-472.
 ***ROUTINES CALLED  DINTRV, XERMSG
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 ***REVISION HISTORY  (YYMMDD)
    800901  DATE WRITTEN
    890831  Modified array declarations.  (WRB)
    890831  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    900315  CALLs to XERROR changed to CALLs to XERMSG.  (THJ)
    920501  Reformatted the REFERENCES section.  (WRB)
    END PROLOGUE
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DPSI

      DOUBLE PRECISION FUNCTION DPSI (X)
 ***BEGIN PROLOGUE  DPSI
 ***PURPOSE  Compute the Psi (or Digamma) function.
 ***LIBRARY   SLATEC (FNLIB)
 ***CATEGORY  C7C
 ***TYPE      DOUBLE PRECISION (PSI-S, DPSI-D, CPSI-C)
 ***KEYWORDS  DIGAMMA FUNCTION, FNLIB, PSI FUNCTION, SPECIAL FUNCTIONS
 ***AUTHOR  Fullerton, W., (LANL)
 ***DESCRIPTION
 
  DPSI calculates the double precision Psi (or Digamma) function for
  double precision argument X.  PSI(X) is the logarithmic derivative
  of the Gamma function of X.
 
  Series for PSI        on the interval  0.          to  1.00000E+00
                                         with weighted error   5.79E-32
                                          log weighted error  31.24
                                significant figures required  30.93
                                     decimal places required  32.05
 
 
  Series for APSI       on the interval  0.          to  1.00000E-02
                                         with weighted error   7.75E-33
                                          log weighted error  32.11
                                significant figures required  28.88
                                     decimal places required  32.71
 
 ***REFERENCES  (NONE)
 ***ROUTINES CALLED  D1MACH, DCOT, DCSEVL, INITDS, XERMSG
 ***REVISION HISTORY  (YYMMDD)
    770601  DATE WRITTEN
    890531  Changed all specific intrinsics to generic.  (WRB)
    890911  Removed unnecessary intrinsics.  (WRB)
    890911  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    900315  CALLs to XERROR changed to CALLs to XERMSG.  (THJ)
    900727  Added EXTERNAL statement.  (WRB)
    920618  Removed space from variable name.  (RWC, WRB)
    END PROLOGUE
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DPSIFN

      SUBROUTINE DPSIFN (X, N, KODE, M, ANS, NZ, IERR)
 ***BEGIN PROLOGUE  DPSIFN
 ***PURPOSE  Compute derivatives of the Psi function.
 ***LIBRARY   SLATEC
 ***CATEGORY  C7C
 ***TYPE      DOUBLE PRECISION (PSIFN-S, DPSIFN-D)
 ***KEYWORDS  DERIVATIVES OF THE GAMMA FUNCTION, POLYGAMMA FUNCTION,
              PSI FUNCTION
 ***AUTHOR  Amos, D. E., (SNLA)
 ***DESCRIPTION
 
          The following definitions are used in DPSIFN:
 
       Definition 1
          PSI(X) = d/dx (ln(GAMMA(X)), the first derivative of
                   the log GAMMA function.
       Definition 2
                      K   K
          PSI(K,X) = d /dx (PSI(X)), the K-th derivative of PSI(X).
    ___________________________________________________________________
       DPSIFN computes a sequence of SCALED derivatives of
       the PSI function; i.e. for fixed X and M it computes
       the M-member sequence
 
                     ((-1)**(K+1)/GAMMA(K+1))*PSI(K,X)
                        for K = N,...,N+M-1
 
       where PSI(K,X) is as defined above.   For KODE=1, DPSIFN returns
       the scaled derivatives as described.  KODE=2 is operative only
       when K=0 and in that case DPSIFN returns -PSI(X) + LN(X).  That
       is, the logarithmic behavior for large X is removed when KODE=2
       and K=0.  When sums or differences of PSI functions are computed
       the logarithmic terms can be combined analytically and computed
       separately to help retain significant digits.
 
          Note that CALL DPSIFN(X,0,1,1,ANS) results in
                    ANS = -PSI(X)
 
      Input      X is DOUBLE PRECISION
            X      - Argument, X .gt. 0.0D0
            N      - First member of the sequence, 0 .le. N .le. 100
                     N=0 gives ANS(1) = -PSI(X)       for KODE=1
                                        -PSI(X)+LN(X) for KODE=2
            KODE   - Selection parameter
                     KODE=1 returns scaled derivatives of the PSI
                     function.
                     KODE=2 returns scaled derivatives of the PSI
                     function EXCEPT when N=0. In this case,
                     ANS(1) = -PSI(X) + LN(X) is returned.
            M      - Number of members of the sequence, M.ge.1
 
     Output     ANS is DOUBLE PRECISION
            ANS    - A vector of length at least M whose first M
                     components contain the sequence of derivatives
                     scaled according to KODE.
            NZ     - Underflow flag
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                     NZ.eq.0, A normal return
                     NZ.ne.0, Underflow, last NZ components of ANS are
                              set to zero, ANS(M-K+1)=0.0, K=1,...,NZ
            IERR   - Error flag
                     IERR=0, A normal return, computation completed
                     IERR=1, Input error,     no computation
                     IERR=2, Overflow,        X too small or N+M-1 too
                             large or both
                     IERR=3, Error,           N too large. Dimensioned
                             array TRMR(NMAX) is not large enough for N
 
          The nominal computational accuracy is the maximum of unit
          roundoff (=D1MACH(4)) and 1.0D-18 since critical constants
          are given to only 18 digits.
 
          PSIFN is the single precision version of DPSIFN.
 
  *Long Description:
 
          The basic method of evaluation is the asymptotic expansion
          for large X.ge.XMIN followed by backward recursion on a two
          term recursion relation
 
                   W(X+1) + X**(-N-1) = W(X).
 
          This is supplemented by a series
 
                   SUM( (X+K)**(-N-1) , K=0,1,2,... )
 
          which converges rapidly for large N. Both XMIN and the
          number of terms of the series are calculated from the unit
          roundoff of the machine environment.
 
 ***REFERENCES  Handbook of Mathematical Functions, National Bureau
                  of Standards Applied Mathematics Series 55, edited
                  by M. Abramowitz and I. A. Stegun, equations 6.3.5,
                  6.3.18, 6.4.6, 6.4.9 and 6.4.10, pp.258-260, 1964.
                D. E. Amos, A portable Fortran subroutine for
                  derivatives of the Psi function, Algorithm 610, ACM
                  Transactions on Mathematical Software 9, 4 (1983),
                  pp. 494-502.
 ***ROUTINES CALLED  D1MACH, I1MACH
 ***REVISION HISTORY  (YYMMDD)
    820601  DATE WRITTEN
    890531  Changed all specific intrinsics to generic.  (WRB)
    890911  Removed unnecessary intrinsics.  (WRB)
    891006  Cosmetic changes to prologue.  (WRB)
    891006  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    920501  Reformatted the REFERENCES section.  (WRB)
    END PROLOGUE
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DPSORT

      SUBROUTINE DPSORT (DX, N, IPERM, KFLAG, IER)
 ***BEGIN PROLOGUE  DPSORT
 ***PURPOSE  Return the permutation vector generated by sorting a given
             array and, optionally, rearrange the elements of the array.
             The array may be sorted in increasing or decreasing order.
             A slightly modified quicksort algorithm is used.
 ***LIBRARY   SLATEC
 ***CATEGORY  N6A1B, N6A2B
 ***TYPE      DOUBLE PRECISION (SPSORT-S, DPSORT-D, IPSORT-I, HPSORT-H)
 ***KEYWORDS  NUMBER SORTING, PASSIVE SORTING, SINGLETON QUICKSORT, SORT
 ***AUTHOR  Jones, R. E., (SNLA)
            Rhoads, G. S., (NBS)
            Wisniewski, J. A., (SNLA)
 ***DESCRIPTION
 
    DPSORT returns the permutation vector IPERM generated by sorting
    the array DX and, optionally, rearranges the values in DX.  DX may
    be sorted in increasing or decreasing order.  A slightly modified
    quicksort algorithm is used.
 
    IPERM is such that DX(IPERM(I)) is the Ith value in the
    rearrangement of DX.  IPERM may be applied to another array by
    calling IPPERM, SPPERM, DPPERM or HPPERM.
 
    The main difference between DPSORT and its active sorting equivalent
    DSORT is that the data are referenced indirectly rather than
    directly.  Therefore, DPSORT should require approximately twice as
    long to execute as DSORT.  However, DPSORT is more general.
 
    Description of Parameters
       DX - input/output -- double precision array of values to be
            sorted.  If ABS(KFLAG) = 2, then the values in DX will be
            rearranged on output; otherwise, they are unchanged.
       N  - input -- number of values in array DX to be sorted.
       IPERM - output -- permutation array such that IPERM(I) is the
               index of the value in the original order of the
               DX array that is in the Ith location in the sorted
               order.
       KFLAG - input -- control parameter:
             =  2  means return the permutation vector resulting from
                   sorting DX in increasing order and sort DX also.
             =  1  means return the permutation vector resulting from
                   sorting DX in increasing order and do not sort DX.
             = -1  means return the permutation vector resulting from
                   sorting DX in decreasing order and do not sort DX.
             = -2  means return the permutation vector resulting from
                   sorting DX in decreasing order and sort DX also.
       IER - output -- error indicator:
           =  0  if no error,
           =  1  if N is zero or negative,
           =  2  if KFLAG is not 2, 1, -1, or -2.
 ***REFERENCES  R. C. Singleton, Algorithm 347, An efficient algorithm
                  for sorting with minimal storage, Communications of
                  the ACM, 12, 3 (1969), pp. 185-187.
 ***ROUTINES CALLED  XERMSG
 ***REVISION HISTORY  (YYMMDD)
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    761101  DATE WRITTEN
    761118  Modified by John A. Wisniewski to use the Singleton
            quicksort algorithm.
    870423  Modified by Gregory S. Rhoads for passive sorting with the
            option for the rearrangement of the original data.
    890619  Double precision version of SPSORT created by D. W. Lozier.
    890620  Algorithm for rearranging the data vector corrected by R.
            Boisvert.
    890622  Prologue upgraded to Version 4.0 style by D. Lozier.
    891128  Error when KFLAG.LT.0 and N=1 corrected by R. Boisvert.
    920507  Modified by M. McClain to revise prologue text.
    920818  Declarations section rebuilt and code restructured to use
            IF-THEN-ELSE-ENDIF.  (SMR, WRB)
    END PROLOGUE
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DPTSL

      SUBROUTINE DPTSL (N, D, E, B)
 ***BEGIN PROLOGUE  DPTSL
 ***PURPOSE  Solve a positive definite tridiagonal linear system.
 ***LIBRARY   SLATEC (LINPACK)
 ***CATEGORY  D2B2A
 ***TYPE      DOUBLE PRECISION (SPTSL-S, DPTSL-D, CPTSL-C)
 ***KEYWORDS  LINEAR ALGEBRA, LINPACK, MATRIX, POSITIVE DEFINITE, SOLVE,
              TRIDIAGONAL
 ***AUTHOR  Dongarra, J., (ANL)
 ***DESCRIPTION
 
      DPTSL, given a positive definite symmetric tridiagonal matrix and
      a right hand side, will find the solution.
 
      On Entry
 
         N        INTEGER
                  is the order of the tridiagonal matrix.
 
         D        DOUBLE PRECISION(N)
                  is the diagonal of the tridiagonal matrix.
                  On output D is destroyed.
 
         E        DOUBLE PRECISION(N)
                  is the offdiagonal of the tridiagonal matrix.
                  E(1) through E(N-1) should contain the
                  offdiagonal.
 
         B        DOUBLE PRECISION(N)
                  is the right hand side vector.
 
      On Return
 
         B        contains the solution.
 
 ***REFERENCES  J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
                  Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED  (NONE)
 ***REVISION HISTORY  (YYMMDD)
    780814  DATE WRITTEN
    890505  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    900326  Removed duplicate information from DESCRIPTION section.
            (WRB)
    920501  Reformatted the REFERENCES section.  (WRB)
    END PROLOGUE
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DQAG

      SUBROUTINE DQAG (F, A, B, EPSABS, EPSREL, KEY, RESULT, ABSERR,
     +   NEVAL, IER, LIMIT, LENW, LAST, IWORK, WORK)
 ***BEGIN PROLOGUE  DQAG
 ***PURPOSE  The routine calculates an approximation result to a given
             definite integral I = integral of F over (A,B),
             hopefully satisfying following claim for accuracy
             ABS(I-RESULT)LE.MAX(EPSABS,EPSREL*ABS(I)).
 ***LIBRARY   SLATEC (QUADPACK)
 ***CATEGORY  H2A1A1
 ***TYPE      DOUBLE PRECISION (QAG-S, DQAG-D)
 ***KEYWORDS  AUTOMATIC INTEGRATOR, GAUSS-KRONROD RULES,
              GENERAL-PURPOSE, GLOBALLY ADAPTIVE, INTEGRAND EXAMINATOR,
              QUADPACK, QUADRATURE
 ***AUTHOR  Piessens, Robert
              Applied Mathematics and Programming Division
              K. U. Leuven
            de Doncker, Elise
              Applied Mathematics and Programming Division
              K. U. Leuven
 ***DESCRIPTION
 
         Computation of a definite integral
         Standard fortran subroutine
         Double precision version
 
             F      - Double precision
                      Function subprogram defining the integrand
                      Function F(X). The actual name for F needs to be
                      Declared E X T E R N A L in the driver program.
 
             A      - Double precision
                      Lower limit of integration
 
             B      - Double precision
                      Upper limit of integration
 
             EPSABS - Double precision
                      Absolute accuracy requested
             EPSREL - Double precision
                      Relative accuracy requested
                      If  EPSABS.LE.0
                      And EPSREL.LT.MAX(50*REL.MACH.ACC.,0.5D-28),
                      The routine will end with IER = 6.
 
             KEY    - Integer
                      Key for choice of local integration rule
                      A GAUSS-KRONROD PAIR is used with
                        7 - 15 POINTS If KEY.LT.2,
                       10 - 21 POINTS If KEY = 2,
                       15 - 31 POINTS If KEY = 3,
                       20 - 41 POINTS If KEY = 4,
                       25 - 51 POINTS If KEY = 5,
                       30 - 61 POINTS If KEY.GT.5.
 
          ON RETURN
             RESULT - Double precision
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                      Approximation to the integral
 
             ABSERR - Double precision
                      Estimate of the modulus of the absolute error,
                      Which should EQUAL or EXCEED ABS(I-RESULT)
 
             NEVAL  - Integer
                      Number of integrand evaluations
 
             IER    - Integer
                      IER = 0 Normal and reliable termination of the
                              routine. It is assumed that the requested
                              accuracy has been achieved.
                      IER.GT.0 Abnormal termination of the routine
                              The estimates for RESULT and ERROR are
                              Less reliable. It is assumed that the
                              requested accuracy has not been achieved.
                       ERROR MESSAGES
                      IER = 1 Maximum number of subdivisions allowed
                              has been achieved. One can allow more
                              subdivisions by increasing the value of
                              LIMIT (and taking the according dimension
                              adjustments into account). HOWEVER, If
                              this yield no improvement it is advised
                              to analyze the integrand in order to
                              determine the integration difficulties.
                              If the position of a local difficulty can
                              be determined (I.E. SINGULARITY,
                              DISCONTINUITY WITHIN THE INTERVAL) One
                              will probably gain from splitting up the
                              interval at this point and calling the
                              INTEGRATOR on the SUBRANGES. If possible,
                              AN APPROPRIATE SPECIAL-PURPOSE INTEGRATOR
                              should be used which is designed for
                              handling the type of difficulty involved.
                          = 2 The occurrence of roundoff error is
                              detected, which prevents the requested
                              tolerance from being achieved.
                          = 3 Extremely bad integrand behaviour occurs
                              at some points of the integration
                              interval.
                          = 6 The input is invalid, because
                              (EPSABS.LE.0 AND
                               EPSREL.LT.MAX(50*REL.MACH.ACC.,0.5D-28))
                              OR LIMIT.LT.1 OR LENW.LT.LIMIT*4.
                              RESULT, ABSERR, NEVAL, LAST are set
                              to zero.
                              EXCEPT when LENW is invalid, IWORK(1),
                              WORK(LIMIT*2+1) and WORK(LIMIT*3+1) are
                              set to zero, WORK(1) is set to A and
                              WORK(LIMIT+1) to B.
 
          DIMENSIONING PARAMETERS
             LIMIT - Integer
                     Dimensioning parameter for IWORK
                     Limit determines the maximum number of subintervals
                     in the partition of the given integration interval
                     (A,B), LIMIT.GE.1.
                     If LIMIT.LT.1, the routine will end with IER = 6.
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             LENW  - Integer
                     Dimensioning parameter for work
                     LENW must be at least LIMIT*4.
                     IF LENW.LT.LIMIT*4, the routine will end with
                     IER = 6.
 
             LAST  - Integer
                     On return, LAST equals the number of subintervals
                     produced in the subdivision process, which
                     determines the number of significant elements
                     actually in the WORK ARRAYS.
 
          WORK ARRAYS
             IWORK - Integer
                     Vector of dimension at least limit, the first K
                     elements of which contain pointers to the error
                     estimates over the subintervals, such that
                     WORK(LIMIT*3+IWORK(1)),... , WORK(LIMIT*3+IWORK(K))
                     form a decreasing sequence with K = LAST If
                     LAST.LE.(LIMIT/2+2), and K = LIMIT+1-LAST otherwise
 
             WORK  - Double precision
                     Vector of dimension at least LENW
                     on return
                     WORK(1), ..., WORK(LAST) contain the left end
                     points of the subintervals in the partition of
                      (A,B),
                     WORK(LIMIT+1), ..., WORK(LIMIT+LAST) contain the
                      right end points,
                     WORK(LIMIT*2+1), ..., WORK(LIMIT*2+LAST) contain
                      the integral approximations over the subintervals,
                     WORK(LIMIT*3+1), ..., WORK(LIMIT*3+LAST) contain
                      the error estimates.
 
 ***REFERENCES  (NONE)
 ***ROUTINES CALLED  DQAGE, XERMSG
 ***REVISION HISTORY  (YYMMDD)
    800101  DATE WRITTEN
    890831  Modified array declarations.  (WRB)
    890831  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    900315  CALLs to XERROR changed to CALLs to XERMSG.  (THJ)
    END PROLOGUE
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DQAGE

      SUBROUTINE DQAGE (F, A, B, EPSABS, EPSREL, KEY, LIMIT, RESULT,
     +   ABSERR, NEVAL, IER, ALIST, BLIST, RLIST, ELIST, IORD, LAST)
 ***BEGIN PROLOGUE  DQAGE
 ***PURPOSE  The routine calculates an approximation result to a given
             definite integral   I = Integral of F over (A,B),
             hopefully satisfying following claim for accuracy
             ABS(I-RESLT).LE.MAX(EPSABS,EPSREL*ABS(I)).
 ***LIBRARY   SLATEC (QUADPACK)
 ***CATEGORY  H2A1A1
 ***TYPE      DOUBLE PRECISION (QAGE-S, DQAGE-D)
 ***KEYWORDS  AUTOMATIC INTEGRATOR, GAUSS-KRONROD RULES,
              GENERAL-PURPOSE, GLOBALLY ADAPTIVE, INTEGRAND EXAMINATOR,
              QUADPACK, QUADRATURE
 ***AUTHOR  Piessens, Robert
              Applied Mathematics and Programming Division
              K. U. Leuven
            de Doncker, Elise
              Applied Mathematics and Programming Division
              K. U. Leuven
 ***DESCRIPTION
 
         Computation of a definite integral
         Standard fortran subroutine
         Double precision version
 
         PARAMETERS
          ON ENTRY
             F      - Double precision
                      Function subprogram defining the integrand
                      function F(X). The actual name for F needs to be
                      declared E X T E R N A L in the driver program.
 
             A      - Double precision
                      Lower limit of integration
 
             B      - Double precision
                      Upper limit of integration
 
             EPSABS - Double precision
                      Absolute accuracy requested
             EPSREL - Double precision
                      Relative accuracy requested
                      If  EPSABS.LE.0
                      and EPSREL.LT.MAX(50*REL.MACH.ACC.,0.5D-28),
                      the routine will end with IER = 6.
 
             KEY    - Integer
                      Key for choice of local integration rule
                      A Gauss-Kronrod pair is used with
                           7 - 15 points if KEY.LT.2,
                          10 - 21 points if KEY = 2,
                          15 - 31 points if KEY = 3,
                          20 - 41 points if KEY = 4,
                          25 - 51 points if KEY = 5,
                          30 - 61 points if KEY.GT.5.
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             LIMIT  - Integer
                      Gives an upper bound on the number of subintervals
                      in the partition of (A,B), LIMIT.GE.1.
 
          ON RETURN
             RESULT - Double precision
                      Approximation to the integral
 
             ABSERR - Double precision
                      Estimate of the modulus of the absolute error,
                      which should equal or exceed ABS(I-RESULT)
 
             NEVAL  - Integer
                      Number of integrand evaluations
 
             IER    - Integer
                      IER = 0 Normal and reliable termination of the
                              routine. It is assumed that the requested
                              accuracy has been achieved.
                      IER.GT.0 Abnormal termination of the routine
                              The estimates for result and error are
                              less reliable. It is assumed that the
                              requested accuracy has not been achieved.
             ERROR MESSAGES
                      IER = 1 Maximum number of subdivisions allowed
                              has been achieved. One can allow more
                              subdivisions by increasing the value
                              of LIMIT.
                              However, if this yields no improvement it
                              is rather advised to analyze the integrand
                              in order to determine the integration
                              difficulties. If the position of a local
                              difficulty can be determined(e.g.
                              SINGULARITY, DISCONTINUITY within the
                              interval) one will probably gain from
                              splitting up the interval at this point
                              and calling the integrator on the
                              subranges. If possible, an appropriate
                              special-purpose integrator should be used
                              which is designed for handling the type of
                              difficulty involved.
                          = 2 The occurrence of roundoff error is
                              detected, which prevents the requested
                              tolerance from being achieved.
                          = 3 Extremely bad integrand behaviour occurs
                              at some points of the integration
                              interval.
                          = 6 The input is invalid, because
                              (EPSABS.LE.0 and
                               EPSREL.LT.MAX(50*REL.MACH.ACC.,0.5D-28),
                              RESULT, ABSERR, NEVAL, LAST, RLIST(1) ,
                              ELIST(1) and IORD(1) are set to zero.
                              ALIST(1) and BLIST(1) are set to A and B
                              respectively.
 
             ALIST   - Double precision
                       Vector of dimension at least LIMIT, the first
                        LAST  elements of which are the left
                       end points of the subintervals in the partition
                       of the given integration range (A,B)
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             BLIST   - Double precision
                       Vector of dimension at least LIMIT, the first
                        LAST  elements of which are the right
                       end points of the subintervals in the partition
                       of the given integration range (A,B)
 
             RLIST   - Double precision
                       Vector of dimension at least LIMIT, the first
                        LAST  elements of which are the
                       integral approximations on the subintervals
 
             ELIST   - Double precision
                       Vector of dimension at least LIMIT, the first
                        LAST  elements of which are the moduli of the
                       absolute error estimates on the subintervals
 
             IORD    - Integer
                       Vector of dimension at least LIMIT, the first K
                       elements of which are pointers to the
                       error estimates over the subintervals,
                       such that ELIST(IORD(1)), ...,
                       ELIST(IORD(K)) form a decreasing sequence,
                       with K = LAST if LAST.LE.(LIMIT/2+2), and
                       K = LIMIT+1-LAST otherwise
 
             LAST    - Integer
                       Number of subintervals actually produced in the
                       subdivision process
 
 ***REFERENCES  (NONE)
 ***ROUTINES CALLED  D1MACH, DQK15, DQK21, DQK31, DQK41, DQK51, DQK61,
                     DQPSRT
 ***REVISION HISTORY  (YYMMDD)
    800101  DATE WRITTEN
    890531  Changed all specific intrinsics to generic.  (WRB)
    890831  Modified array declarations.  (WRB)
    890831  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    END PROLOGUE
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DQAGI

      SUBROUTINE DQAGI (F, BOUND, INF, EPSABS, EPSREL, RESULT, ABSERR,
     +   NEVAL, IER, LIMIT, LENW, LAST, IWORK, WORK)
 ***BEGIN PROLOGUE  DQAGI
 ***PURPOSE  The routine calculates an approximation result to a given
             INTEGRAL   I = Integral of F over (BOUND,+INFINITY)
             OR I = Integral of F over (-INFINITY,BOUND)
             OR I = Integral of F over (-INFINITY,+INFINITY)
             Hopefully satisfying following claim for accuracy
             ABS(I-RESULT).LE.MAX(EPSABS,EPSREL*ABS(I)).
 ***LIBRARY   SLATEC (QUADPACK)
 ***CATEGORY  H2A3A1, H2A4A1
 ***TYPE      DOUBLE PRECISION (QAGI-S, DQAGI-D)
 ***KEYWORDS  AUTOMATIC INTEGRATOR, EXTRAPOLATION, GENERAL-PURPOSE,
              GLOBALLY ADAPTIVE, INFINITE INTERVALS, QUADPACK,
              QUADRATURE, TRANSFORMATION
 ***AUTHOR  Piessens, Robert
              Applied Mathematics and Programming Division
              K. U. Leuven
            de Doncker, Elise
              Applied Mathematics and Programming Division
              K. U. Leuven
 ***DESCRIPTION
 
         Integration over infinite intervals
         Standard fortran subroutine
 
         PARAMETERS
          ON ENTRY
             F      - Double precision
                      Function subprogram defining the integrand
                      function F(X). The actual name for F needs to be
                      declared E X T E R N A L in the driver program.
 
             BOUND  - Double precision
                      Finite bound of integration range
                      (has no meaning if interval is doubly-infinite)
 
             INF    - Integer
                      indicating the kind of integration range involved
                      INF = 1 corresponds to  (BOUND,+INFINITY),
                      INF = -1            to  (-INFINITY,BOUND),
                      INF = 2             to (-INFINITY,+INFINITY).
 
             EPSABS - Double precision
                      Absolute accuracy requested
             EPSREL - Double precision
                      Relative accuracy requested
                      If  EPSABS.LE.0
                      and EPSREL.LT.MAX(50*REL.MACH.ACC.,0.5D-28),
                      the routine will end with IER = 6.
 
 
          ON RETURN
             RESULT - Double precision
                      Approximation to the integral
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             ABSERR - Double precision
                      Estimate of the modulus of the absolute error,
                      which should equal or exceed ABS(I-RESULT)
 
             NEVAL  - Integer
                      Number of integrand evaluations
 
             IER    - Integer
                      IER = 0 normal and reliable termination of the
                              routine. It is assumed that the requested
                              accuracy has been achieved.
                    - IER.GT.0 abnormal termination of the routine. The
                              estimates for result and error are less
                              reliable. It is assumed that the requested
                              accuracy has not been achieved.
             ERROR MESSAGES
                      IER = 1 Maximum number of subdivisions allowed
                              has been achieved. One can allow more
                              subdivisions by increasing the value of
                              LIMIT (and taking the according dimension
                              adjustments into account). However, if
                              this yields no improvement it is advised
                              to analyze the integrand in order to
                              determine the integration difficulties. If
                              the position of a local difficulty can be
                              determined (e.g. SINGULARITY,
                              DISCONTINUITY within the interval) one
                              will probably gain from splitting up the
                              interval at this point and calling the
                              integrator on the subranges. If possible,
                              an appropriate special-purpose integrator
                              should be used, which is designed for
                              handling the type of difficulty involved.
                          = 2 The occurrence of roundoff error is
                              detected, which prevents the requested
                              tolerance from being achieved.
                              The error may be under-estimated.
                          = 3 Extremely bad integrand behaviour occurs
                              at some points of the integration
                              interval.
                          = 4 The algorithm does not converge.
                              Roundoff error is detected in the
                              extrapolation table.
                              It is assumed that the requested tolerance
                              cannot be achieved, and that the returned
                              RESULT is the best which can be obtained.
                          = 5 The integral is probably divergent, or
                              slowly convergent. It must be noted that
                              divergence can occur with any other value
                              of IER.
                          = 6 The input is invalid, because
                              (EPSABS.LE.0 and
                               EPSREL.LT.MAX(50*REL.MACH.ACC.,0.5D-28))
                               or LIMIT.LT.1 or LENIW.LT.LIMIT*4.
                              RESULT, ABSERR, NEVAL, LAST are set to
                              zero.  Except when LIMIT or LENIW is
                              invalid, IWORK(1), WORK(LIMIT*2+1) and
                              WORK(LIMIT*3+1) are set to ZERO, WORK(1)
                              is set to A and WORK(LIMIT+1) to B.
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          DIMENSIONING PARAMETERS
             LIMIT - Integer
                     Dimensioning parameter for IWORK
                     LIMIT determines the maximum number of subintervals
                     in the partition of the given integration interval
                     (A,B), LIMIT.GE.1.
                     If LIMIT.LT.1, the routine will end with IER = 6.
 
             LENW  - Integer
                     Dimensioning parameter for WORK
                     LENW must be at least LIMIT*4.
                     If LENW.LT.LIMIT*4, the routine will end
                     with IER = 6.
 
             LAST  - Integer
                     On return, LAST equals the number of subintervals
                     produced in the subdivision process, which
                     determines the number of significant elements
                     actually in the WORK ARRAYS.
 
          WORK ARRAYS
             IWORK - Integer
                     Vector of dimension at least LIMIT, the first
                     K elements of which contain pointers
                     to the error estimates over the subintervals,
                     such that WORK(LIMIT*3+IWORK(1)),... ,
                     WORK(LIMIT*3+IWORK(K)) form a decreasing
                     sequence, with K = LAST if LAST.LE.(LIMIT/2+2), and
                     K = LIMIT+1-LAST otherwise
 
             WORK  - Double precision
                     Vector of dimension at least LENW
                     on return
                     WORK(1), ..., WORK(LAST) contain the left
                      end points of the subintervals in the
                      partition of (A,B),
                     WORK(LIMIT+1), ..., WORK(LIMIT+LAST) Contain
                      the right end points,
                     WORK(LIMIT*2+1), ...,WORK(LIMIT*2+LAST) contain the
                      integral approximations over the subintervals,
                     WORK(LIMIT*3+1), ..., WORK(LIMIT*3)
                      contain the error estimates.
 
 ***REFERENCES  (NONE)
 ***ROUTINES CALLED  DQAGIE, XERMSG
 ***REVISION HISTORY  (YYMMDD)
    800101  DATE WRITTEN
    890831  Modified array declarations.  (WRB)
    890831  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    900315  CALLs to XERROR changed to CALLs to XERMSG.  (THJ)
    END PROLOGUE
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DQAGIE

      SUBROUTINE DQAGIE (F, BOUND, INF, EPSABS, EPSREL, LIMIT, RESULT,
     +   ABSERR, NEVAL, IER, ALIST, BLIST, RLIST, ELIST, IORD, LAST)
 ***BEGIN PROLOGUE  DQAGIE
 ***PURPOSE  The routine calculates an approximation result to a given
             integral   I = Integral of F over (BOUND,+INFINITY)
             or I = Integral of F over (-INFINITY,BOUND)
             or I = Integral of F over (-INFINITY,+INFINITY),
             hopefully satisfying following claim for accuracy
             ABS(I-RESULT).LE.MAX(EPSABS,EPSREL*ABS(I))
 ***LIBRARY   SLATEC (QUADPACK)
 ***CATEGORY  H2A3A1, H2A4A1
 ***TYPE      DOUBLE PRECISION (QAGIE-S, DQAGIE-D)
 ***KEYWORDS  AUTOMATIC INTEGRATOR, EXTRAPOLATION, GENERAL-PURPOSE,
              GLOBALLY ADAPTIVE, INFINITE INTERVALS, QUADPACK,
              QUADRATURE, TRANSFORMATION
 ***AUTHOR  Piessens, Robert
              Applied Mathematics and Programming Division
              K. U. Leuven
            de Doncker, Elise
              Applied Mathematics and Programming Division
              K. U. Leuven
 ***DESCRIPTION
 
  Integration over infinite intervals
  Standard fortran subroutine
 
             F      - Double precision
                      Function subprogram defining the integrand
                      function F(X). The actual name for F needs to be
                      declared E X T E R N A L in the driver program.
 
             BOUND  - Double precision
                      Finite bound of integration range
                      (has no meaning if interval is doubly-infinite)
 
             INF    - Double precision
                      Indicating the kind of integration range involved
                      INF = 1 corresponds to  (BOUND,+INFINITY),
                      INF = -1            to  (-INFINITY,BOUND),
                      INF = 2             to (-INFINITY,+INFINITY).
 
             EPSABS - Double precision
                      Absolute accuracy requested
             EPSREL - Double precision
                      Relative accuracy requested
                      If  EPSABS.LE.0
                      and EPSREL.LT.MAX(50*REL.MACH.ACC.,0.5D-28),
                      the routine will end with IER = 6.
 
             LIMIT  - Integer
                      Gives an upper bound on the number of subintervals
                      in the partition of (A,B), LIMIT.GE.1
 
          ON RETURN
             RESULT - Double precision
                      Approximation to the integral
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             ABSERR - Double precision
                      Estimate of the modulus of the absolute error,
                      which should equal or exceed ABS(I-RESULT)
 
             NEVAL  - Integer
                      Number of integrand evaluations
 
             IER    - Integer
                      IER = 0 Normal and reliable termination of the
                              routine. It is assumed that the requested
                              accuracy has been achieved.
                    - IER.GT.0 Abnormal termination of the routine. The
                              estimates for result and error are less
                              reliable. It is assumed that the requested
                              accuracy has not been achieved.
             ERROR MESSAGES
                      IER = 1 Maximum number of subdivisions allowed
                              has been achieved. One can allow more
                              subdivisions by increasing the value of
                              LIMIT (and taking the according dimension
                              adjustments into account).  However, if
                              this yields no improvement it is advised
                              to analyze the integrand in order to
                              determine the integration difficulties.
                              If the position of a local difficulty can
                              be determined (e.g. SINGULARITY,
                              DISCONTINUITY within the interval) one
                              will probably gain from splitting up the
                              interval at this point and calling the
                              integrator on the subranges. If possible,
                              an appropriate special-purpose integrator
                              should be used, which is designed for
                              handling the type of difficulty involved.
                          = 2 The occurrence of roundoff error is
                              detected, which prevents the requested
                              tolerance from being achieved.
                              The error may be under-estimated.
                          = 3 Extremely bad integrand behaviour occurs
                              at some points of the integration
                              interval.
                          = 4 The algorithm does not converge.
                              Roundoff error is detected in the
                              extrapolation table.
                              It is assumed that the requested tolerance
                              cannot be achieved, and that the returned
                              result is the best which can be obtained.
                          = 5 The integral is probably divergent, or
                              slowly convergent. It must be noted that
                              divergence can occur with any other value
                              of IER.
                          = 6 The input is invalid, because
                              (EPSABS.LE.0 and
                               EPSREL.LT.MAX(50*REL.MACH.ACC.,0.5D-28),
                              RESULT, ABSERR, NEVAL, LAST, RLIST(1),
                              ELIST(1) and IORD(1) are set to zero.
                              ALIST(1) and BLIST(1) are set to 0
                              and 1 respectively.
 
             ALIST  - Double precision

SLATEC3 (DACOSH through DS2Y) - 507



                      Vector of dimension at least LIMIT, the first
                       LAST  elements of which are the left
                      end points of the subintervals in the partition
                      of the transformed integration range (0,1).
 
             BLIST  - Double precision
                      Vector of dimension at least LIMIT, the first
                       LAST  elements of which are the right
                      end points of the subintervals in the partition
                      of the transformed integration range (0,1).
 
             RLIST  - Double precision
                      Vector of dimension at least LIMIT, the first
                       LAST  elements of which are the integral
                      approximations on the subintervals
 
             ELIST  - Double precision
                      Vector of dimension at least LIMIT,  the first
                      LAST elements of which are the moduli of the
                      absolute error estimates on the subintervals
 
             IORD   - Integer
                      Vector of dimension LIMIT, the first K
                      elements of which are pointers to the
                      error estimates over the subintervals,
                      such that ELIST(IORD(1)), ..., ELIST(IORD(K))
                      form a decreasing sequence, with K = LAST
                      If LAST.LE.(LIMIT/2+2), and K = LIMIT+1-LAST
                      otherwise
 
             LAST   - Integer
                      Number of subintervals actually produced
                      in the subdivision process
 
 ***REFERENCES  (NONE)
 ***ROUTINES CALLED  D1MACH, DQELG, DQK15I, DQPSRT
 ***REVISION HISTORY  (YYMMDD)
    800101  DATE WRITTEN
    890531  Changed all specific intrinsics to generic.  (WRB)
    890831  Modified array declarations.  (WRB)
    890831  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    END PROLOGUE
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DQAGP

      SUBROUTINE DQAGP (F, A, B, NPTS2, POINTS, EPSABS, EPSREL, RESULT,
     +   ABSERR, NEVAL, IER, LENIW, LENW, LAST, IWORK, WORK)
 ***BEGIN PROLOGUE  DQAGP
 ***PURPOSE  The routine calculates an approximation result to a given
             definite integral I = Integral of F over (A,B),
             hopefully satisfying following claim for accuracy
             break points of the integration interval, where local
             difficulties of the integrand may occur (e.g.
             SINGULARITIES, DISCONTINUITIES), are provided by the user.
 ***LIBRARY   SLATEC (QUADPACK)
 ***CATEGORY  H2A2A1
 ***TYPE      DOUBLE PRECISION (QAGP-S, DQAGP-D)
 ***KEYWORDS  AUTOMATIC INTEGRATOR, EXTRAPOLATION, GENERAL-PURPOSE,
              GLOBALLY ADAPTIVE, QUADPACK, QUADRATURE,
              SINGULARITIES AT USER SPECIFIED POINTS
 ***AUTHOR  Piessens, Robert
              Applied Mathematics and Programming Division
              K. U. Leuven
            de Doncker, Elise
              Applied Mathematics and Programming Division
              K. U. Leuven
 ***DESCRIPTION
 
         Computation of a definite integral
         Standard fortran subroutine
         Double precision version
 
         PARAMETERS
          ON ENTRY
             F      - Double precision
                      Function subprogram defining the integrand
                      Function F(X). The actual name for F needs to be
                      declared E X T E R N A L in the driver program.
 
             A      - Double precision
                      Lower limit of integration
 
             B      - Double precision
                      Upper limit of integration
 
             NPTS2  - Integer
                      Number equal to two more than the number of
                      user-supplied break points within the integration
                      range, NPTS.GE.2.
                      If NPTS2.LT.2, The routine will end with IER = 6.
 
             POINTS - Double precision
                      Vector of dimension NPTS2, the first (NPTS2-2)
                      elements of which are the user provided break
                      points. If these points do not constitute an
                      ascending sequence there will be an automatic
                      sorting.
 
             EPSABS - Double precision
                      Absolute accuracy requested
             EPSREL - Double precision
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                      Relative accuracy requested
                      If  EPSABS.LE.0
                      And EPSREL.LT.MAX(50*REL.MACH.ACC.,0.5D-28),
                      The routine will end with IER = 6.
 
          ON RETURN
             RESULT - Double precision
                      Approximation to the integral
 
             ABSERR - Double precision
                      Estimate of the modulus of the absolute error,
                      which should equal or exceed ABS(I-RESULT)
 
             NEVAL  - Integer
                      Number of integrand evaluations
 
             IER    - Integer
                      IER = 0 Normal and reliable termination of the
                              routine. It is assumed that the requested
                              accuracy has been achieved.
                      IER.GT.0 Abnormal termination of the routine.
                              The estimates for integral and error are
                              less reliable. it is assumed that the
                              requested accuracy has not been achieved.
             ERROR MESSAGES
                      IER = 1 Maximum number of subdivisions allowed
                              has been achieved. one can allow more
                              subdivisions by increasing the value of
                              LIMIT (and taking the according dimension
                              adjustments into account). However, if
                              this yields no improvement it is advised
                              to analyze the integrand in order to
                              determine the integration difficulties. If
                              the position of a local difficulty can be
                              determined (i.e. SINGULARITY,
                              DISCONTINUITY within the interval), it
                              should be supplied to the routine as an
                              element of the vector points. If necessary
                              an appropriate special-purpose integrator
                              must be used, which is designed for
                              handling the type of difficulty involved.
                          = 2 The occurrence of roundoff error is
                              detected, which prevents the requested
                              tolerance from being achieved.
                              The error may be under-estimated.
                          = 3 Extremely bad integrand behaviour occurs
                              at some points of the integration
                              interval.
                          = 4 The algorithm does not converge.
                              roundoff error is detected in the
                              extrapolation table.
                              It is presumed that the requested
                              tolerance cannot be achieved, and that
                              the returned RESULT is the best which
                              can be obtained.
                          = 5 The integral is probably divergent, or
                              slowly convergent. it must be noted that
                              divergence can occur with any other value
                              of IER.GT.0.
                          = 6 The input is invalid because
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                              NPTS2.LT.2 or
                              break points are specified outside
                              the integration range or
                              (EPSABS.LE.0 and
                               EPSREL.LT.MAX(50*REL.MACH.ACC.,0.5D-28))
                              RESULT, ABSERR, NEVAL, LAST are set to
                              zero.  Except when LENIW or LENW or NPTS2
                              is invalid, IWORK(1), IWORK(LIMIT+1),
                              WORK(LIMIT*2+1) and WORK(LIMIT*3+1)
                              are set to zero.
                              WORK(1) is set to A and WORK(LIMIT+1)
                              to B (where LIMIT = (LENIW-NPTS2)/2).
 
          DIMENSIONING PARAMETERS
             LENIW - Integer
                     Dimensioning parameter for IWORK
                     LENIW determines LIMIT = (LENIW-NPTS2)/2,
                     which is the maximum number of subintervals in the
                     partition of the given integration interval (A,B),
                     LENIW.GE.(3*NPTS2-2).
                     If LENIW.LT.(3*NPTS2-2), the routine will end with
                     IER = 6.
 
             LENW  - Integer
                     Dimensioning parameter for WORK
                     LENW must be at least LENIW*2-NPTS2.
                     If LENW.LT.LENIW*2-NPTS2, the routine will end
                     with IER = 6.
 
             LAST  - Integer
                     On return, LAST equals the number of subintervals
                     produced in the subdivision process, which
                     determines the number of significant elements
                     actually in the WORK ARRAYS.
 
          WORK ARRAYS
             IWORK - Integer
                     Vector of dimension at least LENIW. on return,
                     the first K elements of which contain
                     pointers to the error estimates over the
                     subintervals, such that WORK(LIMIT*3+IWORK(1)),...,
                     WORK(LIMIT*3+IWORK(K)) form a decreasing
                     sequence, with K = LAST if LAST.LE.(LIMIT/2+2), and
                     K = LIMIT+1-LAST otherwise
                     IWORK(LIMIT+1), ...,IWORK(LIMIT+LAST) Contain the
                      subdivision levels of the subintervals, i.e.
                      if (AA,BB) is a subinterval of (P1,P2)
                      where P1 as well as P2 is a user-provided
                      break point or integration LIMIT, then (AA,BB) has
                      level L if ABS(BB-AA) = ABS(P2-P1)*2**(-L),
                     IWORK(LIMIT*2+1), ..., IWORK(LIMIT*2+NPTS2) have
                      no significance for the user,
                     note that LIMIT = (LENIW-NPTS2)/2.
 
             WORK  - Double precision
                     Vector of dimension at least LENW
                     on return
                     WORK(1), ..., WORK(LAST) contain the left
                      end points of the subintervals in the
                      partition of (A,B),

SLATEC3 (DACOSH through DS2Y) - 511



                     WORK(LIMIT+1), ..., WORK(LIMIT+LAST) contain
                      the right end points,
                     WORK(LIMIT*2+1), ..., WORK(LIMIT*2+LAST) contain
                      the integral approximations over the subintervals,
                     WORK(LIMIT*3+1), ..., WORK(LIMIT*3+LAST)
                      contain the corresponding error estimates,
                     WORK(LIMIT*4+1), ..., WORK(LIMIT*4+NPTS2)
                      contain the integration limits and the
                      break points sorted in an ascending sequence.
                     note that LIMIT = (LENIW-NPTS2)/2.
 
 ***REFERENCES  (NONE)
 ***ROUTINES CALLED  DQAGPE, XERMSG
 ***REVISION HISTORY  (YYMMDD)
    800101  DATE WRITTEN
    890831  Modified array declarations.  (WRB)
    890831  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    900315  CALLs to XERROR changed to CALLs to XERMSG.  (THJ)
    END PROLOGUE
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DQAGPE

      SUBROUTINE DQAGPE (F, A, B, NPTS2, POINTS, EPSABS, EPSREL, LIMIT,
         RESULT, ABSERR, NEVAL, IER, ALIST, BLIST, RLIST, ELIST, PTS,
     +   IORD, LEVEL, NDIN, LAST)
 ***BEGIN PROLOGUE  DQAGPE
 ***PURPOSE  Approximate a given definite integral I = Integral of F
             over (A,B), hopefully satisfying the accuracy claim:
                  ABS(I-RESULT).LE.MAX(EPSABS,EPSREL*ABS(I)).
             Break points of the integration interval, where local
             difficulties of the integrand may occur (e.g. singularities
             or discontinuities) are provided by the user.
 ***LIBRARY   SLATEC (QUADPACK)
 ***CATEGORY  H2A2A1
 ***TYPE      DOUBLE PRECISION (QAGPE-S, DQAGPE-D)
 ***KEYWORDS  AUTOMATIC INTEGRATOR, EXTRAPOLATION, GENERAL-PURPOSE,
              GLOBALLY ADAPTIVE, QUADPACK, QUADRATURE,
              SINGULARITIES AT USER SPECIFIED POINTS
 ***AUTHOR  Piessens, Robert
              Applied Mathematics and Programming Division
              K. U. Leuven
            de Doncker, Elise
              Applied Mathematics and Programming Division
              K. U. Leuven
 ***DESCRIPTION
 
         Computation of a definite integral
         Standard fortran subroutine
         Double precision version
 
         PARAMETERS
          ON ENTRY
             F      - Double precision
                      Function subprogram defining the integrand
                      function F(X). The actual name for F needs to be
                      declared E X T E R N A L in the driver program.
 
             A      - Double precision
                      Lower limit of integration
 
             B      - Double precision
                      Upper limit of integration
 
             NPTS2  - Integer
                      Number equal to two more than the number of
                      user-supplied break points within the integration
                      range, NPTS2.GE.2.
                      If NPTS2.LT.2, the routine will end with IER = 6.
 
             POINTS - Double precision
                      Vector of dimension NPTS2, the first (NPTS2-2)
                      elements of which are the user provided break
                      POINTS. If these POINTS do not constitute an
                      ascending sequence there will be an automatic
                      sorting.
 
             EPSABS - Double precision
                      Absolute accuracy requested
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             EPSREL - Double precision
                      Relative accuracy requested
                      If  EPSABS.LE.0
                      and EPSREL.LT.MAX(50*REL.MACH.ACC.,0.5D-28),
                      the routine will end with IER = 6.
 
             LIMIT  - Integer
                      Gives an upper bound on the number of subintervals
                      in the partition of (A,B), LIMIT.GE.NPTS2
                      If LIMIT.LT.NPTS2, the routine will end with
                      IER = 6.
 
          ON RETURN
             RESULT - Double precision
                      Approximation to the integral
 
             ABSERR - Double precision
                      Estimate of the modulus of the absolute error,
                      which should equal or exceed ABS(I-RESULT)
 
             NEVAL  - Integer
                      Number of integrand evaluations
 
             IER    - Integer
                      IER = 0 Normal and reliable termination of the
                              routine. It is assumed that the requested
                              accuracy has been achieved.
                      IER.GT.0 Abnormal termination of the routine.
                              The estimates for integral and error are
                              less reliable. It is assumed that the
                              requested accuracy has not been achieved.
             ERROR MESSAGES
                      IER = 1 Maximum number of subdivisions allowed
                              has been achieved. One can allow more
                              subdivisions by increasing the value of
                              LIMIT (and taking the according dimension
                              adjustments into account). However, if
                              this yields no improvement it is advised
                              to analyze the integrand in order to
                              determine the integration difficulties. If
                              the position of a local difficulty can be
                              determined (i.e. SINGULARITY,
                              DISCONTINUITY within the interval), it
                              should be supplied to the routine as an
                              element of the vector points. If necessary
                              an appropriate special-purpose integrator
                              must be used, which is designed for
                              handling the type of difficulty involved.
                          = 2 The occurrence of roundoff error is
                              detected, which prevents the requested
                              tolerance from being achieved.
                              The error may be under-estimated.
                          = 3 Extremely bad integrand behaviour occurs
                              At some points of the integration
                              interval.
                          = 4 The algorithm does not converge.
                              Roundoff error is detected in the
                              extrapolation table. It is presumed that
                              the requested tolerance cannot be
                              achieved, and that the returned result is
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                              the best which can be obtained.
                          = 5 The integral is probably divergent, or
                              slowly convergent. It must be noted that
                              divergence can occur with any other value
                              of IER.GT.0.
                          = 6 The input is invalid because
                              NPTS2.LT.2 or
                              Break points are specified outside
                              the integration range or
                              (EPSABS.LE.0 and
                               EPSREL.LT.MAX(50*REL.MACH.ACC.,0.5D-28))
                              or LIMIT.LT.NPTS2.
                              RESULT, ABSERR, NEVAL, LAST, RLIST(1),
                              and ELIST(1) are set to zero. ALIST(1) and
                              BLIST(1) are set to A and B respectively.
 
             ALIST  - Double precision
                      Vector of dimension at least LIMIT, the first
                       LAST  elements of which are the left end points
                      of the subintervals in the partition of the given
                      integration range (A,B)
 
             BLIST  - Double precision
                      Vector of dimension at least LIMIT, the first
                       LAST  elements of which are the right end points
                      of the subintervals in the partition of the given
                      integration range (A,B)
 
             RLIST  - Double precision
                      Vector of dimension at least LIMIT, the first
                       LAST  elements of which are the integral
                      approximations on the subintervals
 
             ELIST  - Double precision
                      Vector of dimension at least LIMIT, the first
                       LAST  elements of which are the moduli of the
                      absolute error estimates on the subintervals
 
             PTS    - Double precision
                      Vector of dimension at least NPTS2, containing the
                      integration limits and the break points of the
                      interval in ascending sequence.
 
             LEVEL  - Integer
                      Vector of dimension at least LIMIT, containing the
                      subdivision levels of the subinterval, i.e. if
                      (AA,BB) is a subinterval of (P1,P2) where P1 as
                      well as P2 is a user-provided break point or
                      integration limit, then (AA,BB) has level L if
                      ABS(BB-AA) = ABS(P2-P1)*2**(-L).
 
             NDIN   - Integer
                      Vector of dimension at least NPTS2, after first
                      integration over the intervals (PTS(I)),PTS(I+1),
                      I = 0,1, ..., NPTS2-2, the error estimates over
                      some of the intervals may have been increased
                      artificially, in order to put their subdivision
                      forward. If this happens for the subinterval
                      numbered K, NDIN(K) is put to 1, otherwise
                      NDIN(K) = 0.

SLATEC3 (DACOSH through DS2Y) - 515



 
             IORD   - Integer
                      Vector of dimension at least LIMIT, the first K
                      elements of which are pointers to the
                      error estimates over the subintervals,
                      such that ELIST(IORD(1)), ..., ELIST(IORD(K))
                      form a decreasing sequence, with K = LAST
                      If LAST.LE.(LIMIT/2+2), and K = LIMIT+1-LAST
                      otherwise
 
             LAST   - Integer
                      Number of subintervals actually produced in the
                      subdivisions process
 
 ***REFERENCES  (NONE)
 ***ROUTINES CALLED  D1MACH, DQELG, DQK21, DQPSRT
 ***REVISION HISTORY  (YYMMDD)
    800101  DATE WRITTEN
    890531  Changed all specific intrinsics to generic.  (WRB)
    890831  Modified array declarations.  (WRB)
    890831  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    END PROLOGUE
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DQAGS

      SUBROUTINE DQAGS (F, A, B, EPSABS, EPSREL, RESULT, ABSERR, NEVAL,
     +   IER, LIMIT, LENW, LAST, IWORK, WORK)
 ***BEGIN PROLOGUE  DQAGS
 ***PURPOSE  The routine calculates an approximation result to a given
             Definite integral  I = Integral of F over (A,B),
             Hopefully satisfying following claim for accuracy
             ABS(I-RESULT).LE.MAX(EPSABS,EPSREL*ABS(I)).
 ***LIBRARY   SLATEC (QUADPACK)
 ***CATEGORY  H2A1A1
 ***TYPE      DOUBLE PRECISION (QAGS-S, DQAGS-D)
 ***KEYWORDS  AUTOMATIC INTEGRATOR, END POINT SINGULARITIES,
              EXTRAPOLATION, GENERAL-PURPOSE, GLOBALLY ADAPTIVE,
              QUADPACK, QUADRATURE
 ***AUTHOR  Piessens, Robert
              Applied Mathematics and Programming Division
              K. U. Leuven
            de Doncker, Elise
              Applied Mathematics and Programming Division
              K. U. Leuven
 ***DESCRIPTION
 
         Computation of a definite integral
         Standard fortran subroutine
         Double precision version
 
 
         PARAMETERS
          ON ENTRY
             F      - Double precision
                      Function subprogram defining the integrand
                      Function F(X). The actual name for F needs to be
                      Declared E X T E R N A L in the driver program.
 
             A      - Double precision
                      Lower limit of integration
 
             B      - Double precision
                      Upper limit of integration
 
             EPSABS - Double precision
                      Absolute accuracy requested
             EPSREL - Double precision
                      Relative accuracy requested
                      If  EPSABS.LE.0
                      And EPSREL.LT.MAX(50*REL.MACH.ACC.,0.5D-28),
                      The routine will end with IER = 6.
 
          ON RETURN
             RESULT - Double precision
                      Approximation to the integral
 
             ABSERR - Double precision
                      Estimate of the modulus of the absolute error,
                      which should equal or exceed ABS(I-RESULT)
 
             NEVAL  - Integer
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                      Number of integrand evaluations
 
             IER    - Integer
                      IER = 0 Normal and reliable termination of the
                              routine. It is assumed that the requested
                              accuracy has been achieved.
                      IER.GT.0 Abnormal termination of the routine
                              The estimates for integral and error are
                              less reliable. It is assumed that the
                              requested accuracy has not been achieved.
             ERROR MESSAGES
                      IER = 1 Maximum number of subdivisions allowed
                              has been achieved. One can allow more sub-
                              divisions by increasing the value of LIMIT
                              (and taking the according dimension
                              adjustments into account. However, if
                              this yields no improvement it is advised
                              to analyze the integrand in order to
                              determine the integration difficulties. If
                              the position of a local difficulty can be
                              determined (E.G. SINGULARITY,
                              DISCONTINUITY WITHIN THE INTERVAL) one
                              will probably gain from splitting up the
                              interval at this point and calling the
                              integrator on the subranges. If possible,
                              an appropriate special-purpose integrator
                              should be used, which is designed for
                              handling the type of difficulty involved.
                          = 2 The occurrence of roundoff error is detec-
                              ted, which prevents the requested
                              tolerance from being achieved.
                              The error may be under-estimated.
                          = 3 Extremely bad integrand behaviour
                              occurs at some points of the integration
                              interval.
                          = 4 The algorithm does not converge.
                              Roundoff error is detected in the
                              Extrapolation table. It is presumed that
                              the requested tolerance cannot be
                              achieved, and that the returned result is
                              the best which can be obtained.
                          = 5 The integral is probably divergent, or
                              slowly convergent. It must be noted that
                              divergence can occur with any other value
                              of IER.
                          = 6 The input is invalid, because
                              (EPSABS.LE.0 AND
                               EPSREL.LT.MAX(50*REL.MACH.ACC.,0.5D-28)
                              OR LIMIT.LT.1 OR LENW.LT.LIMIT*4.
                              RESULT, ABSERR, NEVAL, LAST are set to
                              zero.  Except when LIMIT or LENW is
                              invalid, IWORK(1), WORK(LIMIT*2+1) and
                              WORK(LIMIT*3+1) are set to zero, WORK(1)
                              is set to A and WORK(LIMIT+1) TO B.
 
          DIMENSIONING PARAMETERS
             LIMIT - Integer
                     DIMENSIONING PARAMETER FOR IWORK
                     LIMIT determines the maximum number of subintervals
                     in the partition of the given integration interval
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                     (A,B), LIMIT.GE.1.
                     IF LIMIT.LT.1, the routine will end with IER = 6.
 
             LENW  - Integer
                     DIMENSIONING PARAMETER FOR WORK
                     LENW must be at least LIMIT*4.
                     If LENW.LT.LIMIT*4, the routine will end
                     with IER = 6.
 
             LAST  - Integer
                     On return, LAST equals the number of subintervals
                     produced in the subdivision process, determines the
                     number of significant elements actually in the WORK
                     Arrays.
 
          WORK ARRAYS
             IWORK - Integer
                     Vector of dimension at least LIMIT, the first K
                     elements of which contain pointers
                     to the error estimates over the subintervals
                     such that WORK(LIMIT*3+IWORK(1)),... ,
                     WORK(LIMIT*3+IWORK(K)) form a decreasing
                     sequence, with K = LAST IF LAST.LE.(LIMIT/2+2),
                     and K = LIMIT+1-LAST otherwise
 
             WORK  - Double precision
                     Vector of dimension at least LENW
                     on return
                     WORK(1), ..., WORK(LAST) contain the left
                      end-points of the subintervals in the
                      partition of (A,B),
                     WORK(LIMIT+1), ..., WORK(LIMIT+LAST) contain
                      the right end-points,
                     WORK(LIMIT*2+1), ..., WORK(LIMIT*2+LAST) contain
                      the integral approximations over the subintervals,
                     WORK(LIMIT*3+1), ..., WORK(LIMIT*3+LAST)
                      contain the error estimates.
 
 ***REFERENCES  (NONE)
 ***ROUTINES CALLED  DQAGSE, XERMSG
 ***REVISION HISTORY  (YYMMDD)
    800101  DATE WRITTEN
    890831  Modified array declarations.  (WRB)
    890831  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    900315  CALLs to XERROR changed to CALLs to XERMSG.  (THJ)
    END PROLOGUE
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DQAGSE

      SUBROUTINE DQAGSE (F, A, B, EPSABS, EPSREL, LIMIT, RESULT, ABSERR,
     +   NEVAL, IER, ALIST, BLIST, RLIST, ELIST, IORD, LAST)
 ***BEGIN PROLOGUE  DQAGSE
 ***PURPOSE  The routine calculates an approximation result to a given
             definite integral I = Integral of F over (A,B),
             hopefully satisfying following claim for accuracy
             ABS(I-RESULT).LE.MAX(EPSABS,EPSREL*ABS(I)).
 ***LIBRARY   SLATEC (QUADPACK)
 ***CATEGORY  H2A1A1
 ***TYPE      DOUBLE PRECISION (QAGSE-S, DQAGSE-D)
 ***KEYWORDS  AUTOMATIC INTEGRATOR, END POINT SINGULARITIES,
              EXTRAPOLATION, GENERAL-PURPOSE, GLOBALLY ADAPTIVE,
              QUADPACK, QUADRATURE
 ***AUTHOR  Piessens, Robert
              Applied Mathematics and Programming Division
              K. U. Leuven
            de Doncker, Elise
              Applied Mathematics and Programming Division
              K. U. Leuven
 ***DESCRIPTION
 
         Computation of a definite integral
         Standard fortran subroutine
         Double precision version
 
         PARAMETERS
          ON ENTRY
             F      - Double precision
                      Function subprogram defining the integrand
                      function F(X). The actual name for F needs to be
                      declared E X T E R N A L in the driver program.
 
             A      - Double precision
                      Lower limit of integration
 
             B      - Double precision
                      Upper limit of integration
 
             EPSABS - Double precision
                      Absolute accuracy requested
             EPSREL - Double precision
                      Relative accuracy requested
                      If  EPSABS.LE.0
                      and EPSREL.LT.MAX(50*REL.MACH.ACC.,0.5D-28),
                      the routine will end with IER = 6.
 
             LIMIT  - Integer
                      Gives an upper bound on the number of subintervals
                      in the partition of (A,B)
 
          ON RETURN
             RESULT - Double precision
                      Approximation to the integral
 
             ABSERR - Double precision
                      Estimate of the modulus of the absolute error,
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                      which should equal or exceed ABS(I-RESULT)
 
             NEVAL  - Integer
                      Number of integrand evaluations
 
             IER    - Integer
                      IER = 0 Normal and reliable termination of the
                              routine. It is assumed that the requested
                              accuracy has been achieved.
                      IER.GT.0 Abnormal termination of the routine
                              the estimates for integral and error are
                              less reliable. It is assumed that the
                              requested accuracy has not been achieved.
             ERROR MESSAGES
                          = 1 Maximum number of subdivisions allowed
                              has been achieved. One can allow more sub-
                              divisions by increasing the value of LIMIT
                              (and taking the according dimension
                              adjustments into account). However, if
                              this yields no improvement it is advised
                              to analyze the integrand in order to
                              determine the integration difficulties. If
                              the position of a local difficulty can be
                              determined (e.g. singularity,
                              discontinuity within the interval) one
                              will probably gain from splitting up the
                              interval at this point and calling the
                              integrator on the subranges. If possible,
                              an appropriate special-purpose integrator
                              should be used, which is designed for
                              handling the type of difficulty involved.
                          = 2 The occurrence of roundoff error is detec-
                              ted, which prevents the requested
                              tolerance from being achieved.
                              The error may be under-estimated.
                          = 3 Extremely bad integrand behaviour
                              occurs at some points of the integration
                              interval.
                          = 4 The algorithm does not converge.
                              Roundoff error is detected in the
                              extrapolation table.
                              It is presumed that the requested
                              tolerance cannot be achieved, and that the
                              returned result is the best which can be
                              obtained.
                          = 5 The integral is probably divergent, or
                              slowly convergent. It must be noted that
                              divergence can occur with any other value
                              of IER.
                          = 6 The input is invalid, because
                              EPSABS.LE.0 and
                              EPSREL.LT.MAX(50*REL.MACH.ACC.,0.5D-28).
                              RESULT, ABSERR, NEVAL, LAST, RLIST(1),
                              IORD(1) and ELIST(1) are set to zero.
                              ALIST(1) and BLIST(1) are set to A and B
                              respectively.
 
             ALIST  - Double precision
                      Vector of dimension at least LIMIT, the first
                       LAST  elements of which are the left end points
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                      of the subintervals in the partition of the
                      given integration range (A,B)
 
             BLIST  - Double precision
                      Vector of dimension at least LIMIT, the first
                       LAST  elements of which are the right end points
                      of the subintervals in the partition of the given
                      integration range (A,B)
 
             RLIST  - Double precision
                      Vector of dimension at least LIMIT, the first
                       LAST  elements of which are the integral
                      approximations on the subintervals
 
             ELIST  - Double precision
                      Vector of dimension at least LIMIT, the first
                       LAST  elements of which are the moduli of the
                      absolute error estimates on the subintervals
 
             IORD   - Integer
                      Vector of dimension at least LIMIT, the first K
                      elements of which are pointers to the
                      error estimates over the subintervals,
                      such that ELIST(IORD(1)), ..., ELIST(IORD(K))
                      form a decreasing sequence, with K = LAST
                      If LAST.LE.(LIMIT/2+2), and K = LIMIT+1-LAST
                      otherwise
 
             LAST   - Integer
                      Number of subintervals actually produced in the
                      subdivision process
 
 ***REFERENCES  (NONE)
 ***ROUTINES CALLED  D1MACH, DQELG, DQK21, DQPSRT
 ***REVISION HISTORY  (YYMMDD)
    800101  DATE WRITTEN
    890531  Changed all specific intrinsics to generic.  (WRB)
    890831  Modified array declarations.  (WRB)
    890831  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    END PROLOGUE
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DQAWC

      SUBROUTINE DQAWC (F, A, B, C, EPSABS, EPSREL, RESULT, ABSERR,
     +   NEVAL, IER, LIMIT, LENW, LAST, IWORK, WORK)
 ***BEGIN PROLOGUE  DQAWC
 ***PURPOSE  The routine calculates an approximation result to a
             Cauchy principal value I = INTEGRAL of F*W over (A,B)
             (W(X) = 1/((X-C), C.NE.A, C.NE.B), hopefully satisfying
             following claim for accuracy
             ABS(I-RESULT).LE.MAX(EPSABE,EPSREL*ABS(I)).
 ***LIBRARY   SLATEC (QUADPACK)
 ***CATEGORY  H2A2A1, J4
 ***TYPE      DOUBLE PRECISION (QAWC-S, DQAWC-D)
 ***KEYWORDS  AUTOMATIC INTEGRATOR, CAUCHY PRINCIPAL VALUE,
              CLENSHAW-CURTIS METHOD, GLOBALLY ADAPTIVE, QUADPACK,
              QUADRATURE, SPECIAL-PURPOSE
 ***AUTHOR  Piessens, Robert
              Applied Mathematics and Programming Division
              K. U. Leuven
            de Doncker, Elise
              Applied Mathematics and Programming Division
              K. U. Leuven
 ***DESCRIPTION
 
         Computation of a Cauchy principal value
         Standard fortran subroutine
         Double precision version
 
 
         PARAMETERS
          ON ENTRY
             F      - Double precision
                      Function subprogram defining the integrand
                      Function F(X). The actual name for F needs to be
                      declared E X T E R N A L in the driver program.
 
             A      - Double precision
                      Under limit of integration
 
             B      - Double precision
                      Upper limit of integration
 
             C      - Parameter in the weight function, C.NE.A, C.NE.B.
                      If C = A or C = B, the routine will end with
                      IER = 6 .
 
             EPSABS - Double precision
                      Absolute accuracy requested
             EPSREL - Double precision
                      Relative accuracy requested
                      If  EPSABS.LE.0
                      and EPSREL.LT.MAX(50*REL.MACH.ACC.,0.5D-28),
                      the routine will end with IER = 6.
 
          ON RETURN
             RESULT - Double precision
                      Approximation to the integral
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             ABSERR - Double precision
                      Estimate or the modulus of the absolute error,
                      Which should equal or exceed ABS(I-RESULT)
 
             NEVAL  - Integer
                      Number of integrand evaluations
 
             IER    - Integer
                      IER = 0 Normal and reliable termination of the
                              routine. It is assumed that the requested
                              accuracy has been achieved.
                      IER.GT.0 Abnormal termination of the routine
                              the estimates for integral and error are
                              less reliable. It is assumed that the
                              requested accuracy has not been achieved.
             ERROR MESSAGES
                      IER = 1 Maximum number of subdivisions allowed
                              has been achieved. One can allow more sub-
                              divisions by increasing the value of LIMIT
                              (and taking the according dimension
                              adjustments into account). However, if
                              this yields no improvement it is advised
                              to analyze the integrand in order to
                              determine the integration difficulties.
                              If the position of a local difficulty
                              can be determined (e.g. SINGULARITY,
                              DISCONTINUITY within the interval) one
                              will probably gain from splitting up the
                              interval at this point and calling
                              appropriate integrators on the subranges.
                          = 2 The occurrence of roundoff error is detec-
                              ted, which prevents the requested
                              tolerance from being achieved.
                          = 3 Extremely bad integrand behaviour occurs
                              at some points of the integration
                              interval.
                          = 6 The input is invalid, because
                              C = A or C = B or
                              (EPSABS.LE.0 and
                               EPSREL.LT.MAX(50*REL.MACH.ACC.,0.5D-28))
                              or LIMIT.LT.1 or LENW.LT.LIMIT*4.
                              RESULT, ABSERR, NEVAL, LAST are set to
                              zero.  Except when LENW or LIMIT is
                              invalid, IWORK(1), WORK(LIMIT*2+1) and
                              WORK(LIMIT*3+1) are set to zero, WORK(1)
                              is set to A and WORK(LIMIT+1) to B.
 
          DIMENSIONING PARAMETERS
             LIMIT - Integer
                     Dimensioning parameter for IWORK
                     LIMIT determines the maximum number of subintervals
                     in the partition of the given integration interval
                     (A,B), LIMIT.GE.1.
                     If LIMIT.LT.1, the routine will end with IER = 6.
 
            LENW   - Integer
                     Dimensioning parameter for WORK
                     LENW must be at least LIMIT*4.
                     If LENW.LT.LIMIT*4, the routine will end with
                     IER = 6.
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             LAST  - Integer
                     On return, LAST equals the number of subintervals
                     produced in the subdivision process, which
                     determines the number of significant elements
                     actually in the WORK ARRAYS.
 
          WORK ARRAYS
             IWORK - Integer
                     Vector of dimension at least LIMIT, the first K
                     elements of which contain pointers
                     to the error estimates over the subintervals,
                     such that WORK(LIMIT*3+IWORK(1)), ... ,
                     WORK(LIMIT*3+IWORK(K)) form a decreasing
                     sequence, with K = LAST if LAST.LE.(LIMIT/2+2),
                     and K = LIMIT+1-LAST otherwise
 
             WORK  - Double precision
                     Vector of dimension at least LENW
                     On return
                     WORK(1), ..., WORK(LAST) contain the left
                      end points of the subintervals in the
                      partition of (A,B),
                     WORK(LIMIT+1), ..., WORK(LIMIT+LAST) contain
                      the right end points,
                     WORK(LIMIT*2+1), ..., WORK(LIMIT*2+LAST) contain
                      the integral approximations over the subintervals,
                     WORK(LIMIT*3+1), ..., WORK(LIMIT*3+LAST)
                      contain the error estimates.
 
 ***REFERENCES  (NONE)
 ***ROUTINES CALLED  DQAWCE, XERMSG
 ***REVISION HISTORY  (YYMMDD)
    800101  DATE WRITTEN
    890831  Modified array declarations.  (WRB)
    890831  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    900315  CALLs to XERROR changed to CALLs to XERMSG.  (THJ)
    END PROLOGUE
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DQAWCE

      SUBROUTINE DQAWCE (F, A, B, C, EPSABS, EPSREL, LIMIT, RESULT,
     +   ABSERR, NEVAL, IER, ALIST, BLIST, RLIST, ELIST, IORD, LAST)
 ***BEGIN PROLOGUE  DQAWCE
 ***PURPOSE  The routine calculates an approximation result to a
             CAUCHY PRINCIPAL VALUE I = Integral of F*W over (A,B)
             (W(X) = 1/(X-C), (C.NE.A, C.NE.B), hopefully satisfying
             following claim for accuracy
             ABS(I-RESULT).LE.MAX(EPSABS,EPSREL*ABS(I))
 ***LIBRARY   SLATEC (QUADPACK)
 ***CATEGORY  H2A2A1, J4
 ***TYPE      DOUBLE PRECISION (QAWCE-S, DQAWCE-D)
 ***KEYWORDS  AUTOMATIC INTEGRATOR, CAUCHY PRINCIPAL VALUE,
              CLENSHAW-CURTIS METHOD, QUADPACK, QUADRATURE,
              SPECIAL-PURPOSE
 ***AUTHOR  Piessens, Robert
              Applied Mathematics and Programming Division
              K. U. Leuven
            de Doncker, Elise
              Applied Mathematics and Programming Division
              K. U. Leuven
 ***DESCRIPTION
 
         Computation of a CAUCHY PRINCIPAL VALUE
         Standard fortran subroutine
         Double precision version
 
         PARAMETERS
          ON ENTRY
             F      - Double precision
                      Function subprogram defining the integrand
                      function F(X). The actual name for F needs to be
                      declared E X T E R N A L in the driver program.
 
             A      - Double precision
                      Lower limit of integration
 
             B      - Double precision
                      Upper limit of integration
 
             C      - Double precision
                      Parameter in the WEIGHT function, C.NE.A, C.NE.B
                      If C = A OR C = B, the routine will end with
                      IER = 6.
 
             EPSABS - Double precision
                      Absolute accuracy requested
             EPSREL - Double precision
                      Relative accuracy requested
                      If  EPSABS.LE.0
                      and EPSREL.LT.MAX(50*REL.MACH.ACC.,0.5D-28),
                      the routine will end with IER = 6.
 
             LIMIT  - Integer
                      Gives an upper bound on the number of subintervals
                      in the partition of (A,B), LIMIT.GE.1
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          ON RETURN
             RESULT - Double precision
                      Approximation to the integral
 
             ABSERR - Double precision
                      Estimate of the modulus of the absolute error,
                      which should equal or exceed ABS(I-RESULT)
 
             NEVAL  - Integer
                      Number of integrand evaluations
 
             IER    - Integer
                      IER = 0 Normal and reliable termination of the
                              routine. It is assumed that the requested
                              accuracy has been achieved.
                      IER.GT.0 Abnormal termination of the routine
                              the estimates for integral and error are
                              less reliable. It is assumed that the
                              requested accuracy has not been achieved.
             ERROR MESSAGES
                      IER = 1 Maximum number of subdivisions allowed
                              has been achieved. One can allow more sub-
                              divisions by increasing the value of
                              LIMIT. However, if this yields no
                              improvement it is advised to analyze the
                              the integrand, in order to determine the
                              the integration difficulties. If the
                              position of a local difficulty can be
                              determined (e.g. SINGULARITY,
                              DISCONTINUITY within the interval) one
                              will probably gain from splitting up the
                              interval at this point and calling
                              appropriate integrators on the subranges.
                          = 2 The occurrence of roundoff error is detec-
                              ted, which prevents the requested
                              tolerance from being achieved.
                          = 3 Extremely bad integrand behaviour
                              occurs at some interior points of
                              the integration interval.
                          = 6 The input is invalid, because
                              C = A or C = B or
                              (EPSABS.LE.0 and
                               EPSREL.LT.MAX(50*REL.MACH.ACC.,0.5D-28))
                              or LIMIT.LT.1.
                              RESULT, ABSERR, NEVAL, RLIST(1), ELIST(1),
                              IORD(1) and LAST are set to zero. ALIST(1)
                              and BLIST(1) are set to A and B
                              respectively.
 
             ALIST   - Double precision
                       Vector of dimension at least LIMIT, the first
                        LAST  elements of which are the left
                       end points of the subintervals in the partition
                       of the given integration range (A,B)
 
             BLIST   - Double precision
                       Vector of dimension at least LIMIT, the first
                        LAST  elements of which are the right
                       end points of the subintervals in the partition
                       of the given integration range (A,B)
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             RLIST   - Double precision
                       Vector of dimension at least LIMIT, the first
                        LAST  elements of which are the integral
                       approximations on the subintervals
 
             ELIST   - Double precision
                       Vector of dimension LIMIT, the first  LAST
                       elements of which are the moduli of the absolute
                       error estimates on the subintervals
 
             IORD    - Integer
                       Vector of dimension at least LIMIT, the first K
                       elements of which are pointers to the error
                       estimates over the subintervals, so that
                       ELIST(IORD(1)), ..., ELIST(IORD(K)) with K = LAST
                       If LAST.LE.(LIMIT/2+2), and K = LIMIT+1-LAST
                       otherwise, form a decreasing sequence
 
             LAST    - Integer
                       Number of subintervals actually produced in
                       the subdivision process
 
 ***REFERENCES  (NONE)
 ***ROUTINES CALLED  D1MACH, DQC25C, DQPSRT
 ***REVISION HISTORY  (YYMMDD)
    800101  DATE WRITTEN
    890531  Changed all specific intrinsics to generic.  (WRB)
    890831  Modified array declarations.  (WRB)
    890831  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    END PROLOGUE
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DQAWF

      SUBROUTINE DQAWF (F, A, OMEGA, INTEGR, EPSABS, RESULT, ABSERR,
     +   NEVAL, IER, LIMLST, LST, LENIW, MAXP1, LENW, IWORK, WORK)
 ***BEGIN PROLOGUE  DQAWF
 ***PURPOSE  The routine calculates an approximation result to a given
             Fourier integral I=Integral of F(X)*W(X) over (A,INFINITY)
             where W(X) = COS(OMEGA*X) or W(X) = SIN(OMEGA*X).
             Hopefully satisfying following claim for accuracy
             ABS(I-RESULT).LE.EPSABS.
 ***LIBRARY   SLATEC (QUADPACK)
 ***CATEGORY  H2A3A1
 ***TYPE      DOUBLE PRECISION (QAWF-S, DQAWF-D)
 ***KEYWORDS  AUTOMATIC INTEGRATOR, CONVERGENCE ACCELERATION,
              FOURIER INTEGRALS, INTEGRATION BETWEEN ZEROS, QUADPACK,
              QUADRATURE, SPECIAL-PURPOSE INTEGRAL
 ***AUTHOR  Piessens, Robert
              Applied Mathematics and Programming Division
              K. U. Leuven
            de Doncker, Elise
              Applied Mathematics and Programming Division
              K. U. Leuven
 ***DESCRIPTION
 
         Computation of Fourier integrals
         Standard fortran subroutine
         Double precision version
 
 
         PARAMETERS
          ON ENTRY
             F      - Double precision
                      Function subprogram defining the integrand
                      function F(X). The actual name for F needs to be
                      declared E X T E R N A L in the driver program.
 
             A      - Double precision
                      Lower limit of integration
 
             OMEGA  - Double precision
                      Parameter in the integrand WEIGHT function
 
             INTEGR - Integer
                      Indicates which of the WEIGHT functions is used
                      INTEGR = 1      W(X) = COS(OMEGA*X)
                      INTEGR = 2      W(X) = SIN(OMEGA*X)
                      IF INTEGR.NE.1.AND.INTEGR.NE.2, the routine
                      will end with IER = 6.
 
             EPSABS - Double precision
                      Absolute accuracy requested, EPSABS.GT.0.
                      If EPSABS.LE.0, the routine will end with IER = 6.
 
          ON RETURN
             RESULT - Double precision
                      Approximation to the integral
 
             ABSERR - Double precision
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                      Estimate of the modulus of the absolute error,
                      Which should equal or exceed ABS(I-RESULT)
 
             NEVAL  - Integer
                      Number of integrand evaluations
 
             IER    - Integer
                      IER = 0 Normal and reliable termination of the
                              routine. It is assumed that the requested
                              accuracy has been achieved.
                      IER.GT.0 Abnormal termination of the routine.
                              The estimates for integral and error are
                              less reliable. It is assumed that the
                              requested accuracy has not been achieved.
             ERROR MESSAGES
                     If OMEGA.NE.0
                      IER = 1 Maximum number of cycles allowed
                              has been achieved, i.e. of subintervals
                              (A+(K-1)C,A+KC) where
                              C = (2*INT(ABS(OMEGA))+1)*PI/ABS(OMEGA),
                              FOR K = 1, 2, ..., LST.
                              One can allow more cycles by increasing
                              the value of LIMLST (and taking the
                              according dimension adjustments into
                              account). Examine the array IWORK which
                              contains the error flags on the cycles, in
                              order to look for eventual local
                              integration difficulties.
                              If the position of a local difficulty
                              can be determined (e.g. singularity,
                              discontinuity within the interval) one
                              will probably gain from splitting up the
                              interval at this point and calling
                              appropriate integrators on the subranges.
                          = 4 The extrapolation table constructed for
                              convergence acceleration of the series
                              formed by the integral contributions over
                              the cycles, does not converge to within
                              the requested accuracy.
                              As in the case of IER = 1, it is advised
                              to examine the array IWORK which contains
                              the error flags on the cycles.
                          = 6 The input is invalid because
                              (INTEGR.NE.1 AND INTEGR.NE.2) or
                               EPSABS.LE.0 or LIMLST.LT.1 or
                               LENIW.LT.(LIMLST+2) or MAXP1.LT.1 or
                               LENW.LT.(LENIW*2+MAXP1*25).
                               RESULT, ABSERR, NEVAL, LST are set to
                               zero.
                          = 7 Bad integrand behaviour occurs within
                              one or more of the cycles. Location and
                              type of the difficulty involved can be
                              determined from the first LST elements of
                              vector IWORK.  Here LST is the number of
                              cycles actually needed (see below).
                              IWORK(K) = 1 The maximum number of
                                           subdivisions (=(LENIW-LIMLST)
                                           /2) has been achieved on the
                                           K th cycle.
                                       = 2 Occurrence of roundoff error
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                                           is detected and prevents the
                                           tolerance imposed on the K th
                                           cycle, from being achieved
                                           on this cycle.
                                       = 3 Extremely bad integrand
                                           behaviour occurs at some
                                           points of the K th cycle.
                                       = 4 The integration procedure
                                           over the K th cycle does
                                           not converge (to within the
                                           required accuracy) due to
                                           roundoff in the extrapolation
                                           procedure invoked on this
                                           cycle. It is assumed that the
                                           result on this interval is
                                           the best which can be
                                           obtained.
                                       = 5 The integral over the K th
                                           cycle is probably divergent
                                           or slowly convergent. It must
                                           be noted that divergence can
                                           occur with any other value of
                                           IWORK(K).
                     If OMEGA = 0 and INTEGR = 1,
                     The integral is calculated by means of DQAGIE,
                     and IER = IWORK(1) (with meaning as described
                     for IWORK(K),K = 1).
 
          DIMENSIONING PARAMETERS
             LIMLST - Integer
                      LIMLST gives an upper bound on the number of
                      cycles, LIMLST.GE.3.
                      If LIMLST.LT.3, the routine will end with IER = 6.
 
             LST    - Integer
                      On return, LST indicates the number of cycles
                      actually needed for the integration.
                      If OMEGA = 0, then LST is set to 1.
 
             LENIW  - Integer
                      Dimensioning parameter for IWORK. On entry,
                      (LENIW-LIMLST)/2 equals the maximum number of
                      subintervals allowed in the partition of each
                      cycle, LENIW.GE.(LIMLST+2).
                      If LENIW.LT.(LIMLST+2), the routine will end with
                      IER = 6.
 
             MAXP1  - Integer
                      MAXP1 gives an upper bound on the number of
                      Chebyshev moments which can be stored, i.e. for
                      the intervals of lengths ABS(B-A)*2**(-L),
                      L = 0,1, ..., MAXP1-2, MAXP1.GE.1.
                      If MAXP1.LT.1, the routine will end with IER = 6.
             LENW   - Integer
                      Dimensioning parameter for WORK
                      LENW must be at least LENIW*2+MAXP1*25.
                      If LENW.LT.(LENIW*2+MAXP1*25), the routine will
                      end with IER = 6.
 
          WORK ARRAYS
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             IWORK  - Integer
                      Vector of dimension at least LENIW
                      On return, IWORK(K) FOR K = 1, 2, ..., LST
                      contain the error flags on the cycles.
 
             WORK   - Double precision
                      Vector of dimension at least
                      On return,
                      WORK(1), ..., WORK(LST) contain the integral
                       approximations over the cycles,
                      WORK(LIMLST+1), ..., WORK(LIMLST+LST) contain
                       the error estimates over the cycles.
                      further elements of WORK have no specific
                      meaning for the user.
 
 ***REFERENCES  (NONE)
 ***ROUTINES CALLED  DQAWFE, XERMSG
 ***REVISION HISTORY  (YYMMDD)
    800101  DATE WRITTEN
    890831  Modified array declarations.  (WRB)
    891009  Removed unreferenced variable.  (WRB)
    891009  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    900315  CALLs to XERROR changed to CALLs to XERMSG.  (THJ)
    END PROLOGUE
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DQAWFE

      SUBROUTINE DQAWFE (F, A, OMEGA, INTEGR, EPSABS, LIMLST, LIMIT,
     +   MAXP1, RESULT, ABSERR, NEVAL, IER, RSLST, ERLST, IERLST, LST,
     +   ALIST, BLIST, RLIST, ELIST, IORD, NNLOG, CHEBMO)
 ***BEGIN PROLOGUE  DQAWFE
 ***PURPOSE  The routine calculates an approximation result to a
             given Fourier integral
             I = Integral of F(X)*W(X) over (A,INFINITY)
             where W(X)=COS(OMEGA*X) or W(X)=SIN(OMEGA*X),
             hopefully satisfying following claim for accuracy
             ABS(I-RESULT).LE.EPSABS.
 ***LIBRARY   SLATEC (QUADPACK)
 ***CATEGORY  H2A3A1
 ***TYPE      DOUBLE PRECISION (QAWFE-S, DQAWFE-D)
 ***KEYWORDS  AUTOMATIC INTEGRATOR, CONVERGENCE ACCELERATION,
              FOURIER INTEGRALS, INTEGRATION BETWEEN ZEROS, QUADPACK,
              QUADRATURE, SPECIAL-PURPOSE INTEGRAL
 ***AUTHOR  Piessens, Robert
              Applied Mathematics and Programming Division
              K. U. Leuven
            de Doncker, Elise
              Applied Mathematics and Programming Division
              K. U. Leuven
 ***DESCRIPTION
 
         Computation of Fourier integrals
         Standard fortran subroutine
         Double precision version
 
         PARAMETERS
          ON ENTRY
             F      - Double precision
                      Function subprogram defining the integrand
                      Function F(X). The actual name for F needs to
                      be declared E X T E R N A L in the driver program.
 
             A      - Double precision
                      Lower limit of integration
 
             OMEGA  - Double precision
                      Parameter in the WEIGHT function
 
             INTEGR - Integer
                      Indicates which WEIGHT function is used
                      INTEGR = 1      W(X) = COS(OMEGA*X)
                      INTEGR = 2      W(X) = SIN(OMEGA*X)
                      If INTEGR.NE.1.AND.INTEGR.NE.2, the routine will
                      end with IER = 6.
 
             EPSABS - Double precision
                      absolute accuracy requested, EPSABS.GT.0
                      If EPSABS.LE.0, the routine will end with IER = 6.
 
             LIMLST - Integer
                      LIMLST gives an upper bound on the number of
                      cycles, LIMLST.GE.1.
                      If LIMLST.LT.3, the routine will end with IER = 6.
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             LIMIT  - Integer
                      Gives an upper bound on the number of subintervals
                      allowed in the partition of each cycle, LIMIT.GE.1
                      each cycle, LIMIT.GE.1.
 
             MAXP1  - Integer
                      Gives an upper bound on the number of
                      Chebyshev moments which can be stored, I.E.
                      for the intervals of lengths ABS(B-A)*2**(-L),
                      L=0,1, ..., MAXP1-2, MAXP1.GE.1
 
          ON RETURN
             RESULT - Double precision
                      Approximation to the integral X
 
             ABSERR - Double precision
                      Estimate of the modulus of the absolute error,
                      which should equal or exceed ABS(I-RESULT)
 
             NEVAL  - Integer
                      Number of integrand evaluations
 
             IER    - IER = 0 Normal and reliable termination of
                              the routine. It is assumed that the
                              requested accuracy has been achieved.
                      IER.GT.0 Abnormal termination of the routine. The
                              estimates for integral and error are less
                              reliable. It is assumed that the requested
                              accuracy has not been achieved.
             ERROR MESSAGES
                     If OMEGA.NE.0
                      IER = 1 Maximum number of  cycles  allowed
                              Has been achieved., i.e. of subintervals
                              (A+(K-1)C,A+KC) where
                              C = (2*INT(ABS(OMEGA))+1)*PI/ABS(OMEGA),
                              for K = 1, 2, ..., LST.
                              One can allow more cycles by increasing
                              the value of LIMLST (and taking the
                              according dimension adjustments into
                              account).
                              Examine the array IWORK which contains
                              the error flags on the cycles, in order to
                              look for eventual local integration
                              difficulties. If the position of a local
                              difficulty can be determined (e.g.
                              SINGULARITY, DISCONTINUITY within the
                              interval) one will probably gain from
                              splitting up the interval at this point
                              and calling appropriate integrators on
                              the subranges.
                          = 4 The extrapolation table constructed for
                              convergence acceleration of the series
                              formed by the integral contributions over
                              the cycles, does not converge to within
                              the requested accuracy. As in the case of
                              IER = 1, it is advised to examine the
                              array IWORK which contains the error
                              flags on the cycles.
                          = 6 The input is invalid because
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                              (INTEGR.NE.1 AND INTEGR.NE.2) or
                               EPSABS.LE.0 or LIMLST.LT.3.
                               RESULT, ABSERR, NEVAL, LST are set
                               to zero.
                          = 7 Bad integrand behaviour occurs within one
                              or more of the cycles. Location and type
                              of the difficulty involved can be
                              determined from the vector IERLST. Here
                              LST is the number of cycles actually
                              needed (see below).
                              IERLST(K) = 1 The maximum number of
                                            subdivisions (= LIMIT) has
                                            been achieved on the K th
                                            cycle.
                                        = 2 Occurrence of roundoff error
                                            is detected and prevents the
                                            tolerance imposed on the
                                            K th cycle, from being
                                            achieved.
                                        = 3 Extremely bad integrand
                                            behaviour occurs at some
                                            points of the K th cycle.
                                        = 4 The integration procedure
                                            over the K th cycle does
                                            not converge (to within the
                                            required accuracy) due to
                                            roundoff in the
                                            extrapolation procedure
                                            invoked on this cycle. It
                                            is assumed that the result
                                            on this interval is the
                                            best which can be obtained.
                                        = 5 The integral over the K th
                                            cycle is probably divergent
                                            or slowly convergent. It
                                            must be noted that
                                            divergence can occur with
                                            any other value of
                                            IERLST(K).
                     If OMEGA = 0 and INTEGR = 1,
                     The integral is calculated by means of DQAGIE
                     and IER = IERLST(1) (with meaning as described
                     for IERLST(K), K = 1).
 
             RSLST  - Double precision
                      Vector of dimension at least LIMLST
                      RSLST(K) contains the integral contribution
                      over the interval (A+(K-1)C,A+KC) where
                      C = (2*INT(ABS(OMEGA))+1)*PI/ABS(OMEGA),
                      K = 1, 2, ..., LST.
                      Note that, if OMEGA = 0, RSLST(1) contains
                      the value of the integral over (A,INFINITY).
 
             ERLST  - Double precision
                      Vector of dimension at least LIMLST
                      ERLST(K) contains the error estimate corresponding
                      with RSLST(K).
 
             IERLST - Integer
                      Vector of dimension at least LIMLST
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                      IERLST(K) contains the error flag corresponding
                      with RSLST(K). For the meaning of the local error
                      flags see description of output parameter IER.
 
             LST    - Integer
                      Number of subintervals needed for the integration
                      If OMEGA = 0 then LST is set to 1.
 
             ALIST, BLIST, RLIST, ELIST - Double precision
                      vector of dimension at least LIMIT,
 
             IORD, NNLOG - Integer
                      Vector of dimension at least LIMIT, providing
                      space for the quantities needed in the subdivision
                      process of each cycle
 
             CHEBMO - Double precision
                      Array of dimension at least (MAXP1,25), providing
                      space for the Chebyshev moments needed within the
                      cycles
 
 ***REFERENCES  (NONE)
 ***ROUTINES CALLED  D1MACH, DQAGIE, DQAWOE, DQELG
 ***REVISION HISTORY  (YYMMDD)
    800101  DATE WRITTEN
    890531  Changed all specific intrinsics to generic.  (WRB)
    890831  Modified array declarations.  (WRB)
    891009  Removed unreferenced variable.  (WRB)
    891009  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    END PROLOGUE
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DQAWO

      SUBROUTINE DQAWO (F, A, B, OMEGA, INTEGR, EPSABS, EPSREL, RESULT,
     +   ABSERR, NEVAL, IER, LENIW, MAXP1, LENW, LAST, IWORK, WORK)
 ***BEGIN PROLOGUE  DQAWO
 ***PURPOSE  Calculate an approximation to a given definite integral
             I= Integral of F(X)*W(X) over (A,B), where
                    W(X) = COS(OMEGA*X)
                or  W(X) = SIN(OMEGA*X),
             hopefully satisfying the following claim for accuracy
                 ABS(I-RESULT).LE.MAX(EPSABS,EPSREL*ABS(I)).
 ***LIBRARY   SLATEC (QUADPACK)
 ***CATEGORY  H2A2A1
 ***TYPE      DOUBLE PRECISION (QAWO-S, DQAWO-D)
 ***KEYWORDS  AUTOMATIC INTEGRATOR, CLENSHAW-CURTIS METHOD,
              EXTRAPOLATION, GLOBALLY ADAPTIVE,
              INTEGRAND WITH OSCILLATORY COS OR SIN FACTOR, QUADPACK,
              QUADRATURE, SPECIAL-PURPOSE
 ***AUTHOR  Piessens, Robert
              Applied Mathematics and Programming Division
              K. U. Leuven
            de Doncker, Elise
              Applied Mathematics and Programming Division
              K. U. Leuven
 ***DESCRIPTION
 
         Computation of oscillatory integrals
         Standard fortran subroutine
         Double precision version
 
         PARAMETERS
          ON ENTRY
             F      - Double precision
                      Function subprogram defining the function
                      F(X).  The actual name for F needs to be
                      declared E X T E R N A L in the driver program.
 
             A      - Double precision
                      Lower limit of integration
 
             B      - Double precision
                      Upper limit of integration
 
             OMEGA  - Double precision
                      Parameter in the integrand weight function
 
             INTEGR - Integer
                      Indicates which of the weight functions is used
                      INTEGR = 1      W(X) = COS(OMEGA*X)
                      INTEGR = 2      W(X) = SIN(OMEGA*X)
                      If INTEGR.NE.1.AND.INTEGR.NE.2, the routine will
                      end with IER = 6.
 
             EPSABS - Double precision
                      Absolute accuracy requested
             EPSREL - Double precision
                      Relative accuracy requested
                      If EPSABS.LE.0 and
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                      EPSREL.LT.MAX(50*REL.MACH.ACC.,0.5D-28),
                      the routine will end with IER = 6.
 
          ON RETURN
             RESULT - Double precision
                      Approximation to the integral
 
             ABSERR - Double precision
                      Estimate of the modulus of the absolute error,
                      which should equal or exceed ABS(I-RESULT)
 
             NEVAL  - Integer
                      Number of integrand evaluations
 
             IER    - Integer
                      IER = 0 Normal and reliable termination of the
                              routine. It is assumed that the requested
                              accuracy has been achieved.
                    - IER.GT.0 Abnormal termination of the routine.
                              The estimates for integral and error are
                              less reliable. It is assumed that the
                              requested accuracy has not been achieved.
             ERROR MESSAGES
                      IER = 1 Maximum number of subdivisions allowed
                              has been achieved (= LENIW/2). One can
                              allow more subdivisions by increasing the
                              value of LENIW (and taking the according
                              dimension adjustments into account).
                              However, if this yields no improvement it
                              is advised to analyze the integrand in
                              order to determine the integration
                              difficulties. If the position of a local
                              difficulty can be determined (e.g.
                              SINGULARITY, DISCONTINUITY within the
                              interval) one will probably gain from
                              splitting up the interval at this point
                              and calling the integrator on the
                              subranges. If possible, an appropriate
                              special-purpose integrator should be used
                              which is designed for handling the type of
                              difficulty involved.
                          = 2 The occurrence of roundoff error is
                              detected, which prevents the requested
                              tolerance from being achieved.
                              The error may be under-estimated.
                          = 3 Extremely bad integrand behaviour occurs
                              at some interior points of the
                              integration interval.
                          = 4 The algorithm does not converge.
                              Roundoff error is detected in the
                              extrapolation table. It is presumed that
                              the requested tolerance cannot be achieved
                              due to roundoff in the extrapolation
                              table, and that the returned result is
                              the best which can be obtained.
                          = 5 The integral is probably divergent, or
                              slowly convergent. It must be noted that
                              divergence can occur with any other value
                              of IER.
                          = 6 The input is invalid, because
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                              (EPSABS.LE.0 and
                               EPSREL.LT.MAX(50*REL.MACH.ACC.,0.5D-28))
                              or (INTEGR.NE.1 AND INTEGR.NE.2),
                              or LENIW.LT.2 OR MAXP1.LT.1 or
                              LENW.LT.LENIW*2+MAXP1*25.
                              RESULT, ABSERR, NEVAL, LAST are set to
                              zero. Except when LENIW, MAXP1 or LENW are
                              invalid, WORK(LIMIT*2+1), WORK(LIMIT*3+1),
                              IWORK(1), IWORK(LIMIT+1) are set to zero,
                              WORK(1) is set to A and WORK(LIMIT+1) to
                              B.
 
          DIMENSIONING PARAMETERS
             LENIW  - Integer
                      Dimensioning parameter for IWORK.
                      LENIW/2 equals the maximum number of subintervals
                      allowed in the partition of the given integration
                      interval (A,B), LENIW.GE.2.
                      If LENIW.LT.2, the routine will end with IER = 6.
 
             MAXP1  - Integer
                      Gives an upper bound on the number of Chebyshev
                      moments which can be stored, i.e. for the
                      intervals of lengths ABS(B-A)*2**(-L),
                      L=0,1, ..., MAXP1-2, MAXP1.GE.1
                      If MAXP1.LT.1, the routine will end with IER = 6.
 
             LENW   - Integer
                      Dimensioning parameter for WORK
                      LENW must be at least LENIW*2+MAXP1*25.
                      If LENW.LT.(LENIW*2+MAXP1*25), the routine will
                      end with IER = 6.
 
             LAST   - Integer
                      On return, LAST equals the number of subintervals
                      produced in the subdivision process, which
                      determines the number of significant elements
                      actually in the WORK ARRAYS.
 
          WORK ARRAYS
             IWORK  - Integer
                      Vector of dimension at least LENIW
                      on return, the first K elements of which contain
                      pointers to the error estimates over the
                      subintervals, such that WORK(LIMIT*3+IWORK(1)), ..
                      WORK(LIMIT*3+IWORK(K)) form a decreasing
                      sequence, with LIMIT = LENW/2 , and K = LAST
                      if LAST.LE.(LIMIT/2+2), and K = LIMIT+1-LAST
                      otherwise.
                      Furthermore, IWORK(LIMIT+1), ..., IWORK(LIMIT+
                      LAST) indicate the subdivision levels of the
                      subintervals, such that IWORK(LIMIT+I) = L means
                      that the subinterval numbered I is of length
                      ABS(B-A)*2**(1-L).
 
             WORK   - Double precision
                      Vector of dimension at least LENW
                      On return
                      WORK(1), ..., WORK(LAST) contain the left
                       end points of the subintervals in the
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                       partition of (A,B),
                      WORK(LIMIT+1), ..., WORK(LIMIT+LAST) contain
                       the right end points,
                      WORK(LIMIT*2+1), ..., WORK(LIMIT*2+LAST) contain
                       the integral approximations over the
                       subintervals,
                      WORK(LIMIT*3+1), ..., WORK(LIMIT*3+LAST)
                       contain the error estimates.
                      WORK(LIMIT*4+1), ..., WORK(LIMIT*4+MAXP1*25)
                       Provide space for storing the Chebyshev moments.
                      Note that LIMIT = LENW/2.
 
 ***REFERENCES  (NONE)
 ***ROUTINES CALLED  DQAWOE, XERMSG
 ***REVISION HISTORY  (YYMMDD)
    800101  DATE WRITTEN
    890831  Modified array declarations.  (WRB)
    890831  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    900315  CALLs to XERROR changed to CALLs to XERMSG.  (THJ)
    END PROLOGUE
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DQAWOE

      SUBROUTINE DQAWOE (F, A, B, OMEGA, INTEGR, EPSABS, EPSREL, LIMIT,
     +   ICALL, MAXP1, RESULT, ABSERR, NEVAL, IER, LAST, ALIST, BLIST,
     +   RLIST, ELIST, IORD, NNLOG, MOMCOM, CHEBMO)
 ***BEGIN PROLOGUE  DQAWOE
 ***PURPOSE  Calculate an approximation to a given definite integral
             I = Integral of F(X)*W(X) over (A,B), where
                      W(X) = COS(OMEGA*X)
                  or  W(X)=SIN(OMEGA*X),
             hopefully satisfying the following claim for accuracy
                  ABS(I-RESULT).LE.MAX(EPSABS,EPSREL*ABS(I)).
 ***LIBRARY   SLATEC (QUADPACK)
 ***CATEGORY  H2A2A1
 ***TYPE      DOUBLE PRECISION (QAWOE-S, DQAWOE-D)
 ***KEYWORDS  AUTOMATIC INTEGRATOR, CLENSHAW-CURTIS METHOD,
              EXTRAPOLATION, GLOBALLY ADAPTIVE,
              INTEGRAND WITH OSCILLATORY COS OR SIN FACTOR, QUADPACK,
              QUADRATURE, SPECIAL-PURPOSE
 ***AUTHOR  Piessens, Robert
              Applied Mathematics and Programming Division
              K. U. Leuven
            de Doncker, Elise
              Applied Mathematics and Programming Division
              K. U. Leuven
 ***DESCRIPTION
 
         Computation of Oscillatory integrals
         Standard fortran subroutine
         Double precision version
 
         PARAMETERS
          ON ENTRY
             F      - Double precision
                      Function subprogram defining the integrand
                      function F(X). The actual name for F needs to be
                      declared E X T E R N A L in the driver program.
 
             A      - Double precision
                      Lower limit of integration
 
             B      - Double precision
                      Upper limit of integration
 
             OMEGA  - Double precision
                      Parameter in the integrand weight function
 
             INTEGR - Integer
                      Indicates which of the WEIGHT functions is to be
                      used
                      INTEGR = 1      W(X) = COS(OMEGA*X)
                      INTEGR = 2      W(X) = SIN(OMEGA*X)
                      If INTEGR.NE.1 and INTEGR.NE.2, the routine
                      will end with IER = 6.
 
             EPSABS - Double precision
                      Absolute accuracy requested
             EPSREL - Double precision
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                      Relative accuracy requested
                      If  EPSABS.LE.0
                      and EPSREL.LT.MAX(50*REL.MACH.ACC.,0.5D-28),
                      the routine will end with IER = 6.
 
             LIMIT  - Integer
                      Gives an upper bound on the number of subdivisions
                      in the partition of (A,B), LIMIT.GE.1.
 
             ICALL  - Integer
                      If DQAWOE is to be used only once, ICALL must
                      be set to 1.  Assume that during this call, the
                      Chebyshev moments (for CLENSHAW-CURTIS integration
                      of degree 24) have been computed for intervals of
                      lengths (ABS(B-A))*2**(-L), L=0,1,2,...MOMCOM-1.
                      If ICALL.GT.1 this means that DQAWOE has been
                      called twice or more on intervals of the same
                      length ABS(B-A). The Chebyshev moments already
                      computed are then re-used in subsequent calls.
                      If ICALL.LT.1, the routine will end with IER = 6.
 
             MAXP1  - Integer
                      Gives an upper bound on the number of Chebyshev
                      moments which can be stored, i.e. for the
                      intervals of lengths ABS(B-A)*2**(-L),
                      L=0,1, ..., MAXP1-2, MAXP1.GE.1.
                      If MAXP1.LT.1, the routine will end with IER = 6.
 
          ON RETURN
             RESULT - Double precision
                      Approximation to the integral
 
             ABSERR - Double precision
                      Estimate of the modulus of the absolute error,
                      which should equal or exceed ABS(I-RESULT)
 
             NEVAL  - Integer
                      Number of integrand evaluations
 
             IER    - Integer
                      IER = 0 Normal and reliable termination of the
                              routine. It is assumed that the
                              requested accuracy has been achieved.
                    - IER.GT.0 Abnormal termination of the routine.
                              The estimates for integral and error are
                              less reliable. It is assumed that the
                              requested accuracy has not been achieved.
             ERROR MESSAGES
                      IER = 1 Maximum number of subdivisions allowed
                              has been achieved. One can allow more
                              subdivisions by increasing the value of
                              LIMIT (and taking according dimension
                              adjustments into account). However, if
                              this yields no improvement it is advised
                              to analyze the integrand, in order to
                              determine the integration difficulties.
                              If the position of a local difficulty can
                              be determined (e.g. SINGULARITY,
                              DISCONTINUITY within the interval) one
                              will probably gain from splitting up the
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                              interval at this point and calling the
                              integrator on the subranges. If possible,
                              an appropriate special-purpose integrator
                              should be used which is designed for
                              handling the type of difficulty involved.
                          = 2 The occurrence of roundoff error is
                              detected, which prevents the requested
                              tolerance from being achieved.
                              The error may be under-estimated.
                          = 3 Extremely bad integrand behaviour occurs
                              at some points of the integration
                              interval.
                          = 4 The algorithm does not converge.
                              Roundoff error is detected in the
                              extrapolation table.
                              It is presumed that the requested
                              tolerance cannot be achieved due to
                              roundoff in the extrapolation table,
                              and that the returned result is the
                              best which can be obtained.
                          = 5 The integral is probably divergent, or
                              slowly convergent. It must be noted that
                              divergence can occur with any other value
                              of IER.GT.0.
                          = 6 The input is invalid, because
                              (EPSABS.LE.0 and
                               EPSREL.LT.MAX(50*REL.MACH.ACC.,0.5D-28))
                              or (INTEGR.NE.1 and INTEGR.NE.2) or
                              ICALL.LT.1 or MAXP1.LT.1.
                              RESULT, ABSERR, NEVAL, LAST, RLIST(1),
                              ELIST(1), IORD(1) and NNLOG(1) are set
                              to ZERO. ALIST(1) and BLIST(1) are set
                              to A and B respectively.
 
             LAST  -  Integer
                      On return, LAST equals the number of
                      subintervals produces in the subdivision
                      process, which determines the number of
                      significant elements actually in the
                      WORK ARRAYS.
             ALIST  - Double precision
                      Vector of dimension at least LIMIT, the first
                       LAST  elements of which are the left
                      end points of the subintervals in the partition
                      of the given integration range (A,B)
 
             BLIST  - Double precision
                      Vector of dimension at least LIMIT, the first
                       LAST  elements of which are the right
                      end points of the subintervals in the partition
                      of the given integration range (A,B)
 
             RLIST  - Double precision
                      Vector of dimension at least LIMIT, the first
                       LAST  elements of which are the integral
                      approximations on the subintervals
 
             ELIST  - Double precision
                      Vector of dimension at least LIMIT, the first
                       LAST  elements of which are the moduli of the
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                      absolute error estimates on the subintervals
 
             IORD   - Integer
                      Vector of dimension at least LIMIT, the first K
                      elements of which are pointers to the error
                      estimates over the subintervals,
                      such that ELIST(IORD(1)), ...,
                      ELIST(IORD(K)) form a decreasing sequence, with
                      K = LAST if LAST.LE.(LIMIT/2+2), and
                      K = LIMIT+1-LAST otherwise.
 
             NNLOG  - Integer
                      Vector of dimension at least LIMIT, containing the
                      subdivision levels of the subintervals, i.e.
                      IWORK(I) = L means that the subinterval
                      numbered I is of length ABS(B-A)*2**(1-L)
 
          ON ENTRY AND RETURN
             MOMCOM - Integer
                      Indicating that the Chebyshev moments
                      have been computed for intervals of lengths
                      (ABS(B-A))*2**(-L), L=0,1,2, ..., MOMCOM-1,
                      MOMCOM.LT.MAXP1
 
             CHEBMO - Double precision
                      Array of dimension (MAXP1,25) containing the
                      Chebyshev moments
 
 ***REFERENCES  (NONE)
 ***ROUTINES CALLED  D1MACH, DQC25F, DQELG, DQPSRT
 ***REVISION HISTORY  (YYMMDD)
    800101  DATE WRITTEN
    890531  Changed all specific intrinsics to generic.  (WRB)
    890831  Modified array declarations.  (WRB)
    890831  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    END PROLOGUE
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DQAWS

      SUBROUTINE DQAWS (F, A, B, ALFA, BETA, INTEGR, EPSABS, EPSREL,
     +   RESULT, ABSERR, NEVAL, IER, LIMIT, LENW, LAST, IWORK, WORK)
 ***BEGIN PROLOGUE  DQAWS
 ***PURPOSE  The routine calculates an approximation result to a given
             definite integral I = Integral of F*W over (A,B),
             (where W shows a singular behaviour at the end points
             see parameter INTEGR).
             Hopefully satisfying following claim for accuracy
             ABS(I-RESULT).LE.MAX(EPSABS,EPSREL*ABS(I)).
 ***LIBRARY   SLATEC (QUADPACK)
 ***CATEGORY  H2A2A1
 ***TYPE      DOUBLE PRECISION (QAWS-S, DQAWS-D)
 ***KEYWORDS  ALGEBRAIC-LOGARITHMIC END POINT SINGULARITIES,
              AUTOMATIC INTEGRATOR, CLENSHAW-CURTIS METHOD,
              GLOBALLY ADAPTIVE, QUADPACK, QUADRATURE, SPECIAL-PURPOSE
 ***AUTHOR  Piessens, Robert
              Applied Mathematics and Programming Division
              K. U. Leuven
            de Doncker, Elise
              Applied Mathematics and Programming Division
              K. U. Leuven
 ***DESCRIPTION
 
         Integration of functions having algebraico-logarithmic
         end point singularities
         Standard fortran subroutine
         Double precision version
 
         PARAMETERS
          ON ENTRY
             F      - Double precision
                      Function subprogram defining the integrand
                      function F(X). The actual name for F needs to be
                      declared E X T E R N A L in the driver program.
 
             A      - Double precision
                      Lower limit of integration
 
             B      - Double precision
                      Upper limit of integration, B.GT.A
                      If B.LE.A, the routine will end with IER = 6.
 
             ALFA   - Double precision
                      Parameter in the integrand function, ALFA.GT.(-1)
                      If ALFA.LE.(-1), the routine will end with
                      IER = 6.
 
             BETA   - Double precision
                      Parameter in the integrand function, BETA.GT.(-1)
                      If BETA.LE.(-1), the routine will end with
                      IER = 6.
 
             INTEGR - Integer
                      Indicates which WEIGHT function is to be used
                      = 1  (X-A)**ALFA*(B-X)**BETA
                      = 2  (X-A)**ALFA*(B-X)**BETA*LOG(X-A)
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                      = 3  (X-A)**ALFA*(B-X)**BETA*LOG(B-X)
                      = 4  (X-A)**ALFA*(B-X)**BETA*LOG(X-A)*LOG(B-X)
                      If INTEGR.LT.1 or INTEGR.GT.4, the routine
                      will end with IER = 6.
 
             EPSABS - Double precision
                      Absolute accuracy requested
             EPSREL - Double precision
                      Relative accuracy requested
                      If  EPSABS.LE.0
                      and EPSREL.LT.MAX(50*REL.MACH.ACC.,0.5D-28),
                      the routine will end with IER = 6.
 
          ON RETURN
             RESULT - Double precision
                      Approximation to the integral
 
             ABSERR - Double precision
                      Estimate of the modulus of the absolute error,
                      Which should equal or exceed ABS(I-RESULT)
 
             NEVAL  - Integer
                      Number of integrand evaluations
 
             IER    - Integer
                      IER = 0 Normal and reliable termination of the
                              routine. It is assumed that the requested
                              accuracy has been achieved.
                      IER.GT.0 Abnormal termination of the routine
                              The estimates for the integral and error
                              are less reliable. It is assumed that the
                              requested accuracy has not been achieved.
             ERROR MESSAGES
                      IER = 1 Maximum number of subdivisions allowed
                              has been achieved. One can allow more
                              subdivisions by increasing the value of
                              LIMIT (and taking the according dimension
                              adjustments into account). However, if
                              this yields no improvement it is advised
                              to analyze the integrand, in order to
                              determine the integration difficulties
                              which prevent the requested tolerance from
                              being achieved. In case of a jump
                              discontinuity or a local singularity
                              of algebraico-logarithmic type at one or
                              more interior points of the integration
                              range, one should proceed by splitting up
                              the interval at these points and calling
                              the integrator on the subranges.
                          = 2 The occurrence of roundoff error is
                              detected, which prevents the requested
                              tolerance from being achieved.
                          = 3 Extremely bad integrand behaviour occurs
                              at some points of the integration
                              interval.
                          = 6 The input is invalid, because
                              B.LE.A or ALFA.LE.(-1) or BETA.LE.(-1) or
                              or INTEGR.LT.1 or INTEGR.GT.4 or
                              (EPSABS.LE.0 and
                               EPSREL.LT.MAX(50*REL.MACH.ACC.,0.5D-28))

SLATEC3 (DACOSH through DS2Y) - 546



                              or LIMIT.LT.2 or LENW.LT.LIMIT*4.
                              RESULT, ABSERR, NEVAL, LAST are set to
                              zero. Except when LENW or LIMIT is invalid
                              IWORK(1), WORK(LIMIT*2+1) and
                              WORK(LIMIT*3+1) are set to zero, WORK(1)
                              is set to A and WORK(LIMIT+1) to B.
 
          DIMENSIONING PARAMETERS
             LIMIT  - Integer
                      Dimensioning parameter for IWORK
                      LIMIT determines the maximum number of
                      subintervals in the partition of the given
                      integration interval (A,B), LIMIT.GE.2.
                      If LIMIT.LT.2, the routine will end with IER = 6.
 
             LENW   - Integer
                      Dimensioning parameter for WORK
                      LENW must be at least LIMIT*4.
                      If LENW.LT.LIMIT*4, the routine will end
                      with IER = 6.
 
             LAST   - Integer
                      On return, LAST equals the number of
                      subintervals produced in the subdivision process,
                      which determines the significant number of
                      elements actually in the WORK ARRAYS.
 
          WORK ARRAYS
             IWORK  - Integer
                      Vector of dimension LIMIT, the first K
                      elements of which contain pointers
                      to the error estimates over the subintervals,
                      such that WORK(LIMIT*3+IWORK(1)), ...,
                      WORK(LIMIT*3+IWORK(K)) form a decreasing
                      sequence with K = LAST if LAST.LE.(LIMIT/2+2),
                      and K = LIMIT+1-LAST otherwise
 
             WORK   - Double precision
                      Vector of dimension LENW
                      On return
                      WORK(1), ..., WORK(LAST) contain the left
                       end points of the subintervals in the
                       partition of (A,B),
                      WORK(LIMIT+1), ..., WORK(LIMIT+LAST) contain
                       the right end points,
                      WORK(LIMIT*2+1), ..., WORK(LIMIT*2+LAST)
                       contain the integral approximations over
                       the subintervals,
                      WORK(LIMIT*3+1), ..., WORK(LIMIT*3+LAST)
                       contain the error estimates.
 
 ***REFERENCES  (NONE)
 ***ROUTINES CALLED  DQAWSE, XERMSG
 ***REVISION HISTORY  (YYMMDD)
    800101  DATE WRITTEN
    890831  Modified array declarations.  (WRB)
    890831  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    900315  CALLs to XERROR changed to CALLs to XERMSG.  (THJ)
    END PROLOGUE
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DQAWSE

      SUBROUTINE DQAWSE (F, A, B, ALFA, BETA, INTEGR, EPSABS, EPSREL,
     +   LIMIT, RESULT, ABSERR, NEVAL, IER, ALIST, BLIST, RLIST, ELIST,
     +   IORD, LAST)
 ***BEGIN PROLOGUE  DQAWSE
 ***PURPOSE  The routine calculates an approximation result to a given
             definite integral I = Integral of F*W over (A,B),
             (where W shows a singular behaviour at the end points,
             see parameter INTEGR).
             Hopefully satisfying following claim for accuracy
             ABS(I-RESULT).LE.MAX(EPSABS,EPSREL*ABS(I)).
 ***LIBRARY   SLATEC (QUADPACK)
 ***CATEGORY  H2A2A1
 ***TYPE      DOUBLE PRECISION (QAWSE-S, DQAWSE-D)
 ***KEYWORDS  ALGEBRAIC-LOGARITHMIC END POINT SINGULARITIES,
              AUTOMATIC INTEGRATOR, CLENSHAW-CURTIS METHOD, QUADPACK,
              QUADRATURE, SPECIAL-PURPOSE
 ***AUTHOR  Piessens, Robert
              Applied Mathematics and Programming Division
              K. U. Leuven
            de Doncker, Elise
              Applied Mathematics and Programming Division
              K. U. Leuven
 ***DESCRIPTION
 
         Integration of functions having algebraico-logarithmic
         end point singularities
         Standard fortran subroutine
         Double precision version
 
         PARAMETERS
          ON ENTRY
             F      - Double precision
                      Function subprogram defining the integrand
                      function F(X). The actual name for F needs to be
                      declared E X T E R N A L in the driver program.
 
             A      - Double precision
                      Lower limit of integration
 
             B      - Double precision
                      Upper limit of integration, B.GT.A
                      If B.LE.A, the routine will end with IER = 6.
 
             ALFA   - Double precision
                      Parameter in the WEIGHT function, ALFA.GT.(-1)
                      If ALFA.LE.(-1), the routine will end with
                      IER = 6.
 
             BETA   - Double precision
                      Parameter in the WEIGHT function, BETA.GT.(-1)
                      If BETA.LE.(-1), the routine will end with
                      IER = 6.
 
             INTEGR - Integer
                      Indicates which WEIGHT function is to be used
                      = 1  (X-A)**ALFA*(B-X)**BETA
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                      = 2  (X-A)**ALFA*(B-X)**BETA*LOG(X-A)
                      = 3  (X-A)**ALFA*(B-X)**BETA*LOG(B-X)
                      = 4  (X-A)**ALFA*(B-X)**BETA*LOG(X-A)*LOG(B-X)
                      If INTEGR.LT.1 or INTEGR.GT.4, the routine
                      will end with IER = 6.
 
             EPSABS - Double precision
                      Absolute accuracy requested
             EPSREL - Double precision
                      Relative accuracy requested
                      If  EPSABS.LE.0
                      and EPSREL.LT.MAX(50*REL.MACH.ACC.,0.5D-28),
                      the routine will end with IER = 6.
 
             LIMIT  - Integer
                      Gives an upper bound on the number of subintervals
                      in the partition of (A,B), LIMIT.GE.2
                      If LIMIT.LT.2, the routine will end with IER = 6.
 
          ON RETURN
             RESULT - Double precision
                      Approximation to the integral
 
             ABSERR - Double precision
                      Estimate of the modulus of the absolute error,
                      which should equal or exceed ABS(I-RESULT)
 
             NEVAL  - Integer
                      Number of integrand evaluations
 
             IER    - Integer
                      IER = 0 Normal and reliable termination of the
                              routine. It is assumed that the requested
                              accuracy has been achieved.
                      IER.GT.0 Abnormal termination of the routine
                              the estimates for the integral and error
                              are less reliable. It is assumed that the
                              requested accuracy has not been achieved.
             ERROR MESSAGES
                          = 1 Maximum number of subdivisions allowed
                              has been achieved. One can allow more
                              subdivisions by increasing the value of
                              LIMIT. However, if this yields no
                              improvement, it is advised to analyze the
                              integrand in order to determine the
                              integration difficulties which prevent the
                              requested tolerance from being achieved.
                              In case of a jump DISCONTINUITY or a local
                              SINGULARITY of algebraico-logarithmic type
                              at one or more interior points of the
                              integration range, one should proceed by
                              splitting up the interval at these
                              points and calling the integrator on the
                              subranges.
                          = 2 The occurrence of roundoff error is
                              detected, which prevents the requested
                              tolerance from being achieved.
                          = 3 Extremely bad integrand behaviour occurs
                              at some points of the integration
                              interval.
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                          = 6 The input is invalid, because
                              B.LE.A or ALFA.LE.(-1) or BETA.LE.(-1), or
                              INTEGR.LT.1 or INTEGR.GT.4, or
                              (EPSABS.LE.0 and
                               EPSREL.LT.MAX(50*REL.MACH.ACC.,0.5D-28),
                              or LIMIT.LT.2.
                              RESULT, ABSERR, NEVAL, RLIST(1), ELIST(1),
                              IORD(1) and LAST are set to zero. ALIST(1)
                              and BLIST(1) are set to A and B
                              respectively.
 
             ALIST  - Double precision
                      Vector of dimension at least LIMIT, the first
                       LAST  elements of which are the left
                      end points of the subintervals in the partition
                      of the given integration range (A,B)
 
             BLIST  - Double precision
                      Vector of dimension at least LIMIT, the first
                       LAST  elements of which are the right
                      end points of the subintervals in the partition
                      of the given integration range (A,B)
 
             RLIST  - Double precision
                      Vector of dimension at least LIMIT, the first
                       LAST  elements of which are the integral
                      approximations on the subintervals
 
             ELIST  - Double precision
                      Vector of dimension at least LIMIT, the first
                       LAST  elements of which are the moduli of the
                      absolute error estimates on the subintervals
 
             IORD   - Integer
                      Vector of dimension at least LIMIT, the first K
                      of which are pointers to the error
                      estimates over the subintervals, so that
                      ELIST(IORD(1)), ..., ELIST(IORD(K)) with K = LAST
                      If LAST.LE.(LIMIT/2+2), and K = LIMIT+1-LAST
                      otherwise form a decreasing sequence
 
             LAST   - Integer
                      Number of subintervals actually produced in
                      the subdivision process
 
 ***REFERENCES  (NONE)
 ***ROUTINES CALLED  D1MACH, DQC25S, DQMOMO, DQPSRT
 ***REVISION HISTORY  (YYMMDD)
    800101  DATE WRITTEN
    890531  Changed all specific intrinsics to generic.  (WRB)
    890831  Modified array declarations.  (WRB)
    890831  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    END PROLOGUE
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DQC25C

      SUBROUTINE DQC25C (F, A, B, C, RESULT, ABSERR, KRUL, NEVAL)
 ***BEGIN PROLOGUE  DQC25C
 ***PURPOSE  To compute I = Integral of F*W over (A,B) with
             error estimate, where W(X) = 1/(X-C)
 ***LIBRARY   SLATEC (QUADPACK)
 ***CATEGORY  H2A2A2, J4
 ***TYPE      DOUBLE PRECISION (QC25C-S, DQC25C-D)
 ***KEYWORDS  25-POINT CLENSHAW-CURTIS INTEGRATION, QUADPACK, QUADRATURE
 ***AUTHOR  Piessens, Robert
              Applied Mathematics and Programming Division
              K. U. Leuven
            de Doncker, Elise
              Applied Mathematics and Programming Division
              K. U. Leuven
 ***DESCRIPTION
 
         Integration rules for the computation of CAUCHY
         PRINCIPAL VALUE integrals
         Standard fortran subroutine
         Double precision version
 
         PARAMETERS
            F      - Double precision
                     Function subprogram defining the integrand function
                     F(X). The actual name for F needs to be declared
                     E X T E R N A L  in the driver program.
 
            A      - Double precision
                     Left end point of the integration interval
 
            B      - Double precision
                     Right end point of the integration interval, B.GT.A
 
            C      - Double precision
                     Parameter in the WEIGHT function
 
            RESULT - Double precision
                     Approximation to the integral
                     result is computed by using a generalized
                     Clenshaw-Curtis method if C lies within ten percent
                     of the integration interval. In the other case the
                     15-point Kronrod rule obtained by optimal addition
                     of abscissae to the 7-point Gauss rule, is applied.
 
            ABSERR - Double precision
                     Estimate of the modulus of the absolute error,
                     which should equal or exceed ABS(I-RESULT)
 
            KRUL   - Integer
                     Key which is decreased by 1 if the 15-point
                     Gauss-Kronrod scheme has been used
 
            NEVAL  - Integer
                     Number of integrand evaluations
 
  ......................................................................
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 ***REFERENCES  (NONE)
 ***ROUTINES CALLED  DQCHEB, DQK15W, DQWGTC
 ***REVISION HISTORY  (YYMMDD)
    810101  DATE WRITTEN
    890531  Changed all specific intrinsics to generic.  (WRB)
    890531  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    END PROLOGUE
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DQC25F

      SUBROUTINE DQC25F (F, A, B, OMEGA, INTEGR, NRMOM, MAXP1, KSAVE,
     +   RESULT, ABSERR, NEVAL, RESABS, RESASC, MOMCOM, CHEBMO)
 ***BEGIN PROLOGUE  DQC25F
 ***PURPOSE  To compute the integral I=Integral of F(X) over (A,B)
             Where W(X) = COS(OMEGA*X) or W(X)=SIN(OMEGA*X) and to
             compute J = Integral of ABS(F) over (A,B). For small value
             of OMEGA or small intervals (A,B) the 15-point GAUSS-KRONRO
             Rule is used. Otherwise a generalized CLENSHAW-CURTIS
             method is used.
 ***LIBRARY   SLATEC (QUADPACK)
 ***CATEGORY  H2A2A2
 ***TYPE      DOUBLE PRECISION (QC25F-S, DQC25F-D)
 ***KEYWORDS  CLENSHAW-CURTIS METHOD, GAUSS-KRONROD RULES,
              INTEGRATION RULES FOR FUNCTIONS WITH COS OR SIN FACTOR,
              QUADPACK, QUADRATURE
 ***AUTHOR  Piessens, Robert
              Applied Mathematics and Programming Division
              K. U. Leuven
            de Doncker, Elise
              Applied Mathematics and Programming Division
              K. U. Leuven
 ***DESCRIPTION
 
         Integration rules for functions with COS or SIN factor
         Standard fortran subroutine
         Double precision version
 
         PARAMETERS
          ON ENTRY
            F      - Double precision
                     Function subprogram defining the integrand
                     function F(X). The actual name for F needs to
                     be declared E X T E R N A L in the calling program.
 
            A      - Double precision
                     Lower limit of integration
 
            B      - Double precision
                     Upper limit of integration
 
            OMEGA  - Double precision
                     Parameter in the WEIGHT function
 
            INTEGR - Integer
                     Indicates which WEIGHT function is to be used
                        INTEGR = 1   W(X) = COS(OMEGA*X)
                        INTEGR = 2   W(X) = SIN(OMEGA*X)
 
            NRMOM  - Integer
                     The length of interval (A,B) is equal to the length
                     of the original integration interval divided by
                     2**NRMOM (we suppose that the routine is used in an
                     adaptive integration process, otherwise set
                     NRMOM = 0). NRMOM must be zero at the first call.
 
            MAXP1  - Integer
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                     Gives an upper bound on the number of Chebyshev
                     moments which can be stored, i.e. for the
                     intervals of lengths ABS(BB-AA)*2**(-L),
                     L = 0,1,2, ..., MAXP1-2.
 
            KSAVE  - Integer
                     Key which is one when the moments for the
                     current interval have been computed
 
          ON RETURN
            RESULT - Double precision
                     Approximation to the integral I
 
            ABSERR - Double precision
                     Estimate of the modulus of the absolute
                     error, which should equal or exceed ABS(I-RESULT)
 
            NEVAL  - Integer
                     Number of integrand evaluations
 
            RESABS - Double precision
                     Approximation to the integral J
 
            RESASC - Double precision
                     Approximation to the integral of ABS(F-I/(B-A))
 
          ON ENTRY AND RETURN
            MOMCOM - Integer
                     For each interval length we need to compute the
                     Chebyshev moments. MOMCOM counts the number of
                     intervals for which these moments have already been
                     computed. If NRMOM.LT.MOMCOM or KSAVE = 1, the
                     Chebyshev moments for the interval (A,B) have
                     already been computed and stored, otherwise we
                     compute them and we increase MOMCOM.
 
            CHEBMO - Double precision
                     Array of dimension at least (MAXP1,25) containing
                     the modified Chebyshev moments for the first MOMCOM
                     MOMCOM interval lengths
 
  ......................................................................
 
 ***REFERENCES  (NONE)
 ***ROUTINES CALLED  D1MACH, DGTSL, DQCHEB, DQK15W, DQWGTF
 ***REVISION HISTORY  (YYMMDD)
    810101  DATE WRITTEN
    890531  Changed all specific intrinsics to generic.  (WRB)
    890531  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    END PROLOGUE
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DQC25S

      SUBROUTINE DQC25S (F, A, B, BL, BR, ALFA, BETA, RI, RJ, RG, RH,
     +   RESULT, ABSERR, RESASC, INTEGR, NEV)
 ***BEGIN PROLOGUE  DQC25S
 ***PURPOSE  To compute I = Integral of F*W over (BL,BR), with error
             estimate, where the weight function W has a singular
             behaviour of ALGEBRAICO-LOGARITHMIC type at the points
             A and/or B. (BL,BR) is a part of (A,B).
 ***LIBRARY   SLATEC (QUADPACK)
 ***CATEGORY  H2A2A2
 ***TYPE      DOUBLE PRECISION (QC25S-S, DQC25S-D)
 ***KEYWORDS  25-POINT CLENSHAW-CURTIS INTEGRATION, QUADPACK, QUADRATURE
 ***AUTHOR  Piessens, Robert
              Applied Mathematics and Programming Division
              K. U. Leuven
            de Doncker, Elise
              Applied Mathematics and Programming Division
              K. U. Leuven
 ***DESCRIPTION
 
         Integration rules for integrands having ALGEBRAICO-LOGARITHMIC
         end point singularities
         Standard fortran subroutine
         Double precision version
 
         PARAMETERS
            F      - Double precision
                     Function subprogram defining the integrand
                     F(X). The actual name for F needs to be declared
                     E X T E R N A L  in the driver program.
 
            A      - Double precision
                     Left end point of the original interval
 
            B      - Double precision
                     Right end point of the original interval, B.GT.A
 
            BL     - Double precision
                     Lower limit of integration, BL.GE.A
 
            BR     - Double precision
                     Upper limit of integration, BR.LE.B
 
            ALFA   - Double precision
                     PARAMETER IN THE WEIGHT FUNCTION
 
            BETA   - Double precision
                     Parameter in the weight function
 
            RI,RJ,RG,RH - Double precision
                     Modified CHEBYSHEV moments for the application
                     of the generalized CLENSHAW-CURTIS
                     method (computed in subroutine DQMOMO)
 
            RESULT - Double precision
                     Approximation to the integral
                     RESULT is computed by using a generalized
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                     CLENSHAW-CURTIS method if B1 = A or BR = B.
                     in all other cases the 15-POINT KRONROD
                     RULE is applied, obtained by optimal addition of
                     Abscissae to the 7-POINT GAUSS RULE.
 
            ABSERR - Double precision
                     Estimate of the modulus of the absolute error,
                     which should equal or exceed ABS(I-RESULT)
 
            RESASC - Double precision
                     Approximation to the integral of ABS(F*W-I/(B-A))
 
            INTEGR - Integer
                     Which determines the weight function
                     = 1   W(X) = (X-A)**ALFA*(B-X)**BETA
                     = 2   W(X) = (X-A)**ALFA*(B-X)**BETA*LOG(X-A)
                     = 3   W(X) = (X-A)**ALFA*(B-X)**BETA*LOG(B-X)
                     = 4   W(X) = (X-A)**ALFA*(B-X)**BETA*LOG(X-A)*
                                  LOG(B-X)
 
            NEV    - Integer
                     Number of integrand evaluations
 
 ***REFERENCES  (NONE)
 ***ROUTINES CALLED  DQCHEB, DQK15W, DQWGTS
 ***REVISION HISTORY  (YYMMDD)
    810101  DATE WRITTEN
    890531  Changed all specific intrinsics to generic.  (WRB)
    890531  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    END PROLOGUE
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DQDOTA

      DOUBLE PRECISION FUNCTION DQDOTA (N, DB, QC, DX, INCX, DY, INCY)
 ***BEGIN PROLOGUE  DQDOTA
 ***PURPOSE  Compute the inner product of two vectors with extended
             precision accumulation and result.
 ***LIBRARY   SLATEC
 ***CATEGORY  D1A4
 ***TYPE      DOUBLE PRECISION (DQDOTA-D)
 ***KEYWORDS  DOT PRODUCT, INNER PRODUCT
 ***AUTHOR  Lawson, C. L., (JPL)
            Hanson, R. J., (SNLA)
            Kincaid, D. R., (U. of Texas)
            Krogh, F. T., (JPL)
 ***DESCRIPTION
 
                B L A S  Subprogram
    Description of Parameters
 
     --Input--
        N  number of elements in input vector(S)
       DB  double precision scalar to be added to inner product
       QC  extended precision scalar to be added to inner product
       DX  double precision vector with N elements
     INCX  storage spacing between elements of DX
       DY  double precision vector with N elements
     INCY  storage spacing between elements of DY
 
     --Output--
   DQDOTA  double precision result
       QC  extended precision result
 
     D.P. dot product with extended precision accumulation (and result)
     QC and DQDOTA are set = DB + QC + sum for I = 0 to N-1 of
       DX(LX+I*INCX) * DY(LY+I*INCY),  where QC is an extended
       precision result previously computed by DQDOTI or DQDOTA
       and LX = 1 if INCX .GE. 0, else LX = (-INCX)*N, and LY is
       defined in a similar way using INCY.  The MP package by
       Richard P. Brent is used for the extended precision arithmetic.
 
     Fred T. Krogh,  JPL,  1977,  June 1
 
     The common block for the MP package is name MPCOM.  If local
     variable I1 is zero, DQDOTA calls MPBLAS to initialize
     the MP package and reset I1 to 1.
 
     The argument QC(*) and the local variables QX and QY are INTEGER
     arrays of size 30.  See the comments in the routine MPBLAS for the
     reason for this choice.
 
 ***REFERENCES  C. L. Lawson, R. J. Hanson, D. R. Kincaid and F. T.
                  Krogh, Basic linear algebra subprograms for Fortran
                  usage, Algorithm No. 539, Transactions on Mathematical
                  Software 5, 3 (September 1979), pp. 308-323.
 ***ROUTINES CALLED  MPADD, MPBLAS, MPCDM, MPCMD, MPMUL
 ***COMMON BLOCKS    MPCOM
 ***REVISION HISTORY  (YYMMDD)
    791001  DATE WRITTEN
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    890831  Modified array declarations.  (WRB)
    890831  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    920501  Reformatted the REFERENCES section.  (WRB)
    930124  Increased Array sizes for SUN -r8.  (RWC)
    END PROLOGUE
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DQDOTI

      DOUBLE PRECISION FUNCTION DQDOTI (N, DB, QC, DX, INCX, DY, INCY)
 ***BEGIN PROLOGUE  DQDOTI
 ***PURPOSE  Compute the inner product of two vectors with extended
             precision accumulation and result.
 ***LIBRARY   SLATEC
 ***CATEGORY  D1A4
 ***TYPE      DOUBLE PRECISION (DQDOTI-D)
 ***KEYWORDS  DOT PRODUCT, INNER PRODUCT
 ***AUTHOR  Lawson, C. L., (JPL)
            Hanson, R. J., (SNLA)
            Kincaid, D. R., (U. of Texas)
            Krogh, F. T., (JPL)
 ***DESCRIPTION
 
                 B L A S  Subprogram
     Description of parameters
 
      --Input--
         N  number of elements in input vector(s)
        DB  double precision scalar to be added to inner product
        QC  extended precision scalar to be added
        DX  double precision vector with N elements
      INCX  storage spacing between elements of DX
        DY  double precision vector with N elements
      INCY  storage spacing between elements of DY
 
      --Output--
    DQDOTI  double precision result
        QC  extended precision result
 
      D.P. dot product with extended precision accumulation (and result)
      QC and DQDOTI are set = DB + sum for I = 0 to N-1 of
        DX(LX+I*INCX) * DY(LY+I*INCY),  where QC is an extended
        precision result which can be used as input to DQDOTA,
        and LX = 1 if INCX .GE. 0, else LX = (-INCX)*N, and LY is
        defined in a similar way using INCY.  The MP package by
        Richard P. Brent is used for the extended precision arithmetic.
 
      Fred T. Krogh,  JPL,  1977,  June 1
 
      The common block for the MP package is named MPCOM.  If local
      variable I1 is zero, DQDOTI calls MPBLAS to initialize the MP
      package and reset I1 to 1.
 
     The argument QC(*), and the local variables QX and QY are INTEGER
     arrays of size 30.  See the comments in the routine MPBLAS for the
     reason for this choice.
 
 ***REFERENCES  C. L. Lawson, R. J. Hanson, D. R. Kincaid and F. T.
                  Krogh, Basic linear algebra subprograms for Fortran
                  usage, Algorithm No. 539, Transactions on Mathematical
                  Software 5, 3 (September 1979), pp. 308-323.
 ***ROUTINES CALLED  MPADD, MPBLAS, MPCDM, MPCMD, MPMUL
 ***COMMON BLOCKS    MPCOM
 ***REVISION HISTORY  (YYMMDD)
    791001  DATE WRITTEN
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    890831  Modified array declarations.  (WRB)
    890831  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    920501  Reformatted the REFERENCES section.  (WRB)
    930124  Increased Array sizes for SUN -r8.  (RWC)
    END PROLOGUE
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DQK15

      SUBROUTINE DQK15 (F, A, B, RESULT, ABSERR, RESABS, RESASC)
 ***BEGIN PROLOGUE  DQK15
 ***PURPOSE  To compute I = Integral of F over (A,B), with error
                            estimate
                        J = integral of ABS(F) over (A,B)
 ***LIBRARY   SLATEC (QUADPACK)
 ***CATEGORY  H2A1A2
 ***TYPE      DOUBLE PRECISION (QK15-S, DQK15-D)
 ***KEYWORDS  15-POINT GAUSS-KRONROD RULES, QUADPACK, QUADRATURE
 ***AUTHOR  Piessens, Robert
              Applied Mathematics and Programming Division
              K. U. Leuven
            de Doncker, Elise
              Applied Mathematics and Programming Division
              K. U. Leuven
 ***DESCRIPTION
 
            Integration rules
            Standard fortran subroutine
            Double precision version
 
            PARAMETERS
             ON ENTRY
               F      - Double precision
                        Function subprogram defining the integrand
                        FUNCTION F(X). The actual name for F needs to be
                        Declared E X T E R N A L in the calling program.
 
               A      - Double precision
                        Lower limit of integration
 
               B      - Double precision
                        Upper limit of integration
 
             ON RETURN
               RESULT - Double precision
                        Approximation to the integral I
                        Result is computed by applying the 15-POINT
                        KRONROD RULE (RESK) obtained by optimal addition
                        of abscissae to the 7-POINT GAUSS RULE(RESG).
 
               ABSERR - Double precision
                        Estimate of the modulus of the absolute error,
                        which should not exceed ABS(I-RESULT)
 
               RESABS - Double precision
                        Approximation to the integral J
 
               RESASC - Double precision
                        Approximation to the integral of ABS(F-I/(B-A))
                        over (A,B)
 
 ***REFERENCES  (NONE)
 ***ROUTINES CALLED  D1MACH
 ***REVISION HISTORY  (YYMMDD)
    800101  DATE WRITTEN
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    890531  Changed all specific intrinsics to generic.  (WRB)
    890531  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    END PROLOGUE
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DQK15I

      SUBROUTINE DQK15I (F, BOUN, INF, A, B, RESULT, ABSERR, RESABS,
     +   RESASC)
 ***BEGIN PROLOGUE  DQK15I
 ***PURPOSE  The original (infinite integration range is mapped
             onto the interval (0,1) and (A,B) is a part of (0,1).
             it is the purpose to compute
             I = Integral of transformed integrand over (A,B),
             J = Integral of ABS(Transformed Integrand) over (A,B).
 ***LIBRARY   SLATEC (QUADPACK)
 ***CATEGORY  H2A3A2, H2A4A2
 ***TYPE      DOUBLE PRECISION (QK15I-S, DQK15I-D)
 ***KEYWORDS  15-POINT GAUSS-KRONROD RULES, QUADPACK, QUADRATURE
 ***AUTHOR  Piessens, Robert
              Applied Mathematics and Programming Division
              K. U. Leuven
            de Doncker, Elise
              Applied Mathematics and Programming Division
              K. U. Leuven
 ***DESCRIPTION
 
            Integration Rule
            Standard Fortran subroutine
            Double precision version
 
            PARAMETERS
             ON ENTRY
               F      - Double precision
                        Function subprogram defining the integrand
                        FUNCTION F(X). The actual name for F needs to be
                        Declared E X T E R N A L in the calling program.
 
               BOUN   - Double precision
                        Finite bound of original integration
                        Range (SET TO ZERO IF INF = +2)
 
               INF    - Integer
                        If INF = -1, the original interval is
                                    (-INFINITY,BOUND),
                        If INF = +1, the original interval is
                                    (BOUND,+INFINITY),
                        If INF = +2, the original interval is
                                    (-INFINITY,+INFINITY) AND
                        The integral is computed as the sum of two
                        integrals, one over (-INFINITY,0) and one over
                        (0,+INFINITY).
 
               A      - Double precision
                        Lower limit for integration over subrange
                        of (0,1)
 
               B      - Double precision
                        Upper limit for integration over subrange
                        of (0,1)
 
             ON RETURN
               RESULT - Double precision
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                        Approximation to the integral I
                        Result is computed by applying the 15-POINT
                        KRONROD RULE(RESK) obtained by optimal addition
                        of abscissae to the 7-POINT GAUSS RULE(RESG).
 
               ABSERR - Double precision
                        Estimate of the modulus of the absolute error,
                        WHICH SHOULD EQUAL or EXCEED ABS(I-RESULT)
 
               RESABS - Double precision
                        Approximation to the integral J
 
               RESASC - Double precision
                        Approximation to the integral of
                        ABS((TRANSFORMED INTEGRAND)-I/(B-A)) over (A,B)
 
 ***REFERENCES  (NONE)
 ***ROUTINES CALLED  D1MACH
 ***REVISION HISTORY  (YYMMDD)
    800101  DATE WRITTEN
    890531  Changed all specific intrinsics to generic.  (WRB)
    890531  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    END PROLOGUE
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DQK15W

      SUBROUTINE DQK15W (F, W, P1, P2, P3, P4, KP, A, B, RESULT, ABSERR,
     +   RESABS, RESASC)
 ***BEGIN PROLOGUE  DQK15W
 ***PURPOSE  To compute I = Integral of F*W over (A,B), with error
                            estimate
                        J = Integral of ABS(F*W) over (A,B)
 ***LIBRARY   SLATEC (QUADPACK)
 ***CATEGORY  H2A2A2
 ***TYPE      DOUBLE PRECISION (QK15W-S, DQK15W-D)
 ***KEYWORDS  15-POINT GAUSS-KRONROD RULES, QUADPACK, QUADRATURE
 ***AUTHOR  Piessens, Robert
              Applied Mathematics and Programming Division
              K. U. Leuven
            de Doncker, Elise
              Applied Mathematics and Programming Division
              K. U. Leuven
 ***DESCRIPTION
 
            Integration rules
            Standard fortran subroutine
            Double precision version
 
            PARAMETERS
              ON ENTRY
               F      - Double precision
                        Function subprogram defining the integrand
                        function F(X). The actual name for F needs to be
                        declared E X T E R N A L in the driver program.
 
               W      - Double precision
                        Function subprogram defining the integrand
                        WEIGHT function W(X). The actual name for W
                        needs to be declared E X T E R N A L in the
                        calling program.
 
               P1, P2, P3, P4 - Double precision
                        Parameters in the WEIGHT function
 
               KP     - Integer
                        Key for indicating the type of WEIGHT function
 
               A      - Double precision
                        Lower limit of integration
 
               B      - Double precision
                        Upper limit of integration
 
             ON RETURN
               RESULT - Double precision
                        Approximation to the integral I
                        RESULT is computed by applying the 15-point
                        Kronrod rule (RESK) obtained by optimal addition
                        of abscissae to the 7-point Gauss rule (RESG).
 
               ABSERR - Double precision
                        Estimate of the modulus of the absolute error,
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                        which should equal or exceed ABS(I-RESULT)
 
               RESABS - Double precision
                        Approximation to the integral of ABS(F)
 
               RESASC - Double precision
                        Approximation to the integral of ABS(F-I/(B-A))
 
 ***REFERENCES  (NONE)
 ***ROUTINES CALLED  D1MACH
 ***REVISION HISTORY  (YYMMDD)
    810101  DATE WRITTEN
    890531  Changed all specific intrinsics to generic.  (WRB)
    890531  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    END PROLOGUE
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DQK21

      SUBROUTINE DQK21 (F, A, B, RESULT, ABSERR, RESABS, RESASC)
 ***BEGIN PROLOGUE  DQK21
 ***PURPOSE  To compute I = Integral of F over (A,B), with error
                            estimate
                        J = Integral of ABS(F) over (A,B)
 ***LIBRARY   SLATEC (QUADPACK)
 ***CATEGORY  H2A1A2
 ***TYPE      DOUBLE PRECISION (QK21-S, DQK21-D)
 ***KEYWORDS  21-POINT GAUSS-KRONROD RULES, QUADPACK, QUADRATURE
 ***AUTHOR  Piessens, Robert
              Applied Mathematics and Programming Division
              K. U. Leuven
            de Doncker, Elise
              Applied Mathematics and Programming Division
              K. U. Leuven
 ***DESCRIPTION
 
            Integration rules
            Standard fortran subroutine
            Double precision version
 
            PARAMETERS
             ON ENTRY
               F      - Double precision
                        Function subprogram defining the integrand
                        FUNCTION F(X). The actual name for F needs to be
                        Declared E X T E R N A L in the driver program.
 
               A      - Double precision
                        Lower limit of integration
 
               B      - Double precision
                        Upper limit of integration
 
             ON RETURN
               RESULT - Double precision
                         Approximation to the integral I
                        RESULT is computed by applying the 21-POINT
                        KRONROD RULE (RESK) obtained by optimal addition
                        of abscissae to the 10-POINT GAUSS RULE (RESG).
 
               ABSERR - Double precision
                        Estimate of the modulus of the absolute error,
                        which should not exceed ABS(I-RESULT)
 
               RESABS - Double precision
                        Approximation to the integral J
 
               RESASC - Double precision
                        Approximation to the integral of ABS(F-I/(B-A))
                        over (A,B)
 
 ***REFERENCES  (NONE)
 ***ROUTINES CALLED  D1MACH
 ***REVISION HISTORY  (YYMMDD)
    800101  DATE WRITTEN
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    890531  Changed all specific intrinsics to generic.  (WRB)
    890531  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    END PROLOGUE
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DQK31

      SUBROUTINE DQK31 (F, A, B, RESULT, ABSERR, RESABS, RESASC)
 ***BEGIN PROLOGUE  DQK31
 ***PURPOSE  To compute I = Integral of F over (A,B) with error
                            estimate
                        J = Integral of ABS(F) over (A,B)
 ***LIBRARY   SLATEC (QUADPACK)
 ***CATEGORY  H2A1A2
 ***TYPE      DOUBLE PRECISION (QK31-S, DQK31-D)
 ***KEYWORDS  31-POINT GAUSS-KRONROD RULES, QUADPACK, QUADRATURE
 ***AUTHOR  Piessens, Robert
              Applied Mathematics and Programming Division
              K. U. Leuven
            de Doncker, Elise
              Applied Mathematics and Programming Division
              K. U. Leuven
 ***DESCRIPTION
 
            Integration rules
            Standard fortran subroutine
            Double precision version
 
            PARAMETERS
             ON ENTRY
               F      - Double precision
                        Function subprogram defining the integrand
                        FUNCTION F(X). The actual name for F needs to be
                        Declared E X T E R N A L in the calling program.
 
               A      - Double precision
                        Lower limit of integration
 
               B      - Double precision
                        Upper limit of integration
 
             ON RETURN
               RESULT - Double precision
                        Approximation to the integral I
                        RESULT is computed by applying the 31-POINT
                        GAUSS-KRONROD RULE (RESK), obtained by optimal
                        addition of abscissae to the 15-POINT GAUSS
                        RULE (RESG).
 
               ABSERR - Double precision
                        Estimate of the modulus of the modulus,
                        which should not exceed ABS(I-RESULT)
 
               RESABS - Double precision
                        Approximation to the integral J
 
               RESASC - Double precision
                        Approximation to the integral of ABS(F-I/(B-A))
                        over (A,B)
 
 ***REFERENCES  (NONE)
 ***ROUTINES CALLED  D1MACH
 ***REVISION HISTORY  (YYMMDD)
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    800101  DATE WRITTEN
    890531  Changed all specific intrinsics to generic.  (WRB)
    890531  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    END PROLOGUE
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DQK41

      SUBROUTINE DQK41 (F, A, B, RESULT, ABSERR, RESABS, RESASC)
 ***BEGIN PROLOGUE  DQK41
 ***PURPOSE  To compute I = Integral of F over (A,B), with error
                            estimate
                        J = Integral of ABS(F) over (A,B)
 ***LIBRARY   SLATEC (QUADPACK)
 ***CATEGORY  H2A1A2
 ***TYPE      DOUBLE PRECISION (QK41-S, DQK41-D)
 ***KEYWORDS  41-POINT GAUSS-KRONROD RULES, QUADPACK, QUADRATURE
 ***AUTHOR  Piessens, Robert
              Applied Mathematics and Programming Division
              K. U. Leuven
            de Doncker, Elise
              Applied Mathematics and Programming Division
              K. U. Leuven
 ***DESCRIPTION
 
            Integration rules
            Standard fortran subroutine
            Double precision version
 
            PARAMETERS
             ON ENTRY
               F      - Double precision
                        Function subprogram defining the integrand
                        FUNCTION F(X). The actual name for F needs to be
                        declared E X T E R N A L in the calling program.
 
               A      - Double precision
                        Lower limit of integration
 
               B      - Double precision
                        Upper limit of integration
 
             ON RETURN
               RESULT - Double precision
                        Approximation to the integral I
                        RESULT is computed by applying the 41-POINT
                        GAUSS-KRONROD RULE (RESK) obtained by optimal
                        addition of abscissae to the 20-POINT GAUSS
                        RULE (RESG).
 
               ABSERR - Double precision
                        Estimate of the modulus of the absolute error,
                        which should not exceed ABS(I-RESULT)
 
               RESABS - Double precision
                        Approximation to the integral J
 
               RESASC - Double precision
                        Approximation to the integral of ABS(F-I/(B-A))
                        over (A,B)
 
 ***REFERENCES  (NONE)
 ***ROUTINES CALLED  D1MACH
 ***REVISION HISTORY  (YYMMDD)
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    800101  DATE WRITTEN
    890531  Changed all specific intrinsics to generic.  (WRB)
    890531  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    END PROLOGUE
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DQK51

      SUBROUTINE DQK51 (F, A, B, RESULT, ABSERR, RESABS, RESASC)
 ***BEGIN PROLOGUE  DQK51
 ***PURPOSE  To compute I = Integral of F over (A,B) with error
                            estimate
                        J = Integral of ABS(F) over (A,B)
 ***LIBRARY   SLATEC (QUADPACK)
 ***CATEGORY  H2A1A2
 ***TYPE      DOUBLE PRECISION (QK51-S, DQK51-D)
 ***KEYWORDS  51-POINT GAUSS-KRONROD RULES, QUADPACK, QUADRATURE
 ***AUTHOR  Piessens, Robert
              Applied Mathematics and Programming Division
              K. U. Leuven
            de Doncker, Elise
              Applied Mathematics and Programming Division
              K. U. Leuven
 ***DESCRIPTION
 
            Integration rules
            Standard fortran subroutine
            Double precision version
 
            PARAMETERS
             ON ENTRY
               F      - Double precision
                        Function subroutine defining the integrand
                        function F(X). The actual name for F needs to be
                        declared E X T E R N A L in the calling program.
 
               A      - Double precision
                        Lower limit of integration
 
               B      - Double precision
                        Upper limit of integration
 
             ON RETURN
               RESULT - Double precision
                        Approximation to the integral I
                        RESULT is computed by applying the 51-point
                        Kronrod rule (RESK) obtained by optimal addition
                        of abscissae to the 25-point Gauss rule (RESG).
 
               ABSERR - Double precision
                        Estimate of the modulus of the absolute error,
                        which should not exceed ABS(I-RESULT)
 
               RESABS - Double precision
                        Approximation to the integral J
 
               RESASC - Double precision
                        Approximation to the integral of ABS(F-I/(B-A))
                        over (A,B)
 
 ***REFERENCES  (NONE)
 ***ROUTINES CALLED  D1MACH
 ***REVISION HISTORY  (YYMMDD)
    800101  DATE WRITTEN
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    890531  Changed all specific intrinsics to generic.  (WRB)
    890531  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    910819  Added WGK(26) to code.  (WRB)
    END PROLOGUE
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DQK61

      SUBROUTINE DQK61 (F, A, B, RESULT, ABSERR, RESABS, RESASC)
 ***BEGIN PROLOGUE  DQK61
 ***PURPOSE  To compute I = Integral of F over (A,B) with error
                            estimate
                        J = Integral of ABS(F) over (A,B)
 ***LIBRARY   SLATEC (QUADPACK)
 ***CATEGORY  H2A1A2
 ***TYPE      DOUBLE PRECISION (QK61-S, DQK61-D)
 ***KEYWORDS  61-POINT GAUSS-KRONROD RULES, QUADPACK, QUADRATURE
 ***AUTHOR  Piessens, Robert
              Applied Mathematics and Programming Division
              K. U. Leuven
            de Doncker, Elise
              Applied Mathematics and Programming Division
              K. U. Leuven
 ***DESCRIPTION
 
         Integration rule
         Standard fortran subroutine
         Double precision version
 
 
         PARAMETERS
          ON ENTRY
            F      - Double precision
                     Function subprogram defining the integrand
                     function F(X). The actual name for F needs to be
                     declared E X T E R N A L in the calling program.
 
            A      - Double precision
                     Lower limit of integration
 
            B      - Double precision
                     Upper limit of integration
 
          ON RETURN
            RESULT - Double precision
                     Approximation to the integral I
                     RESULT is computed by applying the 61-point
                     Kronrod rule (RESK) obtained by optimal addition of
                     abscissae to the 30-point Gauss rule (RESG).
 
            ABSERR - Double precision
                     Estimate of the modulus of the absolute error,
                     which should equal or exceed ABS(I-RESULT)
 
            RESABS - Double precision
                     Approximation to the integral J
 
            RESASC - Double precision
                     Approximation to the integral of ABS(F-I/(B-A))
 
 ***REFERENCES  (NONE)
 ***ROUTINES CALLED  D1MACH
 ***REVISION HISTORY  (YYMMDD)
    800101  DATE WRITTEN
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    890531  Changed all specific intrinsics to generic.  (WRB)
    890531  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    END PROLOGUE
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DQMOMO

      SUBROUTINE DQMOMO (ALFA, BETA, RI, RJ, RG, RH, INTEGR)
 ***BEGIN PROLOGUE  DQMOMO
 ***PURPOSE  This routine computes modified Chebyshev moments.  The K-th
             modified Chebyshev moment is defined as the integral over
             (-1,1) of W(X)*T(K,X), where T(K,X) is the Chebyshev
             polynomial of degree K.
 ***LIBRARY   SLATEC (QUADPACK)
 ***CATEGORY  H2A2A1, C3A2
 ***TYPE      DOUBLE PRECISION (QMOMO-S, DQMOMO-D)
 ***KEYWORDS  MODIFIED CHEBYSHEV MOMENTS, QUADPACK, QUADRATURE
 ***AUTHOR  Piessens, Robert
              Applied Mathematics and Programming Division
              K. U. Leuven
            de Doncker, Elise
              Applied Mathematics and Programming Division
              K. U. Leuven
 ***DESCRIPTION
 
         MODIFIED CHEBYSHEV MOMENTS
         STANDARD FORTRAN SUBROUTINE
         DOUBLE PRECISION VERSION
 
         PARAMETERS
            ALFA   - Double precision
                     Parameter in the weight function W(X), ALFA.GT.(-1)
 
            BETA   - Double precision
                     Parameter in the weight function W(X), BETA.GT.(-1)
 
            RI     - Double precision
                     Vector of dimension 25
                     RI(K) is the integral over (-1,1) of
                     (1+X)**ALFA*T(K-1,X), K = 1, ..., 25.
 
            RJ     - Double precision
                     Vector of dimension 25
                     RJ(K) is the integral over (-1,1) of
                     (1-X)**BETA*T(K-1,X), K = 1, ..., 25.
 
            RG     - Double precision
                     Vector of dimension 25
                     RG(K) is the integral over (-1,1) of
                     (1+X)**ALFA*LOG((1+X)/2)*T(K-1,X), K = 1, ..., 25.
 
            RH     - Double precision
                     Vector of dimension 25
                     RH(K) is the integral over (-1,1) of
                     (1-X)**BETA*LOG((1-X)/2)*T(K-1,X), K = 1, ..., 25.
 
            INTEGR - Integer
                     Input parameter indicating the modified
                     Moments to be computed
                     INTEGR = 1 compute RI, RJ
                            = 2 compute RI, RJ, RG
                            = 3 compute RI, RJ, RH
                            = 4 compute RI, RJ, RG, RH
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 ***REFERENCES  (NONE)
 ***ROUTINES CALLED  (NONE)
 ***REVISION HISTORY  (YYMMDD)
    820101  DATE WRITTEN
    891009  Removed unreferenced statement label.  (WRB)
    891009  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    END PROLOGUE
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DQNC79

      SUBROUTINE DQNC79 (FUN, A, B, ERR, ANS, IERR, K)
 ***BEGIN PROLOGUE  DQNC79
 ***PURPOSE  Integrate a function using a 7-point adaptive Newton-Cotes
             quadrature rule.
 ***LIBRARY   SLATEC
 ***CATEGORY  H2A1A1
 ***TYPE      DOUBLE PRECISION (QNC79-S, DQNC79-D)
 ***KEYWORDS  ADAPTIVE QUADRATURE, INTEGRATION, NEWTON-COTES
 ***AUTHOR  Kahaner, D. K., (NBS)
            Jones, R. E., (SNLA)
 ***DESCRIPTION
 
      Abstract  *** a DOUBLE PRECISION routine ***
        DQNC79 is a general purpose program for evaluation of
        one dimensional integrals of user defined functions.
        DQNC79 will pick its own points for evaluation of the
        integrand and these will vary from problem to problem.
        Thus, DQNC79 is not designed to integrate over data sets.
        Moderately smooth integrands will be integrated efficiently
        and reliably.  For problems with strong singularities,
        oscillations etc., the user may wish to use more sophis-
        ticated routines such as those in QUADPACK.  One measure
        of the reliability of DQNC79 is the output parameter K,
        giving the number of integrand evaluations that were needed.
 
      Description of Arguments
 
      --Input--* FUN, A, B, ERR are DOUBLE PRECISION *
        FUN  - name of external function to be integrated.  This name
               must be in an EXTERNAL statement in your calling
               program.  You must write a Fortran function to evaluate
               FUN.  This should be of the form
                     DOUBLE PRECISION FUNCTION FUN (X)
               C
               C     X can vary from A to B
               C     FUN(X) should be finite for all X on interval.
               C
                     FUN = ...
                     RETURN
                     END
        A    - lower limit of integration
        B    - upper limit of integration (may be less than A)
        ERR  - is a requested error tolerance.  Normally, pick a value
               0 .LT. ERR .LT. 1.0D-8.
 
      --Output--
        ANS  - computed value of the integral.  Hopefully, ANS is
               accurate to within ERR * integral of ABS(FUN(X)).
        IERR - a status code
             - Normal codes
                1  ANS most likely meets requested error tolerance.
               -1  A equals B, or A and B are too nearly equal to
                   allow normal integration.  ANS is set to zero.
             - Abnormal code
                2  ANS probably does not meet requested error tolerance.
        K    - the number of function evaluations actually used to do
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               the integration.  A value of K .GT. 1000 indicates a
               difficult problem; other programs may be more efficient.
               DQNC79 will gracefully give up if K exceeds 2000.
 
 ***REFERENCES  (NONE)
 ***ROUTINES CALLED  D1MACH, I1MACH, XERMSG
 ***REVISION HISTORY  (YYMMDD)
    790601  DATE WRITTEN
    890531  Changed all specific intrinsics to generic.  (WRB)
    890911  Removed unnecessary intrinsics.  (WRB)
    890911  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    900315  CALLs to XERROR changed to CALLs to XERMSG.  (THJ)
    920218  Code redone to parallel QNC79.  (WRB)
    930120  Increase array size 80->99, and KMX 2000->5000 for SUN -r8
            wordlength.  (RWC)
    END PROLOGUE
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DQNG

      SUBROUTINE DQNG (F, A, B, EPSABS, EPSREL, RESULT, ABSERR, NEVAL,
     +   IER)
 ***BEGIN PROLOGUE  DQNG
 ***PURPOSE  The routine calculates an approximation result to a
             given definite integral I = integral of F over (A,B),
             hopefully satisfying following claim for accuracy
             ABS(I-RESULT).LE.MAX(EPSABS,EPSREL*ABS(I)).
 ***LIBRARY   SLATEC (QUADPACK)
 ***CATEGORY  H2A1A1
 ***TYPE      DOUBLE PRECISION (QNG-S, DQNG-D)
 ***KEYWORDS  AUTOMATIC INTEGRATOR, GAUSS-KRONROD(PATTERSON) RULES,
              NONADAPTIVE, QUADPACK, QUADRATURE, SMOOTH INTEGRAND
 ***AUTHOR  Piessens, Robert
              Applied Mathematics and Programming Division
              K. U. Leuven
            de Doncker, Elise
              Applied Mathematics and Programming Division
              K. U. Leuven
 ***DESCRIPTION
 
  NON-ADAPTIVE INTEGRATION
  STANDARD FORTRAN SUBROUTINE
  DOUBLE PRECISION VERSION
 
            F      - Double precision
                     Function subprogram defining the integrand function
                     F(X). The actual name for F needs to be declared
                     E X T E R N A L in the driver program.
 
            A      - Double precision
                     Lower limit of integration
 
            B      - Double precision
                     Upper limit of integration
 
            EPSABS - Double precision
                     Absolute accuracy requested
            EPSREL - Double precision
                     Relative accuracy requested
                     If  EPSABS.LE.0
                     And EPSREL.LT.MAX(50*REL.MACH.ACC.,0.5D-28),
                     The routine will end with IER = 6.
 
          ON RETURN
            RESULT - Double precision
                     Approximation to the integral I
                     Result is obtained by applying the 21-POINT
                     GAUSS-KRONROD RULE (RES21) obtained by optimal
                     addition of abscissae to the 10-POINT GAUSS RULE
                     (RES10), or by applying the 43-POINT RULE (RES43)
                     obtained by optimal addition of abscissae to the
                     21-POINT GAUSS-KRONROD RULE, or by applying the
                     87-POINT RULE (RES87) obtained by optimal addition
                     of abscissae to the 43-POINT RULE.
 
            ABSERR - Double precision
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                     Estimate of the modulus of the absolute error,
                     which should EQUAL or EXCEED ABS(I-RESULT)
 
            NEVAL  - Integer
                     Number of integrand evaluations
 
            IER    - IER = 0 normal and reliable termination of the
                             routine. It is assumed that the requested
                             accuracy has been achieved.
                     IER.GT.0 Abnormal termination of the routine. It is
                             assumed that the requested accuracy has
                             not been achieved.
            ERROR MESSAGES
                     IER = 1 The maximum number of steps has been
                             executed. The integral is probably too
                             difficult to be calculated by DQNG.
                         = 6 The input is invalid, because
                             EPSABS.LE.0 AND
                             EPSREL.LT.MAX(50*REL.MACH.ACC.,0.5D-28).
                             RESULT, ABSERR and NEVAL are set to zero.
 
 ***REFERENCES  (NONE)
 ***ROUTINES CALLED  D1MACH, XERMSG
 ***REVISION HISTORY  (YYMMDD)
    800101  DATE WRITTEN
    890531  Changed all specific intrinsics to generic.  (WRB)
    890531  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    900315  CALLs to XERROR changed to CALLs to XERMSG.  (THJ)
    END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 582



DQRDC

      SUBROUTINE DQRDC (X, LDX, N, P, QRAUX, JPVT, WORK, JOB)
 ***BEGIN PROLOGUE  DQRDC
 ***PURPOSE  Use Householder transformations to compute the QR
             factorization of an N by P matrix.  Column pivoting is a
             users option.
 ***LIBRARY   SLATEC (LINPACK)
 ***CATEGORY  D5
 ***TYPE      DOUBLE PRECISION (SQRDC-S, DQRDC-D, CQRDC-C)
 ***KEYWORDS  LINEAR ALGEBRA, LINPACK, MATRIX, ORTHOGONAL TRIANGULAR,
              QR DECOMPOSITION
 ***AUTHOR  Stewart, G. W., (U. of Maryland)
 ***DESCRIPTION
 
      DQRDC uses Householder transformations to compute the QR
      factorization of an N by P matrix X.  Column pivoting
      based on the 2-norms of the reduced columns may be
      performed at the user's option.
 
      On Entry
 
         X       DOUBLE PRECISION(LDX,P), where LDX .GE. N.
                 X contains the matrix whose decomposition is to be
                 computed.
 
         LDX     INTEGER.
                 LDX is the leading dimension of the array X.
 
         N       INTEGER.
                 N is the number of rows of the matrix X.
 
         P       INTEGER.
                 P is the number of columns of the matrix X.
 
         JPVT    INTEGER(P).
                 JPVT contains integers that control the selection
                 of the pivot columns.  The K-th column X(K) of X
                 is placed in one of three classes according to the
                 value of JPVT(K).
 
                    If JPVT(K) .GT. 0, then X(K) is an initial
                                       column.
 
                    If JPVT(K) .EQ. 0, then X(K) is a free column.
 
                    If JPVT(K) .LT. 0, then X(K) is a final column.
 
                 Before the decomposition is computed, initial columns
                 are moved to the beginning of the array X and final
                 columns to the end.  Both initial and final columns
                 are frozen in place during the computation and only
                 free columns are moved.  At the K-th stage of the
                 reduction, if X(K) is occupied by a free column
                 it is interchanged with the free column of largest
                 reduced norm.  JPVT is not referenced if
                 JOB .EQ. 0.
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         WORK    DOUBLE PRECISION(P).
                 WORK is a work array.  WORK is not referenced if
                 JOB .EQ. 0.
 
         JOB     INTEGER.
                 JOB is an integer that initiates column pivoting.
                 If JOB .EQ. 0, no pivoting is done.
                 If JOB .NE. 0, pivoting is done.
 
      On Return
 
         X       X contains in its upper triangle the upper
                 triangular matrix R of the QR factorization.
                 Below its diagonal X contains information from
                 which the orthogonal part of the decomposition
                 can be recovered.  Note that if pivoting has
                 been requested, the decomposition is not that
                 of the original matrix X but that of X
                 with its columns permuted as described by JPVT.
 
         QRAUX   DOUBLE PRECISION(P).
                 QRAUX contains further information required to recover
                 the orthogonal part of the decomposition.
 
         JPVT    JPVT(K) contains the index of the column of the
                 original matrix that has been interchanged into
                 the K-th column, if pivoting was requested.
 
 ***REFERENCES  J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
                  Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED  DAXPY, DDOT, DNRM2, DSCAL, DSWAP
 ***REVISION HISTORY  (YYMMDD)
    780814  DATE WRITTEN
    890531  Changed all specific intrinsics to generic.  (WRB)
    890831  Modified array declarations.  (WRB)
    890831  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    900326  Removed duplicate information from DESCRIPTION section.
            (WRB)
    920501  Reformatted the REFERENCES section.  (WRB)
    END PROLOGUE
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DQRSL

      SUBROUTINE DQRSL (X, LDX, N, K, QRAUX, Y, QY, QTY, B, RSD, XB,
     +   JOB, INFO)
 ***BEGIN PROLOGUE  DQRSL
 ***PURPOSE  Apply the output of DQRDC to compute coordinate transfor-
             mations, projections, and least squares solutions.
 ***LIBRARY   SLATEC (LINPACK)
 ***CATEGORY  D9, D2A1
 ***TYPE      DOUBLE PRECISION (SQRSL-S, DQRSL-D, CQRSL-C)
 ***KEYWORDS  LINEAR ALGEBRA, LINPACK, MATRIX, ORTHOGONAL TRIANGULAR,
              SOLVE
 ***AUTHOR  Stewart, G. W., (U. of Maryland)
 ***DESCRIPTION
 
      DQRSL applies the output of DQRDC to compute coordinate
      transformations, projections, and least squares solutions.
      For K .LE. MIN(N,P), let XK be the matrix
 
             XK = (X(JPVT(1)),X(JPVT(2)), ... ,X(JPVT(K)))
 
      formed from columns JPVT(1), ... ,JPVT(K) of the original
      N X P matrix X that was input to DQRDC (if no pivoting was
      done, XK consists of the first K columns of X in their
      original order).  DQRDC produces a factored orthogonal matrix Q
      and an upper triangular matrix R such that
 
               XK = Q * (R)
                        (0)
 
      This information is contained in coded form in the arrays
      X and QRAUX.
 
      On Entry
 
         X      DOUBLE PRECISION(LDX,P).
                X contains the output of DQRDC.
 
         LDX    INTEGER.
                LDX is the leading dimension of the array X.
 
         N      INTEGER.
                N is the number of rows of the matrix XK.  It must
                have the same value as N in DQRDC.
 
         K      INTEGER.
                K is the number of columns of the matrix XK.  K
                must not be greater than MIN(N,P), where P is the
                same as in the calling sequence to DQRDC.
 
         QRAUX  DOUBLE PRECISION(P).
                QRAUX contains the auxiliary output from DQRDC.
 
         Y      DOUBLE PRECISION(N)
                Y contains an N-vector that is to be manipulated
                by DQRSL.
 
         JOB    INTEGER.
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                JOB specifies what is to be computed.  JOB has
                the decimal expansion ABCDE, with the following
                meaning.
 
                     If A .NE. 0, compute QY.
                     If B,C,D, or E .NE. 0, compute QTY.
                     If C .NE. 0, compute B.
                     If D .NE. 0, compute RSD.
                     If E .NE. 0, compute XB.
 
                Note that a request to compute B, RSD, or XB
                automatically triggers the computation of QTY, for
                which an array must be provided in the calling
                sequence.
 
      On Return
 
         QY     DOUBLE PRECISION(N).
                QY contains Q*Y, if its computation has been
                requested.
 
         QTY    DOUBLE PRECISION(N).
                QTY contains TRANS(Q)*Y, if its computation has
                been requested.  Here TRANS(Q) is the
                transpose of the matrix Q.
 
         B      DOUBLE PRECISION(K)
                B contains the solution of the least squares problem
 
                     minimize norm2(Y - XK*B),
 
                if its computation has been requested.  (Note that
                if pivoting was requested in DQRDC, the J-th
                component of B will be associated with column JPVT(J)
                of the original matrix X that was input into DQRDC.)
 
         RSD    DOUBLE PRECISION(N).
                RSD contains the least squares residual Y - XK*B,
                if its computation has been requested.  RSD is
                also the orthogonal projection of Y onto the
                orthogonal complement of the column space of XK.
 
         XB     DOUBLE PRECISION(N).
                XB contains the least squares approximation XK*B,
                if its computation has been requested.  XB is also
                the orthogonal projection of Y onto the column space
                of X.
 
         INFO   INTEGER.
                INFO is zero unless the computation of B has
                been requested and R is exactly singular.  In
                this case, INFO is the index of the first zero
                diagonal element of R and B is left unaltered.
 
      The parameters QY, QTY, B, RSD, and XB are not referenced
      if their computation is not requested and in this case
      can be replaced by dummy variables in the calling program.
      To save storage, the user may in some cases use the same
      array for different parameters in the calling sequence.  A
      frequently occurring example is when one wishes to compute
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      any of B, RSD, or XB and does not need Y or QTY.  In this
      case one may identify Y, QTY, and one of B, RSD, or XB, while
      providing separate arrays for anything else that is to be
      computed.  Thus the calling sequence
 
           CALL DQRSL(X,LDX,N,K,QRAUX,Y,DUM,Y,B,Y,DUM,110,INFO)
 
      will result in the computation of B and RSD, with RSD
      overwriting Y.  More generally, each item in the following
      list contains groups of permissible identifications for
      a single calling sequence.
 
           1. (Y,QTY,B) (RSD) (XB) (QY)
 
           2. (Y,QTY,RSD) (B) (XB) (QY)
 
           3. (Y,QTY,XB) (B) (RSD) (QY)
 
           4. (Y,QY) (QTY,B) (RSD) (XB)
 
           5. (Y,QY) (QTY,RSD) (B) (XB)
 
           6. (Y,QY) (QTY,XB) (B) (RSD)
 
      In any group the value returned in the array allocated to
      the group corresponds to the last member of the group.
 
 ***REFERENCES  J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
                  Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED  DAXPY, DCOPY, DDOT
 ***REVISION HISTORY  (YYMMDD)
    780814  DATE WRITTEN
    890531  Changed all specific intrinsics to generic.  (WRB)
    890831  Modified array declarations.  (WRB)
    890831  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    900326  Removed duplicate information from DESCRIPTION section.
            (WRB)
    920501  Reformatted the REFERENCES section.  (WRB)
    END PROLOGUE
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DRC

      DOUBLE PRECISION FUNCTION DRC (X, Y, IER)
 ***BEGIN PROLOGUE  DRC
 ***PURPOSE  Calculate a double precision approximation to
              DRC(X,Y) = Integral from zero to infinity of
                               -1/2     -1
                     (1/2)(t+X)    (t+Y)  dt,
             where X is nonnegative and Y is positive.
 ***LIBRARY   SLATEC
 ***CATEGORY  C14
 ***TYPE      DOUBLE PRECISION (RC-S, DRC-D)
 ***KEYWORDS  DUPLICATION THEOREM, ELEMENTARY FUNCTIONS,
              ELLIPTIC INTEGRAL, TAYLOR SERIES
 ***AUTHOR  Carlson, B. C.
              Ames Laboratory-DOE
              Iowa State University
              Ames, IA  50011
            Notis, E. M.
              Ames Laboratory-DOE
              Iowa State University
              Ames, IA  50011
            Pexton, R. L.
              Lawrence Livermore National Laboratory
              Livermore, CA  94550
 ***DESCRIPTION
 
    1.     DRC
           Standard FORTRAN function routine
           Double precision version
           The routine calculates an approximation result to
           DRC(X,Y) = integral from zero to infinity of
 
                               -1/2     -1
                     (1/2)(t+X)    (t+Y)  dt,
 
           where X is nonnegative and Y is positive.  The duplication
           theorem is iterated until the variables are nearly equal,
           and the function is then expanded in Taylor series to fifth
           order.  Logarithmic, inverse circular, and inverse hyper-
           bolic functions can be expressed in terms of DRC.
 
    2.     Calling Sequence
           DRC( X, Y, IER )
 
           Parameters On Entry
           Values assigned by the calling routine
 
           X      - Double precision, nonnegative variable
 
           Y      - Double precision, positive variable
 
 
 
           On Return  (values assigned by the DRC routine)
 
           DRC    - Double precision approximation to the integral
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           IER    - Integer to indicate normal or abnormal termination.
 
                      IER = 0 Normal and reliable termination of the
                              routine.  It is assumed that the requested
                              accuracy has been achieved.
 
                      IER > 0 Abnormal termination of the routine
 
           X and Y are unaltered.
 
    3.    Error messages
 
          Value of IER assigned by the DRC routine
 
                   Value assigned         Error message printed
                   IER = 1                X.LT.0.0D0.OR.Y.LE.0.0D0
                       = 2                X+Y.LT.LOLIM
                       = 3                MAX(X,Y) .GT. UPLIM
 
    4.     Control parameters
 
                   Values of LOLIM, UPLIM, and ERRTOL are set by the
                   routine.
 
           LOLIM and UPLIM determine the valid range of X and Y
 
           LOLIM  - Lower limit of valid arguments
 
                    Not less  than 5 * (machine minimum)  .
 
           UPLIM  - Upper limit of valid arguments
 
                    Not greater than (machine maximum) / 5 .
 
 
                      Acceptable values for:   LOLIM       UPLIM
                      IBM 360/370 SERIES   :   3.0D-78     1.0D+75
                      CDC 6000/7000 SERIES :   1.0D-292    1.0D+321
                      UNIVAC 1100 SERIES   :   1.0D-307    1.0D+307
                      CRAY                 :   2.3D-2466   1.0D+2465
                      VAX 11 SERIES        :   1.5D-38     3.0D+37
 
           ERRTOL determines the accuracy of the answer
 
                  The value assigned by the routine will result
                  in solution precision within 1-2 decimals of
                  "machine precision".
 
 
           ERRTOL  - relative error due to truncation is less than
                     16 * ERRTOL ** 6 / (1 - 2 * ERRTOL).
 
 
               The accuracy of the computed approximation to the inte-
               gral can be controlled by choosing the value of ERRTOL.
               Truncation of a Taylor series after terms of fifth order
               introduces an error less than the amount shown in the
               second column of the following table for each value of
               ERRTOL in the first column.  In addition to the trunca-
               tion error there will be round-off error, but in prac-
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               tice the total error from both sources is usually less
               than the amount given in the table.
 
 
 
           Sample choices:  ERRTOL   Relative truncation
                                     error less than
                            1.0D-3    2.0D-17
                            3.0D-3    2.0D-14
                            1.0D-2    2.0D-11
                            3.0D-2    2.0D-8
                            1.0D-1    2.0D-5
 
 
                     Decreasing ERRTOL by a factor of 10 yields six more
                     decimal digits of accuracy at the expense of one or
                     two more iterations of the duplication theorem.
 
  *Long Description:
 
    DRC special comments
 
 
 
 
                   Check: DRC(X,X+Z) + DRC(Y,Y+Z) = DRC(0,Z)
 
                   where X, Y, and Z are positive and X * Y = Z * Z
 
 
           On Input:
 
           X, and Y are the variables in the integral DRC(X,Y).
 
           On Output:
 
           X and Y are unaltered.
 
 
 
                     DRC(0,1/4)=DRC(1/16,1/8)=PI=3.14159...
 
                     DRC(9/4,2)=LN(2)
 
 
 
           ********************************************************
 
           WARNING: Changes in the program may improve speed at the
                    expense of robustness.
 
 
    --------------------------------------------------------------------
 
    Special functions via DRC
 
 
 
                   LN X                X .GT. 0
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                                              2
                   LN(X) = (X-1) DRC(((1+X)/2)  , X )
 
 
    --------------------------------------------------------------------
 
                   ARCSIN X            -1 .LE. X .LE. 1
 
                                        2
                   ARCSIN X = X DRC (1-X  ,1 )
 
    --------------------------------------------------------------------
 
                   ARCCOS X            0 .LE. X .LE. 1
 
 
                                      2       2
                   ARCCOS X = SQRT(1-X ) DRC(X  ,1 )
 
    --------------------------------------------------------------------
 
                   ARCTAN X            -INF .LT. X .LT. +INF
 
                                         2
                   ARCTAN X = X DRC(1,1+X  )
 
    --------------------------------------------------------------------
 
                   ARCCOT X            0 .LE. X .LT. INF
 
                                   2   2
                   ARCCOT X = DRC(X  ,X +1 )
 
    --------------------------------------------------------------------
 
                   ARCSINH X           -INF .LT. X .LT. +INF
 
                                        2
                   ARCSINH X = X DRC(1+X  ,1 )
 
    --------------------------------------------------------------------
 
                   ARCCOSH X           X .GE. 1
 
                                     2         2
                   ARCCOSH X = SQRT(X -1) DRC(X  ,1 )
 
    --------------------------------------------------------------------
 
                   ARCTANH X           -1 .LT. X .LT. 1
 
                                          2
                   ARCTANH X = X DRC(1,1-X  )
 
    --------------------------------------------------------------------
 
                   ARCCOTH X           X .GT. 1
 
                                    2   2
                   ARCCOTH X = DRC(X  ,X -1 )
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    --------------------------------------------------------------------
 
 ***REFERENCES  B. C. Carlson and E. M. Notis, Algorithms for incomplete
                  elliptic integrals, ACM Transactions on Mathematical
                  Software 7, 3 (September 1981), pp. 398-403.
                B. C. Carlson, Computing elliptic integrals by
                  duplication, Numerische Mathematik 33, (1979),
                  pp. 1-16.
                B. C. Carlson, Elliptic integrals of the first kind,
                  SIAM Journal of Mathematical Analysis 8, (1977),
                  pp. 231-242.
 ***ROUTINES CALLED  D1MACH, XERMSG
 ***REVISION HISTORY  (YYMMDD)
    790801  DATE WRITTEN
    890531  Changed all specific intrinsics to generic.  (WRB)
    891009  Removed unreferenced statement labels.  (WRB)
    891009  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    900315  CALLs to XERROR changed to CALLs to XERMSG.  (THJ)
    900326  Removed duplicate information from DESCRIPTION section.
            (WRB)
    900510  Changed calls to XERMSG to standard form, and some
            editorial changes.  (RWC))
    920501  Reformatted the REFERENCES section.  (WRB)
    END PROLOGUE
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DRC3JJ

      SUBROUTINE DRC3JJ (L2, L3, M2, M3, L1MIN, L1MAX, THRCOF, NDIM,
     +   IER)
 ***BEGIN PROLOGUE  DRC3JJ
 ***PURPOSE  Evaluate the 3j symbol f(L1) = (  L1   L2 L3)
                                            (-M2-M3 M2 M3)
             for all allowed values of L1, the other parameters
             being held fixed.
 ***LIBRARY   SLATEC
 ***CATEGORY  C19
 ***TYPE      DOUBLE PRECISION (RC3JJ-S, DRC3JJ-D)
 ***KEYWORDS  3J COEFFICIENTS, 3J SYMBOLS, CLEBSCH-GORDAN COEFFICIENTS,
              RACAH COEFFICIENTS, VECTOR ADDITION COEFFICIENTS,
              WIGNER COEFFICIENTS
 ***AUTHOR  Gordon, R. G., Harvard University
            Schulten, K., Max Planck Institute
 ***DESCRIPTION
 
  *Usage:
 
         DOUBLE PRECISION L2, L3, M2, M3, L1MIN, L1MAX, THRCOF(NDIM)
         INTEGER NDIM, IER
 
         CALL DRC3JJ (L2, L3, M2, M3, L1MIN, L1MAX, THRCOF, NDIM, IER)
 
  *Arguments:
 
      L2 :IN      Parameter in 3j symbol.
 
      L3 :IN      Parameter in 3j symbol.
 
      M2 :IN      Parameter in 3j symbol.
 
      M3 :IN      Parameter in 3j symbol.
 
      L1MIN :OUT  Smallest allowable L1 in 3j symbol.
 
      L1MAX :OUT  Largest allowable L1 in 3j symbol.
 
      THRCOF :OUT Set of 3j coefficients generated by evaluating the
                  3j symbol for all allowed values of L1.  THRCOF(I)
                  will contain f(L1MIN+I-1), I=1,2,...,L1MAX+L1MIN+1.
 
      NDIM :IN    Declared length of THRCOF in calling program.
 
      IER :OUT    Error flag.
                  IER=0 No errors.
                  IER=1 Either L2.LT.ABS(M2) or L3.LT.ABS(M3).
                  IER=2 Either L2+ABS(M2) or L3+ABS(M3) non-integer.
                  IER=3 L1MAX-L1MIN not an integer.
                  IER=4 L1MAX less than L1MIN.
                  IER=5 NDIM less than L1MAX-L1MIN+1.
 
  *Description:
 
      Although conventionally the parameters of the vector addition
   coefficients satisfy certain restrictions, such as being integers
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   or integers plus 1/2, the restrictions imposed on input to this
   subroutine are somewhat weaker. See, for example, Section 27.9 of
   Abramowitz and Stegun or Appendix C of Volume II of A. Messiah.
   The restrictions imposed by this subroutine are
        1. L2 .GE. ABS(M2) and L3 .GE. ABS(M3);
        2. L2+ABS(M2) and L3+ABS(M3) must be integers;
        3. L1MAX-L1MIN must be a non-negative integer, where
           L1MAX=L2+L3 and L1MIN=MAX(ABS(L2-L3),ABS(M2+M3)).
   If the conventional restrictions are satisfied, then these
   restrictions are met.
 
      The user should be cautious in using input parameters that do
   not satisfy the conventional restrictions. For example, the
   the subroutine produces values of
        f(L1) = ( L1  2.5  5.8)
                (-0.3 1.5 -1.2)
   for L1=3.3,4.3,...,8.3 but none of the symmetry properties of the 3j
   symbol, set forth on page 1056 of Messiah, is satisfied.
 
      The subroutine generates f(L1MIN), f(L1MIN+1), ..., f(L1MAX)
   where L1MIN and L1MAX are defined above. The sequence f(L1) is
   generated by a three-term recurrence algorithm with scaling to
   control overflow. Both backward and forward recurrence are used to
   maintain numerical stability. The two recurrence sequences are
   matched at an interior point and are normalized from the unitary
   property of 3j coefficients and Wigner's phase convention.
 
     The algorithm is suited to applications in which large quantum
   numbers arise, such as in molecular dynamics.
 
 ***REFERENCES  1. Abramowitz, M., and Stegun, I. A., Eds., Handbook
                   of Mathematical Functions with Formulas, Graphs
                   and Mathematical Tables, NBS Applied Mathematics
                   Series 55, June 1964 and subsequent printings.
                2. Messiah, Albert., Quantum Mechanics, Volume II,
                   North-Holland Publishing Company, 1963.
                3. Schulten, Klaus and Gordon, Roy G., Exact recursive
                   evaluation of 3j and 6j coefficients for quantum-
                   mechanical coupling of angular momenta, J Math
                   Phys, v 16, no. 10, October 1975, pp. 1961-1970.
                4. Schulten, Klaus and Gordon, Roy G., Semiclassical
                   approximations to 3j  and 6j coefficients for
                   quantum-mechanical coupling of angular momenta,
                   J Math Phys, v 16, no. 10, October 1975,
                   pp. 1971-1988.
                5. Schulten, Klaus and Gordon, Roy G., Recursive
                   evaluation of 3j and 6j coefficients, Computer
                   Phys Comm, v 11, 1976, pp. 269-278.
 ***ROUTINES CALLED  D1MACH, XERMSG
 ***REVISION HISTORY  (YYMMDD)
    750101  DATE WRITTEN
    880515  SLATEC prologue added by G. C. Nielson, NBS; parameters
            HUGE and TINY revised to depend on D1MACH.
    891229  Prologue description rewritten; other prologue sections
            revised; LMATCH (location of match point for recurrences)
            removed from argument list; argument IER changed to serve
            only as an error flag (previously, in cases without error,
            it returned the number of scalings); number of error codes
            increased to provide more precise error information;
            program comments revised; SLATEC error handler calls
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            introduced to enable printing of error messages to meet
            SLATEC standards. These changes were done by D. W. Lozier,
            M. A. McClain and J. M. Smith of the National Institute
            of Standards and Technology, formerly NBS.
    910415  Mixed type expressions eliminated; variable C1 initialized;
            description of THRCOF expanded. These changes were done by
            D. W. Lozier.
    END PROLOGUE
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DRC3JM

      SUBROUTINE DRC3JM (L1, L2, L3, M1, M2MIN, M2MAX, THRCOF, NDIM,
     +   IER)
 ***BEGIN PROLOGUE  DRC3JM
 ***PURPOSE  Evaluate the 3j symbol g(M2) = (L1 L2   L3  )
                                            (M1 M2 -M1-M2)
             for all allowed values of M2, the other parameters
             being held fixed.
 ***LIBRARY   SLATEC
 ***CATEGORY  C19
 ***TYPE      DOUBLE PRECISION (RC3JM-S, DRC3JM-D)
 ***KEYWORDS  3J COEFFICIENTS, 3J SYMBOLS, CLEBSCH-GORDAN COEFFICIENTS,
              RACAH COEFFICIENTS, VECTOR ADDITION COEFFICIENTS,
              WIGNER COEFFICIENTS
 ***AUTHOR  Gordon, R. G., Harvard University
            Schulten, K., Max Planck Institute
 ***DESCRIPTION
 
  *Usage:
 
         DOUBLE PRECISION L1, L2, L3, M1, M2MIN, M2MAX, THRCOF(NDIM)
         INTEGER NDIM, IER
 
         CALL DRC3JM (L1, L2, L3, M1, M2MIN, M2MAX, THRCOF, NDIM, IER)
 
  *Arguments:
 
      L1 :IN      Parameter in 3j symbol.
 
      L2 :IN      Parameter in 3j symbol.
 
      L3 :IN      Parameter in 3j symbol.
 
      M1 :IN      Parameter in 3j symbol.
 
      M2MIN :OUT  Smallest allowable M2 in 3j symbol.
 
      M2MAX :OUT  Largest allowable M2 in 3j symbol.
 
      THRCOF :OUT Set of 3j coefficients generated by evaluating the
                  3j symbol for all allowed values of M2.  THRCOF(I)
                  will contain g(M2MIN+I-1), I=1,2,...,M2MAX-M2MIN+1.
 
      NDIM :IN    Declared length of THRCOF in calling program.
 
      IER :OUT    Error flag.
                  IER=0 No errors.
                  IER=1 Either L1.LT.ABS(M1) or L1+ABS(M1) non-integer.
                  IER=2 ABS(L1-L2).LE.L3.LE.L1+L2 not satisfied.
                  IER=3 L1+L2+L3 not an integer.
                  IER=4 M2MAX-M2MIN not an integer.
                  IER=5 M2MAX less than M2MIN.
                  IER=6 NDIM less than M2MAX-M2MIN+1.
 
  *Description:
 
      Although conventionally the parameters of the vector addition
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   coefficients satisfy certain restrictions, such as being integers
   or integers plus 1/2, the restrictions imposed on input to this
   subroutine are somewhat weaker. See, for example, Section 27.9 of
   Abramowitz and Stegun or Appendix C of Volume II of A. Messiah.
   The restrictions imposed by this subroutine are
        1. L1.GE.ABS(M1) and L1+ABS(M1) must be an integer;
        2. ABS(L1-L2).LE.L3.LE.L1+L2;
        3. L1+L2+L3 must be an integer;
        4. M2MAX-M2MIN must be an integer, where
           M2MAX=MIN(L2,L3-M1) and M2MIN=MAX(-L2,-L3-M1).
   If the conventional restrictions are satisfied, then these
   restrictions are met.
 
      The user should be cautious in using input parameters that do
   not satisfy the conventional restrictions. For example, the
   the subroutine produces values of
        g(M2) = (0.75 1.50   1.75  )
                (0.25  M2  -0.25-M2)
   for M2=-1.5,-0.5,0.5,1.5 but none of the symmetry properties of the
   3j symbol, set forth on page 1056 of Messiah, is satisfied.
 
      The subroutine generates g(M2MIN), g(M2MIN+1), ..., g(M2MAX)
   where M2MIN and M2MAX are defined above. The sequence g(M2) is
   generated by a three-term recurrence algorithm with scaling to
   control overflow. Both backward and forward recurrence are used to
   maintain numerical stability. The two recurrence sequences are
   matched at an interior point and are normalized from the unitary
   property of 3j coefficients and Wigner's phase convention.
 
     The algorithm is suited to applications in which large quantum
   numbers arise, such as in molecular dynamics.
 
 ***REFERENCES  1. Abramowitz, M., and Stegun, I. A., Eds., Handbook
                   of Mathematical Functions with Formulas, Graphs
                   and Mathematical Tables, NBS Applied Mathematics
                   Series 55, June 1964 and subsequent printings.
                2. Messiah, Albert., Quantum Mechanics, Volume II,
                   North-Holland Publishing Company, 1963.
                3. Schulten, Klaus and Gordon, Roy G., Exact recursive
                   evaluation of 3j and 6j coefficients for quantum-
                   mechanical coupling of angular momenta, J Math
                   Phys, v 16, no. 10, October 1975, pp. 1961-1970.
                4. Schulten, Klaus and Gordon, Roy G., Semiclassical
                   approximations to 3j and 6j coefficients for
                   quantum-mechanical coupling of angular momenta,
                   J Math Phys, v 16, no. 10, October 1975,
                   pp. 1971-1988.
                5. Schulten, Klaus and Gordon, Roy G., Recursive
                   evaluation of 3j and 6j coefficients, Computer
                   Phys Comm, v 11, 1976, pp. 269-278.
 ***ROUTINES CALLED  D1MACH, XERMSG
 ***REVISION HISTORY  (YYMMDD)
    750101  DATE WRITTEN
    880515  SLATEC prologue added by G. C. Nielson, NBS; parameters
            HUGE and TINY revised to depend on D1MACH.
    891229  Prologue description rewritten; other prologue sections
            revised; MMATCH (location of match point for recurrences)
            removed from argument list; argument IER changed to serve
            only as an error flag (previously, in cases without error,
            it returned the number of scalings); number of error codes
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            increased to provide more precise error information;
            program comments revised; SLATEC error handler calls
            introduced to enable printing of error messages to meet
            SLATEC standards. These changes were done by D. W. Lozier,
            M. A. McClain and J. M. Smith of the National Institute
            of Standards and Technology, formerly NBS.
    910415  Mixed type expressions eliminated; variable C1 initialized;
            description of THRCOF expanded. These changes were done by
            D. W. Lozier.
    END PROLOGUE
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DRC6J

      SUBROUTINE DRC6J(L2, L3, L4, L5, L6, L1MIN, L1MAX, SIXCOF, NDIM,
     +   IER)
 ***BEGIN PROLOGUE  DRC6J
 ***PURPOSE  Evaluate the 6j symbol h(L1) = {L1 L2 L3}
                                            {L4 L5 L6}
             for all allowed values of L1, the other parameters
             being held fixed.
 ***LIBRARY   SLATEC
 ***CATEGORY  C19
 ***TYPE      DOUBLE PRECISION (RC6J-S, DRC6J-D)
 ***KEYWORDS  6J COEFFICIENTS, 6J SYMBOLS, CLEBSCH-GORDAN COEFFICIENTS,
              RACAH COEFFICIENTS, VECTOR ADDITION COEFFICIENTS,
              WIGNER COEFFICIENTS
 ***AUTHOR  Gordon, R. G., Harvard University
            Schulten, K., Max Planck Institute
 ***DESCRIPTION
 
  *Usage:
 
         DOUBLE PRECISION L2, L3, L4, L5, L6, L1MIN, L1MAX, SIXCOF(NDIM)
         INTEGER NDIM, IER
 
         CALL DRC6J(L2, L3, L4, L5, L6, L1MIN, L1MAX, SIXCOF, NDIM, IER)
 
  *Arguments:
 
      L2 :IN      Parameter in 6j symbol.
 
      L3 :IN      Parameter in 6j symbol.
 
      L4 :IN      Parameter in 6j symbol.
 
      L5 :IN      Parameter in 6j symbol.
 
      L6 :IN      Parameter in 6j symbol.
 
      L1MIN :OUT  Smallest allowable L1 in 6j symbol.
 
      L1MAX :OUT  Largest allowable L1 in 6j symbol.
 
      SIXCOF :OUT Set of 6j coefficients generated by evaluating the
                  6j symbol for all allowed values of L1.  SIXCOF(I)
                  will contain h(L1MIN+I-1), I=1,2,...,L1MAX-L1MIN+1.
 
      NDIM :IN    Declared length of SIXCOF in calling program.
 
      IER :OUT    Error flag.
                  IER=0 No errors.
                  IER=1 L2+L3+L5+L6 or L4+L2+L6 not an integer.
                  IER=2 L4, L2, L6 triangular condition not satisfied.
                  IER=3 L4, L5, L3 triangular condition not satisfied.
                  IER=4 L1MAX-L1MIN not an integer.
                  IER=5 L1MAX less than L1MIN.
                  IER=6 NDIM less than L1MAX-L1MIN+1.
 
  *Description:
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      The definition and properties of 6j symbols can be found, for
   example, in Appendix C of Volume II of A. Messiah. Although the
   parameters of the vector addition coefficients satisfy certain
   conventional restrictions, the restriction that they be non-negative
   integers or non-negative integers plus 1/2 is not imposed on input
   to this subroutine. The restrictions imposed are
        1. L2+L3+L5+L6 and L2+L4+L6 must be integers;
        2. ABS(L2-L4).LE.L6.LE.L2+L4 must be satisfied;
        3. ABS(L4-L5).LE.L3.LE.L4+L5 must be satisfied;
        4. L1MAX-L1MIN must be a non-negative integer, where
           L1MAX=MIN(L2+L3,L5+L6) and L1MIN=MAX(ABS(L2-L3),ABS(L5-L6)).
   If all the conventional restrictions are satisfied, then these
   restrictions are met. Conversely, if input to this subroutine meets
   all of these restrictions and the conventional restriction stated
   above, then all the conventional restrictions are satisfied.
 
      The user should be cautious in using input parameters that do
   not satisfy the conventional restrictions. For example, the
   the subroutine produces values of
        h(L1) = { L1 2/3  1 }
                {2/3 2/3 2/3}
   for L1=1/3 and 4/3 but none of the symmetry properties of the 6j
   symbol, set forth on pages 1063 and 1064 of Messiah, is satisfied.
 
      The subroutine generates h(L1MIN), h(L1MIN+1), ..., h(L1MAX)
   where L1MIN and L1MAX are defined above. The sequence h(L1) is
   generated by a three-term recurrence algorithm with scaling to
   control overflow. Both backward and forward recurrence are used to
   maintain numerical stability. The two recurrence sequences are
   matched at an interior point and are normalized from the unitary
   property of 6j coefficients and Wigner's phase convention.
 
     The algorithm is suited to applications in which large quantum
   numbers arise, such as in molecular dynamics.
 
 ***REFERENCES  1. Messiah, Albert., Quantum Mechanics, Volume II,
                   North-Holland Publishing Company, 1963.
                2. Schulten, Klaus and Gordon, Roy G., Exact recursive
                   evaluation of 3j and 6j coefficients for quantum-
                   mechanical coupling of angular momenta, J Math
                   Phys, v 16, no. 10, October 1975, pp. 1961-1970.
                3. Schulten, Klaus and Gordon, Roy G., Semiclassical
                   approximations to 3j and 6j coefficients for
                   quantum-mechanical coupling of angular momenta,
                   J Math Phys, v 16, no. 10, October 1975,
                   pp. 1971-1988.
                4. Schulten, Klaus and Gordon, Roy G., Recursive
                   evaluation of 3j and 6j coefficients, Computer
                   Phys Comm, v 11, 1976, pp. 269-278.
 ***ROUTINES CALLED  D1MACH, XERMSG
 ***REVISION HISTORY  (YYMMDD)
    750101  DATE WRITTEN
    880515  SLATEC prologue added by G. C. Nielson, NBS; parameters
            HUGE and TINY revised to depend on D1MACH.
    891229  Prologue description rewritten; other prologue sections
            revised; LMATCH (location of match point for recurrences)
            removed from argument list; argument IER changed to serve
            only as an error flag (previously, in cases without error,
            it returned the number of scalings); number of error codes
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            increased to provide more precise error information;
            program comments revised; SLATEC error handler calls
            introduced to enable printing of error messages to meet
            SLATEC standards. These changes were done by D. W. Lozier,
            M. A. McClain and J. M. Smith of the National Institute
            of Standards and Technology, formerly NBS.
    910415  Mixed type expressions eliminated; variable C1 initialized;
            description of SIXCOF expanded. These changes were done by
            D. W. Lozier.
    END PROLOGUE
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DRD

      DOUBLE PRECISION FUNCTION DRD (X, Y, Z, IER)
 ***BEGIN PROLOGUE  DRD
 ***PURPOSE  Compute the incomplete or complete elliptic integral of
             the 2nd kind. For X and Y nonnegative, X+Y and Z positive,
             DRD(X,Y,Z) = Integral from zero to infinity of
                                 -1/2     -1/2     -3/2
                       (3/2)(t+X)    (t+Y)    (t+Z)    dt.
             If X or Y is zero, the integral is complete.
 ***LIBRARY   SLATEC
 ***CATEGORY  C14
 ***TYPE      DOUBLE PRECISION (RD-S, DRD-D)
 ***KEYWORDS  COMPLETE ELLIPTIC INTEGRAL, DUPLICATION THEOREM,
              INCOMPLETE ELLIPTIC INTEGRAL, INTEGRAL OF THE SECOND KIND,
              TAYLOR SERIES
 ***AUTHOR  Carlson, B. C.
              Ames Laboratory-DOE
              Iowa State University
              Ames, IA  50011
            Notis, E. M.
              Ames Laboratory-DOE
              Iowa State University
              Ames, IA  50011
            Pexton, R. L.
              Lawrence Livermore National Laboratory
              Livermore, CA  94550
 ***DESCRIPTION
 
    1.     DRD
           Evaluate an INCOMPLETE (or COMPLETE) ELLIPTIC INTEGRAL
           of the second kind
           Standard FORTRAN function routine
           Double precision version
           The routine calculates an approximation result to
           DRD(X,Y,Z) = Integral from zero to infinity of
                               -1/2     -1/2     -3/2
                     (3/2)(t+X)    (t+Y)    (t+Z)    dt,
           where X and Y are nonnegative, X + Y is positive, and Z is
           positive.  If X or Y is zero, the integral is COMPLETE.
           The duplication theorem is iterated until the variables are
           nearly equal, and the function is then expanded in Taylor
           series to fifth order.
 
    2.     Calling Sequence
 
           DRD( X, Y, Z, IER )
 
           Parameters On Entry
           Values assigned by the calling routine
 
           X      - Double precision, nonnegative variable
 
           Y      - Double precision, nonnegative variable
 
                    X + Y is positive
 
           Z      - Double precision, positive variable
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           On Return    (values assigned by the DRD routine)
 
           DRD     - Double precision approximation to the integral
 
 
           IER    - Integer
 
                    IER = 0 Normal and reliable termination of the
                            routine. It is assumed that the requested
                            accuracy has been achieved.
 
                    IER >  0 Abnormal termination of the routine
 
 
           X, Y, Z are unaltered.
 
    3.    Error Messages
 
          Value of IER assigned by the DRD routine
 
                   Value assigned         Error message printed
                   IER = 1                MIN(X,Y) .LT. 0.0D0
                       = 2                MIN(X + Y, Z ) .LT. LOLIM
                       = 3                MAX(X,Y,Z) .GT. UPLIM
 
 
    4.     Control Parameters
 
                   Values of LOLIM, UPLIM, and ERRTOL are set by the
                   routine.
 
           LOLIM and UPLIM determine the valid range of X, Y, and Z
 
           LOLIM  - Lower limit of valid arguments
 
                     Not less  than 2 / (machine maximum) ** (2/3).
 
           UPLIM  - Upper limit of valid arguments
 
                  Not greater than (0.1D0 * ERRTOL / machine
                  minimum) ** (2/3), where ERRTOL is described below.
                  In the following table it is assumed that ERRTOL will
                  never be chosen smaller than 1.0D-5.
 
 
                     Acceptable values for:   LOLIM      UPLIM
                     IBM 360/370 SERIES   :   6.0D-51     1.0D+48
                     CDC 6000/7000 SERIES :   5.0D-215    2.0D+191
                     UNIVAC 1100 SERIES   :   1.0D-205    2.0D+201
                     CRAY                 :   3.0D-1644   1.69D+1640
                     VAX 11 SERIES        :   1.0D-25     4.5D+21
 
 
           ERRTOL determines the accuracy of the answer
 
                  The value assigned by the routine will result
                  in solution precision within 1-2 decimals of
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                  "machine precision".
 
           ERRTOL    Relative error due to truncation is less than
                     3 * ERRTOL ** 6 / (1-ERRTOL) ** 3/2.
 
 
 
         The accuracy of the computed approximation to the integral
         can be controlled by choosing the value of ERRTOL.
         Truncation of a Taylor series after terms of fifth order
         introduces an error less than the amount shown in the
         second column of the following table for each value of
         ERRTOL in the first column.  In addition to the truncation
         error there will be round-off error, but in practice the
         total error from both sources is usually less than the
         amount given in the table.
 
 
 
 
           Sample choices:  ERRTOL   Relative truncation
                                     error less than
                            1.0D-3    4.0D-18
                            3.0D-3    3.0D-15
                            1.0D-2    4.0D-12
                            3.0D-2    3.0D-9
                            1.0D-1    4.0D-6
 
 
                     Decreasing ERRTOL by a factor of 10 yields six more
                     decimal digits of accuracy at the expense of one or
                     two more iterations of the duplication theorem.
 
  *Long Description:
 
    DRD Special Comments
 
 
 
           Check: DRD(X,Y,Z) + DRD(Y,Z,X) + DRD(Z,X,Y)
           = 3 / SQRT(X * Y * Z), where X, Y, and Z are positive.
 
 
           On Input:
 
           X, Y, and Z are the variables in the integral DRD(X,Y,Z).
 
 
           On Output:
 
 
           X, Y, Z are unaltered.
 
 
 
           ********************************************************
 
           WARNING: Changes in the program may improve speed at the
                    expense of robustness.
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     -------------------------------------------------------------------
 
 
    Special double precision functions via DRD and DRF
 
 
                   Legendre form of ELLIPTIC INTEGRAL of 2nd kind
 
                   -----------------------------------------
 
 
                                              2         2   2
                   E(PHI,K) = SIN(PHI) DRF(COS (PHI),1-K SIN (PHI),1) -
 
                      2      3             2         2   2
                   -(K/3) SIN (PHI) DRD(COS (PHI),1-K SIN (PHI),1)
 
 
                                   2        2            2
                   E(K) = DRF(0,1-K ,1) - (K/3) DRD(0,1-K ,1)
 
                          PI/2     2   2      1/2
                        = INT  (1-K SIN (PHI) )  D PHI
                           0
 
                   Bulirsch form of ELLIPTIC INTEGRAL of 2nd kind
 
                   -----------------------------------------
 
                                                2 2    2
                   EL2(X,KC,A,B) = AX DRF(1,1+KC X ,1+X ) +
 
                                               3          2 2    2
                                  +(1/3)(B-A) X DRD(1,1+KC X ,1+X )
 
 
 
 
                   Legendre form of alternative ELLIPTIC INTEGRAL
                   of 2nd kind
 
                   -----------------------------------------
 
 
 
                             Q     2       2   2  -1/2
                   D(Q,K) = INT SIN P  (1-K SIN P)     DP
                             0
 
 
 
                                      3          2     2   2
                   D(Q,K) = (1/3) (SIN Q) DRD(COS Q,1-K SIN Q,1)
 
 
 
 
                   Lemniscate constant  B
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                   -----------------------------------------
 
 
 
 
                        1    2    4 -1/2
                   B = INT  S (1-S )    DS
                        0
 
 
                   B = (1/3) DRD (0,2,1)
 
 
                   Heuman's LAMBDA function
 
                   -----------------------------------------
 
 
 
                   (PI/2) LAMBDA0(A,B) =
 
                                     2                2
                  = SIN(B) (DRF(0,COS (A),1)-(1/3) SIN (A) *
 
                             2               2         2       2
                   *DRD(0,COS (A),1)) DRF(COS (B),1-COS (A) SIN (B),1)
 
                             2       3             2
                   -(1/3) COS (A) SIN (B) DRF(0,COS (A),1) *
 
                            2         2       2
                    *DRD(COS (B),1-COS (A) SIN (B),1)
 
 
 
                   Jacobi ZETA function
 
                   -----------------------------------------
 
                              2                 2       2   2
                   Z(B,K) = (K/3) SIN(B) DRF(COS (B),1-K SIN (B),1)
 
 
                                        2             2
                              *DRD(0,1-K ,1)/DRF(0,1-K ,1)
 
                                2       3           2       2   2
                             -(K /3) SIN (B) DRD(COS (B),1-K SIN (B),1)
 
 
  ---------------------------------------------------------------------
 
 ***REFERENCES  B. C. Carlson and E. M. Notis, Algorithms for incomplete
                  elliptic integrals, ACM Transactions on Mathematical
                  Software 7, 3 (September 1981), pp. 398-403.
                B. C. Carlson, Computing elliptic integrals by
                  duplication, Numerische Mathematik 33, (1979),
                  pp. 1-16.
                B. C. Carlson, Elliptic integrals of the first kind,
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                  SIAM Journal of Mathematical Analysis 8, (1977),
                  pp. 231-242.
 ***ROUTINES CALLED  D1MACH, XERMSG
 ***REVISION HISTORY  (YYMMDD)
    790801  DATE WRITTEN
    890531  Changed all specific intrinsics to generic.  (WRB)
    890531  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    900315  CALLs to XERROR changed to CALLs to XERMSG.  (THJ)
    900326  Removed duplicate information from DESCRIPTION section.
            (WRB)
    900510  Modify calls to XERMSG to put in standard form.  (RWC)
    920501  Reformatted the REFERENCES section.  (WRB)
    END PROLOGUE
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DRF

      DOUBLE PRECISION FUNCTION DRF (X, Y, Z, IER)
 ***BEGIN PROLOGUE  DRF
 ***PURPOSE  Compute the incomplete or complete elliptic integral of the
             1st kind.  For X, Y, and Z non-negative and at most one of
             them zero, RF(X,Y,Z) = Integral from zero to infinity of
                                 -1/2     -1/2     -1/2
                       (1/2)(t+X)    (t+Y)    (t+Z)    dt.
             If X, Y or Z is zero, the integral is complete.
 ***LIBRARY   SLATEC
 ***CATEGORY  C14
 ***TYPE      DOUBLE PRECISION (RF-S, DRF-D)
 ***KEYWORDS  COMPLETE ELLIPTIC INTEGRAL, DUPLICATION THEOREM,
              INCOMPLETE ELLIPTIC INTEGRAL, INTEGRAL OF THE FIRST KIND,
              TAYLOR SERIES
 ***AUTHOR  Carlson, B. C.
              Ames Laboratory-DOE
              Iowa State University
              Ames, IA  50011
            Notis, E. M.
              Ames Laboratory-DOE
              Iowa State University
              Ames, IA  50011
            Pexton, R. L.
              Lawrence Livermore National Laboratory
              Livermore, CA  94550
 ***DESCRIPTION
 
    1.     DRF
           Evaluate an INCOMPLETE (or COMPLETE) ELLIPTIC INTEGRAL
           of the first kind
           Standard FORTRAN function routine
           Double precision version
           The routine calculates an approximation result to
           DRF(X,Y,Z) = Integral from zero to infinity of
 
                                -1/2     -1/2     -1/2
                      (1/2)(t+X)    (t+Y)    (t+Z)    dt,
 
           where X, Y, and Z are nonnegative and at most one of them
           is zero.  If one of them  is zero, the integral is COMPLETE.
           The duplication theorem is iterated until the variables are
           nearly equal, and the function is then expanded in Taylor
           series to fifth order.
 
    2.     Calling sequence
           DRF( X, Y, Z, IER )
 
           Parameters On entry
           Values assigned by the calling routine
 
           X      - Double precision, nonnegative variable
 
           Y      - Double precision, nonnegative variable
 
           Z      - Double precision, nonnegative variable
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           On Return    (values assigned by the DRF routine)
 
           DRF     - Double precision approximation to the integral
 
           IER    - Integer
 
                    IER = 0 Normal and reliable termination of the
                            routine. It is assumed that the requested
                            accuracy has been achieved.
 
                    IER >  0 Abnormal termination of the routine
 
           X, Y, Z are unaltered.
 
 
    3.    Error Messages
 
 
          Value of IER assigned by the DRF routine
 
                   Value assigned         Error Message Printed
                   IER = 1                MIN(X,Y,Z) .LT. 0.0D0
                       = 2                MIN(X+Y,X+Z,Y+Z) .LT. LOLIM
                       = 3                MAX(X,Y,Z) .GT. UPLIM
 
 
 
    4.     Control Parameters
 
                   Values of LOLIM, UPLIM, and ERRTOL are set by the
                   routine.
 
           LOLIM and UPLIM determine the valid range of X, Y and Z
 
           LOLIM  - Lower limit of valid arguments
 
                    Not less than 5 * (machine minimum).
 
           UPLIM  - Upper limit of valid arguments
 
                    Not greater than (machine maximum) / 5.
 
 
                      Acceptable values for:   LOLIM      UPLIM
                      IBM 360/370 SERIES   :   3.0D-78     1.0D+75
                      CDC 6000/7000 SERIES :   1.0D-292    1.0D+321
                      UNIVAC 1100 SERIES   :   1.0D-307    1.0D+307
                      CRAY                 :   2.3D-2466   1.09D+2465
                      VAX 11 SERIES        :   1.5D-38     3.0D+37
 
 
 
           ERRTOL determines the accuracy of the answer
 
                  The value assigned by the routine will result
                  in solution precision within 1-2 decimals of
                  "machine precision".
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           ERRTOL - Relative error due to truncation is less than
                    ERRTOL ** 6 / (4 * (1-ERRTOL)  .
 
 
 
         The accuracy of the computed approximation to the integral
         can be controlled by choosing the value of ERRTOL.
         Truncation of a Taylor series after terms of fifth order
         introduces an error less than the amount shown in the
         second column of the following table for each value of
         ERRTOL in the first column.  In addition to the truncation
         error there will be round-off error, but in practice the
         total error from both sources is usually less than the
         amount given in the table.
 
 
 
 
 
           Sample choices:  ERRTOL   Relative Truncation
                                     error less than
                            1.0D-3    3.0D-19
                            3.0D-3    2.0D-16
                            1.0D-2    3.0D-13
                            3.0D-2    2.0D-10
                            1.0D-1    3.0D-7
 
 
                     Decreasing ERRTOL by a factor of 10 yields six more
                     decimal digits of accuracy at the expense of one or
                     two more iterations of the duplication theorem.
 
  *Long Description:
 
    DRF Special Comments
 
 
 
           Check by addition theorem: DRF(X,X+Z,X+W) + DRF(Y,Y+Z,Y+W)
           = DRF(0,Z,W), where X,Y,Z,W are positive and X * Y = Z * W.
 
 
           On Input:
 
           X, Y, and Z are the variables in the integral DRF(X,Y,Z).
 
 
           On Output:
 
 
           X, Y, Z are unaltered.
 
 
 
           ********************************************************
 
           WARNING: Changes in the program may improve speed at the
                    expense of robustness.
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    Special double precision functions via DRF
 
 
 
 
                   Legendre form of ELLIPTIC INTEGRAL of 1st kind
 
                   -----------------------------------------
 
 
 
                                              2         2   2
                   F(PHI,K) = SIN(PHI) DRF(COS (PHI),1-K SIN (PHI),1)
 
 
                                   2
                   K(K) = DRF(0,1-K ,1)
 
 
                          PI/2     2   2      -1/2
                        = INT  (1-K SIN (PHI) )   D PHI
                           0
 
 
 
                   Bulirsch form of ELLIPTIC INTEGRAL of 1st kind
 
                   -----------------------------------------
 
 
                                           2 2    2
                   EL1(X,KC) = X DRF(1,1+KC X ,1+X )
 
 
                   Lemniscate constant A
 
                   -----------------------------------------
 
 
                        1      4 -1/2
                   A = INT (1-S )    DS = DRF(0,1,2) = DRF(0,2,1)
                        0
 
 
 
     -------------------------------------------------------------------
 
 ***REFERENCES  B. C. Carlson and E. M. Notis, Algorithms for incomplete
                  elliptic integrals, ACM Transactions on Mathematical
                  Software 7, 3 (September 1981), pp. 398-403.
                B. C. Carlson, Computing elliptic integrals by
                  duplication, Numerische Mathematik 33, (1979),
                  pp. 1-16.
                B. C. Carlson, Elliptic integrals of the first kind,
                  SIAM Journal of Mathematical Analysis 8, (1977),
                  pp. 231-242.
 ***ROUTINES CALLED  D1MACH, XERMSG
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 ***REVISION HISTORY  (YYMMDD)
    790801  DATE WRITTEN
    890531  Changed all specific intrinsics to generic.  (WRB)
    891009  Removed unreferenced statement labels.  (WRB)
    891009  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    900315  CALLs to XERROR changed to CALLs to XERMSG.  (THJ)
    900326  Removed duplicate information from DESCRIPTION section.
            (WRB)
    900510  Changed calls to XERMSG to standard form, and some
            editorial changes.  (RWC))
    920501  Reformatted the REFERENCES section.  (WRB)
    END PROLOGUE
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DRJ

      DOUBLE PRECISION FUNCTION DRJ (X, Y, Z, P, IER)
 ***BEGIN PROLOGUE  DRJ
 ***PURPOSE  Compute the incomplete or complete (X or Y or Z is zero)
             elliptic integral of the 3rd kind.  For X, Y, and Z non-
             negative, at most one of them zero, and P positive,
              RJ(X,Y,Z,P) = Integral from zero to infinity of
                               -1/2     -1/2     -1/2     -1
                     (3/2)(t+X)    (t+Y)    (t+Z)    (t+P)  dt.
 ***LIBRARY   SLATEC
 ***CATEGORY  C14
 ***TYPE      DOUBLE PRECISION (RJ-S, DRJ-D)
 ***KEYWORDS  COMPLETE ELLIPTIC INTEGRAL, DUPLICATION THEOREM,
              INCOMPLETE ELLIPTIC INTEGRAL, INTEGRAL OF THE THIRD KIND,
              TAYLOR SERIES
 ***AUTHOR  Carlson, B. C.
              Ames Laboratory-DOE
              Iowa State University
              Ames, IA  50011
            Notis, E. M.
              Ames Laboratory-DOE
              Iowa State University
              Ames, IA  50011
            Pexton, R. L.
              Lawrence Livermore National Laboratory
              Livermore, CA  94550
 ***DESCRIPTION
 
    1.     DRJ
           Standard FORTRAN function routine
           Double precision version
           The routine calculates an approximation result to
           DRJ(X,Y,Z,P) = Integral from zero to infinity of
 
                                 -1/2     -1/2     -1/2     -1
                       (3/2)(t+X)    (t+Y)    (t+Z)    (t+P)  dt,
 
           where X, Y, and Z are nonnegative, at most one of them is
           zero, and P is positive.  If X or Y or Z is zero, the
           integral is COMPLETE.  The duplication theorem is iterated
           until the variables are nearly equal, and the function is
           then expanded in Taylor series to fifth order.
 
 
    2.     Calling Sequence
           DRJ( X, Y, Z, P, IER )
 
           Parameters on Entry
           Values assigned by the calling routine
 
           X      - Double precision, nonnegative variable
 
           Y      - Double precision, nonnegative variable
 
           Z      - Double precision, nonnegative variable
 
           P      - Double precision, positive variable
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           On  Return    (values assigned by the DRJ routine)
 
           DRJ     - Double precision approximation to the integral
 
           IER    - Integer
 
                    IER = 0 Normal and reliable termination of the
                            routine. It is assumed that the requested
                            accuracy has been achieved.
 
                    IER >  0 Abnormal termination of the routine
 
 
           X, Y, Z, P are unaltered.
 
 
    3.    Error Messages
 
          Value of IER assigned by the DRJ routine
 
               Value assigned         Error Message printed
               IER = 1                MIN(X,Y,Z) .LT. 0.0D0
                   = 2                MIN(X+Y,X+Z,Y+Z,P) .LT. LOLIM
                   = 3                MAX(X,Y,Z,P) .GT. UPLIM
 
 
 
    4.     Control Parameters
 
                   Values of LOLIM, UPLIM, and ERRTOL are set by the
                   routine.
 
 
           LOLIM and UPLIM determine the valid range of X, Y, Z, and P
 
           LOLIM is not less than the cube root of the value
           of LOLIM used in the routine for DRC.
 
           UPLIM is not greater than 0.3 times the cube root of
           the value of UPLIM used in the routine for DRC.
 
 
                      Acceptable values for:   LOLIM      UPLIM
                      IBM 360/370 SERIES   :   2.0D-26     3.0D+24
                      CDC 6000/7000 SERIES :   5.0D-98     3.0D+106
                      UNIVAC 1100 SERIES   :   5.0D-103    6.0D+101
                      CRAY                 :   1.32D-822   1.4D+821
                      VAX 11 SERIES        :   2.5D-13     9.0D+11
 
 
 
           ERRTOL determines the accuracy of the answer
 
                  the value assigned by the routine will result
                  in solution precision within 1-2 decimals of
                  "machine precision".
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           Relative error due to truncation of the series for DRJ
           is less than 3 * ERRTOL ** 6 / (1 - ERRTOL) ** 3/2.
 
 
 
         The accuracy of the computed approximation to the integral
         can be controlled by choosing the value of ERRTOL.
         Truncation of a Taylor series after terms of fifth order
         introduces an error less than the amount shown in the
         second column of the following table for each value of
         ERRTOL in the first column.  In addition to the truncation
         error there will be round-off error, but in practice the
         total error from both sources is usually less than the
         amount given in the table.
 
 
 
           Sample choices:  ERRTOL   Relative truncation
                                     error less than
                            1.0D-3    4.0D-18
                            3.0D-3    3.0D-15
                            1.0D-2    4.0D-12
                            3.0D-2    3.0D-9
                            1.0D-1    4.0D-6
 
                     Decreasing ERRTOL by a factor of 10 yields six more
                     decimal digits of accuracy at the expense of one or
                     two more iterations of the duplication theorem.
 
  *Long Description:
 
    DRJ Special Comments
 
 
      Check by addition theorem: DRJ(X,X+Z,X+W,X+P)
      + DRJ(Y,Y+Z,Y+W,Y+P) + (A-B) * DRJ(A,B,B,A) + 3.0D0 / SQRT(A)
      = DRJ(0,Z,W,P), where X,Y,Z,W,P are positive and X * Y
      = Z * W,  A = P * P * (X+Y+Z+W),  B = P * (P+X) * (P+Y),
      and B - A = P * (P-Z) * (P-W).  The sum of the third and
      fourth terms on the left side is 3.0D0 * DRC(A,B).
 
 
           On Input:
 
      X, Y, Z, and P are the variables in the integral DRJ(X,Y,Z,P).
 
 
           On Output:
 
 
           X, Y, Z, P are unaltered.
 
           ********************************************************
 
           WARNING: Changes in the program may improve speed at the
                    expense of robustness.
 
     -------------------------------------------------------------------
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    Special double precision functions via DRJ and DRF
 
 
                   Legendre form of ELLIPTIC INTEGRAL of 3rd kind
                   -----------------------------------------
 
 
                           PHI         2         -1
              P(PHI,K,N) = INT (1+N SIN (THETA) )   *
                            0
 
 
                                   2    2         -1/2
                              *(1-K  SIN (THETA) )     D THETA
 
 
                                            2          2   2
                         = SIN (PHI) DRF(COS (PHI), 1-K SIN (PHI),1)
 
                                    3             2         2   2
                          -(N/3) SIN (PHI) DRJ(COS (PHI),1-K SIN (PHI),
 
                                   2
                          1,1+N SIN (PHI))
 
 
 
                   Bulirsch form of ELLIPTIC INTEGRAL of 3rd kind
                   -----------------------------------------
 
 
                                             2 2    2
                   EL3(X,KC,P) = X DRF(1,1+KC X ,1+X ) +
 
                                             3           2 2    2     2
                                +(1/3)(1-P) X  DRJ(1,1+KC X ,1+X ,1+PX )
 
 
                                            2
                   CEL(KC,P,A,B) = A RF(0,KC ,1) +
 
 
                                                       2
                                  +(1/3)(B-PA) DRJ(0,KC ,1,P)
 
 
                   Heuman's LAMBDA function
                   -----------------------------------------
 
 
                                 2                      2      2    1/2
                   L(A,B,P) =(COS (A)SIN(B)COS(B)/(1-COS (A)SIN (B))   )
 
                                             2         2       2
                             *(SIN(P) DRF(COS (P),1-SIN (A) SIN (P),1)
 
                                  2       3            2       2
                             +(SIN (A) SIN (P)/(3(1-COS (A) SIN (B))))
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                                     2         2       2
                             *DRJ(COS (P),1-SIN (A) SIN (P),1,1-
 
                                 2       2          2       2
                             -SIN (A) SIN (P)/(1-COS (A) SIN (B))))
 
 
 
                   (PI/2) LAMBDA0(A,B) =L(A,B,PI/2) =
 
                    2                         2       2    -1/2
               = COS (A)  SIN(B) COS(B) (1-COS (A) SIN (B))
 
                            2                  2       2
                  *DRF(0,COS (A),1) + (1/3) SIN (A) COS (A)
 
                                       2       2    -3/2
                  *SIN(B) COS(B) (1-COS (A) SIN (B))
 
                            2         2       2          2       2
                  *DRJ(0,COS (A),1,COS (A) COS (B)/(1-COS (A) SIN (B)))
 
 
                   Jacobi ZETA function
                   -----------------------------------------
 
                         2                     2   2    1/2
              Z(B,K) = (K/3) SIN(B) COS(B) (1-K SIN (B))
 
 
                                   2      2   2                 2
                         *DRJ(0,1-K ,1,1-K SIN (B)) / DRF (0,1-K ,1)
 
 
   ---------------------------------------------------------------------
 
 ***REFERENCES  B. C. Carlson and E. M. Notis, Algorithms for incomplete
                  elliptic integrals, ACM Transactions on Mathematical
                  Software 7, 3 (September 1981), pp. 398-403.
                B. C. Carlson, Computing elliptic integrals by
                  duplication, Numerische Mathematik 33, (1979),
                  pp. 1-16.
                B. C. Carlson, Elliptic integrals of the first kind,
                  SIAM Journal of Mathematical Analysis 8, (1977),
                  pp. 231-242.
 ***ROUTINES CALLED  D1MACH, DRC, XERMSG
 ***REVISION HISTORY  (YYMMDD)
    790801  DATE WRITTEN
    890531  Changed all specific intrinsics to generic.  (WRB)
    891009  Removed unreferenced statement labels.  (WRB)
    891009  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    900315  CALLs to XERROR changed to CALLs to XERMSG.  (THJ)
    900326  Removed duplicate information from DESCRIPTION section.
            (WRB)
    900510  Changed calls to XERMSG to standard form, and some
            editorial changes.  (RWC)).
    920501  Reformatted the REFERENCES section.  (WRB)
    END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 617



DROT

      SUBROUTINE DROT (N, DX, INCX, DY, INCY, DC, DS)
 ***BEGIN PROLOGUE  DROT
 ***PURPOSE  Apply a plane Givens rotation.
 ***LIBRARY   SLATEC (BLAS)
 ***CATEGORY  D1A8
 ***TYPE      DOUBLE PRECISION (SROT-S, DROT-D, CSROT-C)
 ***KEYWORDS  BLAS, GIVENS ROTATION, GIVENS TRANSFORMATION,
              LINEAR ALGEBRA, PLANE ROTATION, VECTOR
 ***AUTHOR  Lawson, C. L., (JPL)
            Hanson, R. J., (SNLA)
            Kincaid, D. R., (U. of Texas)
            Krogh, F. T., (JPL)
 ***DESCRIPTION
 
                 B L A S  Subprogram
     Description of Parameters
 
      --Input--
         N  number of elements in input vector(s)
        DX  double precision vector with N elements
      INCX  storage spacing between elements of DX
        DY  double precision vector with N elements
      INCY  storage spacing between elements of DY
        DC  D.P. element of rotation matrix
        DS  D.P. element of rotation matrix
 
      --Output--
        DX  rotated vector DX (unchanged if N .LE. 0)
        DY  rotated vector DY (unchanged if N .LE. 0)
 
      Multiply the 2 x 2 matrix  ( DC DS) times the 2 x N matrix (DX**T)
                                 (-DS DC)                        (DY**T)
      where **T indicates transpose.  The elements of DX are in
      DX(LX+I*INCX), I = 0 to N-1, where LX = 1 if INCX .GE. 0, else
      LX = 1+(1-N)*INCX, and similarly for DY using LY and INCY.
 
 ***REFERENCES  C. L. Lawson, R. J. Hanson, D. R. Kincaid and F. T.
                  Krogh, Basic linear algebra subprograms for Fortran
                  usage, Algorithm No. 539, Transactions on Mathematical
                  Software 5, 3 (September 1979), pp. 308-323.
 ***ROUTINES CALLED  (NONE)
 ***REVISION HISTORY  (YYMMDD)
    791001  DATE WRITTEN
    861211  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    920310  Corrected definition of LX in DESCRIPTION.  (WRB)
    920501  Reformatted the REFERENCES section.  (WRB)
    END PROLOGUE
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DROTG

      SUBROUTINE DROTG (DA, DB, DC, DS)
 ***BEGIN PROLOGUE  DROTG
 ***PURPOSE  Construct a plane Givens rotation.
 ***LIBRARY   SLATEC (BLAS)
 ***CATEGORY  D1B10
 ***TYPE      DOUBLE PRECISION (SROTG-S, DROTG-D, CROTG-C)
 ***KEYWORDS  BLAS, GIVENS ROTATION, GIVENS TRANSFORMATION,
              LINEAR ALGEBRA, VECTOR
 ***AUTHOR  Lawson, C. L., (JPL)
            Hanson, R. J., (SNLA)
            Kincaid, D. R., (U. of Texas)
            Krogh, F. T., (JPL)
 ***DESCRIPTION
 
                 B L A S  Subprogram
     Description of Parameters
 
      --Input--
        DA  double precision scalar
        DB  double precision scalar
 
      --Output--
        DA  double precision result R
        DB  double precision result Z
        DC  double precision result
        DS  double precision result
 
      Construct the Givens transformation
 
          ( DC  DS )
      G = (        ) ,    DC**2 + DS**2 = 1 ,
          (-DS  DC )
 
      which zeros the second entry of the 2-vector  (DA,DB)**T .
 
      The quantity R = (+/-)SQRT(DA**2 + DB**2) overwrites DA in
      storage.  The value of DB is overwritten by a value Z which
      allows DC and DS to be recovered by the following algorithm.
 
            If Z=1  set  DC=0.0  and  DS=1.0
            If ABS(Z) .LT. 1  set  DC=SQRT(1-Z**2)  and  DS=Z
            If ABS(Z) .GT. 1  set  DC=1/Z  and  DS=SQRT(1-DC**2)
 
      Normally, the subprogram DROT(N,DX,INCX,DY,INCY,DC,DS) will
      next be called to apply the transformation to a 2 by N matrix.
 
 ***REFERENCES  C. L. Lawson, R. J. Hanson, D. R. Kincaid and F. T.
                  Krogh, Basic linear algebra subprograms for Fortran
                  usage, Algorithm No. 539, Transactions on Mathematical
                  Software 5, 3 (September 1979), pp. 308-323.
 ***ROUTINES CALLED  (NONE)
 ***REVISION HISTORY  (YYMMDD)
    791001  DATE WRITTEN
    890531  Changed all specific intrinsics to generic.  (WRB)
    890531  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
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    920501  Reformatted the REFERENCES section.  (WRB)
    END PROLOGUE
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DROTM

      SUBROUTINE DROTM (N, DX, INCX, DY, INCY, DPARAM)
 ***BEGIN PROLOGUE  DROTM
 ***PURPOSE  Apply a modified Givens transformation.
 ***LIBRARY   SLATEC (BLAS)
 ***CATEGORY  D1A8
 ***TYPE      DOUBLE PRECISION (SROTM-S, DROTM-D)
 ***KEYWORDS  BLAS, LINEAR ALGEBRA, MODIFIED GIVENS ROTATION, VECTOR
 ***AUTHOR  Lawson, C. L., (JPL)
            Hanson, R. J., (SNLA)
            Kincaid, D. R., (U. of Texas)
            Krogh, F. T., (JPL)
 ***DESCRIPTION
 
                 B L A S  Subprogram
     Description of Parameters
 
      --Input--
         N  number of elements in input vector(s)
        DX  double precision vector with N elements
      INCX  storage spacing between elements of DX
        DY  double precision vector with N elements
      INCY  storage spacing between elements of DY
    DPARAM  5-element D.P. vector.  DPARAM(1) is DFLAG described below.
            Locations 2-5 of SPARAM contain elements of the
            transformation matrix H described below.
 
      --Output--
        DX  rotated vector (unchanged if N .LE. 0)
        DY  rotated vector (unchanged if N .LE. 0)
 
      Apply the modified Givens transformation, H, to the 2 by N matrix
      (DX**T)
      (DY**T) , where **T indicates transpose.  The elements of DX are
      in DX(LX+I*INCX), I = 0 to N-1, where LX = 1 if INCX .GE. 0, else
      LX = 1+(1-N)*INCX, and similarly for DY using LY and INCY.
 
      With DPARAM(1)=DFLAG, H has one of the following forms:
 
      DFLAG=-1.D0     DFLAG=0.D0        DFLAG=1.D0     DFLAG=-2.D0
 
        (DH11  DH12)    (1.D0  DH12)    (DH11  1.D0)    (1.D0  0.D0)
      H=(          )    (          )    (          )    (          )
        (DH21  DH22),   (DH21  1.D0),   (-1.D0 DH22),   (0.D0  1.D0).
 
      See DROTMG for a description of data storage in DPARAM.
 
 ***REFERENCES  C. L. Lawson, R. J. Hanson, D. R. Kincaid and F. T.
                  Krogh, Basic linear algebra subprograms for Fortran
                  usage, Algorithm No. 539, Transactions on Mathematical
                  Software 5, 3 (September 1979), pp. 308-323.
 ***ROUTINES CALLED  (NONE)
 ***REVISION HISTORY  (YYMMDD)
    791001  DATE WRITTEN
    861211  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    920310  Corrected definition of LX in DESCRIPTION.  (WRB)
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    920501  Reformatted the REFERENCES section.  (WRB)
    END PROLOGUE
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DROTMG

      SUBROUTINE DROTMG (DD1, DD2, DX1, DY1, DPARAM)
 ***BEGIN PROLOGUE  DROTMG
 ***PURPOSE  Construct a modified Givens transformation.
 ***LIBRARY   SLATEC (BLAS)
 ***CATEGORY  D1B10
 ***TYPE      DOUBLE PRECISION (SROTMG-S, DROTMG-D)
 ***KEYWORDS  BLAS, LINEAR ALGEBRA, MODIFIED GIVENS ROTATION, VECTOR
 ***AUTHOR  Lawson, C. L., (JPL)
            Hanson, R. J., (SNLA)
            Kincaid, D. R., (U. of Texas)
            Krogh, F. T., (JPL)
 ***DESCRIPTION
 
                 B L A S  Subprogram
     Description of Parameters
 
      --Input--
       DD1  double precision scalar
       DD2  double precision scalar
       DX1  double precision scalar
       DX2  double precision scalar
    DPARAM  D.P. 5-vector. DPARAM(1)=DFLAG defined below.
            Locations 2-5 contain the rotation matrix.
 
      --Output--
       DD1  changed to represent the effect of the transformation
       DD2  changed to represent the effect of the transformation
       DX1  changed to represent the effect of the transformation
       DX2  unchanged
 
      Construct the modified Givens transformation matrix H which zeros
      the second component of the 2-vector  (SQRT(DD1)*DX1,SQRT(DD2)*
      DY2)**T.
      With DPARAM(1)=DFLAG, H has one of the following forms:
 
      DFLAG=-1.D0     DFLAG=0.D0        DFLAG=1.D0     DFLAG=-2.D0
 
        (DH11  DH12)    (1.D0  DH12)    (DH11  1.D0)    (1.D0  0.D0)
      H=(          )    (          )    (          )    (          )
        (DH21  DH22),   (DH21  1.D0),   (-1.D0 DH22),   (0.D0  1.D0).
 
      Locations 2-5 of DPARAM contain DH11, DH21, DH12, and DH22,
      respectively.  (Values of 1.D0, -1.D0, or 0.D0 implied by the
      value of DPARAM(1) are not stored in DPARAM.)
 
 ***REFERENCES  C. L. Lawson, R. J. Hanson, D. R. Kincaid and F. T.
                  Krogh, Basic linear algebra subprograms for Fortran
                  usage, Algorithm No. 539, Transactions on Mathematical
                  Software 5, 3 (September 1979), pp. 308-323.
 ***ROUTINES CALLED  (NONE)
 ***REVISION HISTORY  (YYMMDD)
    780301  DATE WRITTEN
    890531  Changed all specific intrinsics to generic.  (WRB)
    890531  REVISION DATE from Version 3.2
    891214  Prologue converted to Version 4.0 format.  (BAB)
    920316  Prologue corrected.  (WRB)
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    920501  Reformatted the REFERENCES section.  (WRB)
    END PROLOGUE
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DS2LT

      SUBROUTINE DS2LT (N, NELT, IA, JA, A, ISYM, NEL, IEL, JEL, EL)
 ***BEGIN PROLOGUE  DS2LT
 ***PURPOSE  Lower Triangle Preconditioner SLAP Set Up.
             Routine to store the lower triangle of a matrix stored
             in the SLAP Column format.
 ***LIBRARY   SLATEC (SLAP)
 ***CATEGORY  D2E
 ***TYPE      DOUBLE PRECISION (SS2LT-S, DS2LT-D)
 ***KEYWORDS  LINEAR SYSTEM, LOWER TRIANGLE, SLAP SPARSE
 ***AUTHOR  Greenbaum, Anne, (Courant Institute)
            Seager, Mark K., (LLNL)
              Lawrence Livermore National Laboratory
              PO BOX 808, L-60
              Livermore, CA 94550 (510) 423-3141
              seager@llnl.gov
 ***DESCRIPTION
 
  *Usage:
      INTEGER N, NELT, IA(NELT), JA(NELT), ISYM
      INTEGER NEL, IEL(NEL), JEL(NEL)
      DOUBLE PRECISION A(NELT), EL(NEL)
 
      CALL DS2LT( N, NELT, IA, JA, A, ISYM, NEL, IEL, JEL, EL )
 
  *Arguments:
  N      :IN       Integer
          Order of the Matrix.
  NELT   :IN       Integer.
          Number of non-zeros stored in A.
  IA     :IN       Integer IA(NELT).
  JA     :IN       Integer JA(NELT).
  A      :IN       Double Precision A(NELT).
          These arrays should hold the matrix A in the SLAP Column
          format.  See "Description", below.
  ISYM   :IN       Integer.
          Flag to indicate symmetric storage format.
          If ISYM=0, all non-zero entries of the matrix are stored.
          If ISYM=1, the matrix is symmetric, and only the lower
          triangle of the matrix is stored.
  NEL    :OUT      Integer.
          Number of non-zeros in the lower triangle of A.   Also
          corresponds to the length of the IEL, JEL, EL arrays.
  IEL    :OUT      Integer IEL(NEL).
  JEL    :OUT      Integer JEL(NEL).
  EL     :OUT      Double Precision     EL(NEL).
          IEL, JEL, EL contain the lower triangle of the A matrix
          stored in SLAP Column format.  See "Description", below,
          for more details bout the SLAP Column format.
 
  *Description
        =================== S L A P Column format ==================
        This routine  requires that  the matrix A  be stored in  the
        SLAP Column format.  In this format the non-zeros are stored
        counting down columns (except for  the diagonal entry, which
        must appear first in each  "column")  and are stored  in the
        double precision array A.   In other words,  for each column
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        in the matrix put the diagonal entry in  A.  Then put in the
        other non-zero  elements going down  the column (except  the
        diagonal) in order.   The  IA array holds the  row index for
        each non-zero.  The JA array holds the offsets  into the IA,
        A arrays  for  the  beginning  of each   column.   That  is,
        IA(JA(ICOL)),  A(JA(ICOL)) points   to the beginning  of the
        ICOL-th   column    in    IA and   A.      IA(JA(ICOL+1)-1),
        A(JA(ICOL+1)-1) points to  the  end of the   ICOL-th column.
        Note that we always have  JA(N+1) = NELT+1,  where N is  the
        number of columns in  the matrix and NELT  is the number  of
        non-zeros in the matrix.
 
        Here is an example of the  SLAP Column  storage format for a
        5x5 Matrix (in the A and IA arrays '|'  denotes the end of a
        column):
 
            5x5 Matrix      SLAP Column format for 5x5 matrix on left.
                               1  2  3    4  5    6  7    8    9 10 11
        |11 12  0  0 15|   A: 11 21 51 | 22 12 | 33 53 | 44 | 55 15 35
        |21 22  0  0  0|  IA:  1  2  5 |  2  1 |  3  5 |  4 |  5  1  3
        | 0  0 33  0 35|  JA:  1  4  6    8  9   12
        | 0  0  0 44  0|
        |51  0 53  0 55|
 
 ***REFERENCES  (NONE)
 ***ROUTINES CALLED  (NONE)
 ***REVISION HISTORY  (YYMMDD)
    890404  DATE WRITTEN
    890404  Previous REVISION DATE
    890915  Made changes requested at July 1989 CML Meeting.  (MKS)
    890922  Numerous changes to prologue to make closer to SLATEC
            standard.  (FNF)
    890929  Numerous changes to reduce SP/DP differences.  (FNF)
    910411  Prologue converted to Version 4.0 format.  (BAB)
    920511  Added complete declaration section.  (WRB)
    930701  Updated CATEGORY section.  (FNF, WRB)
    END PROLOGUE
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DS2Y

      SUBROUTINE DS2Y (N, NELT, IA, JA, A, ISYM)
 ***BEGIN PROLOGUE  DS2Y
 ***PURPOSE  SLAP Triad to SLAP Column Format Converter.
             Routine to convert from the SLAP Triad to SLAP Column
             format.
 ***LIBRARY   SLATEC (SLAP)
 ***CATEGORY  D1B9
 ***TYPE      DOUBLE PRECISION (SS2Y-S, DS2Y-D)
 ***KEYWORDS  LINEAR SYSTEM, SLAP SPARSE
 ***AUTHOR  Seager, Mark K., (LLNL)
              Lawrence Livermore National Laboratory
              PO BOX 808, L-60
              Livermore, CA 94550 (510) 423-3141
              seager@llnl.gov
 ***DESCRIPTION
 
  *Usage:
      INTEGER N, NELT, IA(NELT), JA(NELT), ISYM
      DOUBLE PRECISION A(NELT)
 
      CALL DS2Y( N, NELT, IA, JA, A, ISYM )
 
  *Arguments:
  N      :IN       Integer
          Order of the Matrix.
  NELT   :IN       Integer.
          Number of non-zeros stored in A.
  IA     :INOUT    Integer IA(NELT).
  JA     :INOUT    Integer JA(NELT).
  A      :INOUT    Double Precision A(NELT).
          These arrays should hold the matrix A in either the SLAP
          Triad format or the SLAP Column format.  See "Description",
          below.  If the SLAP Triad format is used, this format is
          translated to the SLAP Column format by this routine.
  ISYM   :IN       Integer.
          Flag to indicate symmetric storage format.
          If ISYM=0, all non-zero entries of the matrix are stored.
          If ISYM=1, the matrix is symmetric, and only the lower
          triangle of the matrix is stored.
 
  *Description:
        The Sparse Linear Algebra Package (SLAP) utilizes two matrix
        data structures: 1) the  SLAP Triad  format or  2)  the SLAP
        Column format.  The user can hand this routine either of the
        of these data structures.  If the SLAP Triad format is give
        as input then this routine transforms it into SLAP Column
        format.  The way this routine tells which format is given as
        input is to look at JA(N+1).  If JA(N+1) = NELT+1 then we
        have the SLAP Column format.  If that equality does not hold
        then it is assumed that the IA, JA, A arrays contain the
        SLAP Triad format.
 
        =================== S L A P Triad format ===================
        This routine requires that the  matrix A be   stored in  the
        SLAP  Triad format.  In  this format only the non-zeros  are
        stored.  They may appear in  *ANY* order.  The user supplies

SLATEC3 (DACOSH through DS2Y) - 627



        three arrays of  length NELT, where  NELT is  the number  of
        non-zeros in the matrix: (IA(NELT), JA(NELT), A(NELT)).  For
        each non-zero the user puts the row and column index of that
        matrix element  in the IA and  JA arrays.  The  value of the
        non-zero   matrix  element is  placed  in  the corresponding
        location of the A array.   This is  an  extremely  easy data
        structure to generate.  On  the  other hand it   is  not too
        efficient on vector computers for  the iterative solution of
        linear systems.  Hence,   SLAP changes   this  input    data
        structure to the SLAP Column format  for  the iteration (but
        does not change it back).
 
        Here is an example of the  SLAP Triad   storage format for a
        5x5 Matrix.  Recall that the entries may appear in any order.
 
            5x5 Matrix      SLAP Triad format for 5x5 matrix on left.
                               1  2  3  4  5  6  7  8  9 10 11
        |11 12  0  0 15|   A: 51 12 11 33 15 53 55 22 35 44 21
        |21 22  0  0  0|  IA:  5  1  1  3  1  5  5  2  3  4  2
        | 0  0 33  0 35|  JA:  1  2  1  3  5  3  5  2  5  4  1
        | 0  0  0 44  0|
        |51  0 53  0 55|
 
        =================== S L A P Column format ==================
 
        This routine  requires that  the matrix A  be stored in  the
        SLAP Column format.  In this format the non-zeros are stored
        counting down columns (except for  the diagonal entry, which
        must appear first in each  "column")  and are stored  in the
        double precision array A.   In other words,  for each column
        in the matrix put the diagonal entry in  A.  Then put in the
        other non-zero  elements going down  the column (except  the
        diagonal) in order.   The  IA array holds the  row index for
        each non-zero.  The JA array holds the offsets  into the IA,
        A arrays  for  the  beginning  of each   column.   That  is,
        IA(JA(ICOL)),  A(JA(ICOL)) points   to the beginning  of the
        ICOL-th   column    in    IA and   A.      IA(JA(ICOL+1)-1),
        A(JA(ICOL+1)-1) points to  the  end of the   ICOL-th column.
        Note that we always have  JA(N+1) = NELT+1,  where N is  the
        number of columns in  the matrix and NELT  is the number  of
        non-zeros in the matrix.
 
        Here is an example of the  SLAP Column  storage format for a
        5x5 Matrix (in the A and IA arrays '|'  denotes the end of a
        column):
 
            5x5 Matrix      SLAP Column format for 5x5 matrix on left.
                               1  2  3    4  5    6  7    8    9 10 11
        |11 12  0  0 15|   A: 11 21 51 | 22 12 | 33 53 | 44 | 55 15 35
        |21 22  0  0  0|  IA:  1  2  5 |  2  1 |  3  5 |  4 |  5  1  3
        | 0  0 33  0 35|  JA:  1  4  6    8  9   12
        | 0  0  0 44  0|
        |51  0 53  0 55|
 
 ***REFERENCES  (NONE)
 ***ROUTINES CALLED  QS2I1D
 ***REVISION HISTORY  (YYMMDD)
    871119  DATE WRITTEN
    881213  Previous REVISION DATE
    890915  Made changes requested at July 1989 CML Meeting.  (MKS)
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    890922  Numerous changes to prologue to make closer to SLATEC
            standard.  (FNF)
    890929  Numerous changes to reduce SP/DP differences.  (FNF)
    910411  Prologue converted to Version 4.0 format.  (BAB)
    910502  Corrected C***FIRST EXECUTABLE STATEMENT line.  (FNF)
    920511  Added complete declaration section.  (WRB)
    930701  Updated CATEGORY section.  (FNF, WRB)
    END PROLOGUE
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Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their

employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or

represents that its use would not infringe privately owned rights. Reference herein to any specific commercial
products, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United States Government or the
University of California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government thereof, and shall not be used for advertising or product

endorsement purposes. (C) Copyright 1996 The Regents of the University of California. All rights reserved.
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Structural Keyword Index

Keyword              Description
--------             ------------
entire               This entire document.
title                The name of this document.
scope                Topics covered in SLATEC3.
availability         Machines on which these routines run.
who                  Who to contact for assistance.
introduction         Brief overview of SLATEC3; and
                     other SLATEC documentation.
index                This structural keyword index.
date                 The latest revision date for SLATEC3.
revisions            Revision history of this document.

In addition, the name of every subroutine described in SLATEC3 is the keyword and link for retrieving
its description. Included are:

----------------------------------------------------------------------
Routine  Gams      Function
Name     Cat.      Performed
----------------------------------------------------------------------

DACOSH   c         elementary-functions, special-functions
DAI      c         elementary-functions, special-functions
DAIE     c         elementary-functions, special-functions
DASINH   c         elementary-functions, special-functions
DASUM    d1a       vector-operations
DATANH   c         elementary-functions, special-functions
DAVINT   h2        quadrature, definite-integrals
DAWS     c         elementary-functions, special-functions
DAXPY    d1a       vector-operations
DBCG     d2        linear-equations
DBESI    c         elementary-functions, special-functions
DBESI0   c         elementary-functions, special-functions
DBESI1   c         elementary-functions, special-functions
DBESJ    c         elementary-functions, special-functions
DBESJ0   c         elementary-functions, special-functions
DBESJ1   c         elementary-functions, special-functions
DBESK    c         elementary-functions, special-functions
DBESK0   c         elementary-functions, special-functions
DBESK1   c         elementary-functions, special-functions
DBESKS   c         elementary-functions, special-functions
DBESY    c         elementary-functions, special-functions
DBESY0   c         elementary-functions, special-functions
DBESY1   c         elementary-functions, special-functions
DBETA    c         elementary-functions, special-functions
DBETAI   c         elementary-functions, special-functions
DBFQAD   e         interpolation
DBHIN    n         data-handling
DBHIN    n         data-handling
DBI      c         elementary-functions, special-functions
DBIE     c         elementary-functions, special-functions
DBINOM   c         elementary-functions, special-functions
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DBINT4   e         interpolation
DBINTK   e         interpolation
DBNDAC   d9        overdetermined-systems, least-squares
DBNDSL   d9        overdetermined-systems, least-squares
DBOCLS   k         approximation
DBOLS    k         approximation
DBSI0E   c         elementary-functions, special-functions
DBSI1E   c         elementary-functions, special-functions
DBSK0E   c         elementary-functions, special-functions
DBSK1E   c         elementary-functions, special-functions
DBSKES   c         elementary-functions, special-functions
DBSKIN   c         elementary-functions, special-functions
DBSPDR   e         interpolation
DBSPEV   e         interpolation
DBSPPP   e         interpolation
DBSPVD   e         interpolation
DBSPVN   e         interpolation
DBSQAD   e         interpolation
DBVALU   e         interpolation
DBVSUP   i1        ordinary-differential-equations
DCBRT    c         elementary-functions, special-functions
DCDOT    d1a       vector-operations
DCG      d2        linear-equations
DCGN     d2        linear-equations
DCGS     d2        linear-equations
DCHDC    linpack   cholesky-operations
DCHDD    linpack   cholesky-operations
DCHEX    linpack   cholesky-operations
DCHFDV   e         interpolation
DCHFEV   e         interpolation
DCHU     c         elementary-functions, special-functions
DCHUD    linpack   cholesky-operations
DCKDER   f         nonlinear-equations
DCOPY    d1a       vector-operations
DCOPYM   d1a       vector-operations
DCOSDG   c         elementary-functions, special-functions
DCOT     c         elementary-functions, special-functions
DCOV     k         approximation
DCPPLT   n         data-handling
DCPPLT   n         data-handling
DCSEVL   c         elementary-functions, special-functions
DCV      l         statistics
DDASSL   i1        ordinary-differential-equations
DDAWS    c         elementary-functions, special-functions
DDEABM   i1        ordinary-differential-equations
DDEBDF   i1        ordinary-differential-equations
DDERKF   i1        ordinary-differential-equations
DDOT     d1a       vector-operations
DDRIV1   i1        ordinary-differential-equations
DDRIV2   i1        ordinary-differential-equations
DDRIV3   i1        ordinary-differential-equations
DE1      c         elementary-functions, special-functions
DEABM    i1        ordinary-differential-equations
DEBDF    i1        ordinary-differential-equations
DEFC     k         approximation
DEI      c         elementary-functions, special-functions
DERF     c         elementary-functions, special-functions
DERFC    c         elementary-functions, special-functions
DERKF    i1        ordinary-differential-equations
DEXINT   c         elementary-functions, special-functions

SLATEC3 (DACOSH through DS2Y) - 632



DEXPRL   c         elementary-functions, special-functions
DFAC     c         elementary-functions, special-functions
DFC      k         approximation
DFZERO   f         nonlinear-equations
DGAMI    c         elementary-functions, special-functions
DGAMIC   c         elementary-functions, special-functions
DGAMIT   c         elementary-functions, special-functions
DGAMLM   c         elementary-functions, special-functions
DGAMMA   c         elementary-functions, special-functions
DGAMR    c         elementary-functions, special-functions
DGAUS8   h2        quadrature, definite-integrals
DGBCO    linpack   general-band
DGBDI    linpack   general-band
DGBFA    linpack   general-band
DGBSL    linpack   general-band
DGECO    linpack   general
DGEDI    linpack   general
DGEFA    linpack   general
DGEFS    d2        linear-equations
DGEMM    d1b       matrix-operations
DGEMV    d1b       matrix-operations
DGER     d1b       matrix-operations
DGESL    linpack   general
DGLSS    d9        overdetermined-systems, least-squares
DGMRES   d2        linear-equations
DGTSL    linpack   general-tridiagonal
DHFTI    d9        overdetermined-systems, least-squares
DINTP    i1        ordinary-differential-equations
DINTRV   e         interpolation
DIR      d2        linear-equations
DLBETA   c         elementary-functions, special-functions
DLGAMS   c         elementary-functions, special-functions
DLI      c         elementary-functions, special-functions
DLLSIA   d9        overdetermined-systems, least-squares
DLLTI2   d2        linear-equations
DLNGAM   c         elementary-functions, special-functions
DLNREL   c         elementary-functions, special-functions
DLPDOC   d2        linear-equations
DLSEI    k         approximation
DNBCO    d2        linear-equations
DNBDI    d3        determinants
DNBFA    d2        linear-equations
DNBFS    d2        linear-equations
DNBSL    d2        linear-equations
DNLS1    k         approximation
DNLS1E   k         approximation
DNRM2    d1a       vector-operations
DNSQ     f         nonlinear-equations
DNSQE    f         nonlinear-equations
DOMN     d2        linear-equations
DP1VLU   k         approximation
DPBCO    linpack   hermitian-positive-definite-band
DPBDI    linpack   hermitian-positive-definite-band
DPBFA    linpack   hermitian-positive-definite-band
DPBSL    linpack   hermitian-positive-definite-band
DPCHBS   e         interpolation
DPCHCM   e         interpolation
DPCHFD   e         interpolation
DPCHFE   e         interpolation
DPCHIA   e         interpolation
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DPCHIC   e         interpolation
DPCHID   e         interpolation
DPCHIM   e         interpolation
DPCHSP   e         interpolation
DPCOEF   k         approximation
DPFQAD   e         interpolation
DPLINT   e         interpolation
DPOCH    c         elementary-functions, special-functions
DPOCH1   c         elementary-functions, special-functions
DPOCO    linpack   hermitian-positive-definite
DPODI    linpack   hermitian-positive-definite
DPOFA    linpack   hermitian-positive-definite
DPOFS    d2        linear-equations
DPOLCF   e         interpolation
DPOLFT   k         approximation
DPOLVL   e         interpolation
DPOSL    linpack   hermitian-positive-definite
DPPCO    linpack   hermitian-positive-definite
DPPDI    linpack   hermitian-positive-definite
DPPERM   n         data-handling
DPPFA    linpack   hermitian-positive-definite
DPPQAD   e         interpolation
DPPSL    linpack   hermitian-positive-definite
DPPVAL   e         interpolation
DPSI     c         elementary-functions, special-functions
DPSIFN   c         elementary-functions, special-functions
DPSORT   n         data-handling
DPTSL    linpack   positive-definite-tridiagonal
DQAG     h2        quadrature, definite-integrals
DQAGE    h2        quadrature, definite-integrals
DQAGI    h2        quadrature, definite-integrals
DQAGIE   h2        quadrature, definite-integrals
DQAGP    h2        quadrature, definite-integrals
DQAGPE   h2        quadrature, definite-integrals
DQAGS    h2        quadrature, definite-integrals
DQAGSE   h2        quadrature, definite-integrals
DQAWC    h2        quadrature, definite-integrals
DQAWCE   h2        quadrature, definite-integrals
DQAWF    h2        quadrature, definite-integrals
DQAWFE   h2        quadrature, definite-integrals
DQAWO    h2        quadrature, definite-integrals
DQAWOE   h2        quadrature, definite-integrals
DQAWS    h2        quadrature, definite-integrals
DQAWSE   h2        quadrature, definite-integrals
DQC25C   h2        quadrature, definite-integrals
DQC25F   h2        quadrature, definite-integrals
DQC25S   h2        quadrature, definite-integrals
DQDOTA   d1a       vector-operations
DQDOTI   d1a       vector-operations
DQK15    h2        quadrature, definite-integrals
DQK15I   h2        quadrature, definite-integrals
DQK15W   h2        quadrature, definite-integrals
DQK21    h2        quadrature, definite-integrals
DQK31    h2        quadrature, definite-integrals
DQK41    h2        quadrature, definite-integrals
DQK51    h2        quadrature, definite-integrals
DQK61    h2        quadrature, definite-integrals
DQMOMO   h2        quadrature, definite-integrals
DQNC79   h2        quadrature, definite-integrals
DQNG     h2        quadrature, definite-integrals
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DQRDC    d5        qr-decomposition
DQRSL    d5        qr-decomposition
DRC      c         elementary-functions, special-functions
DRC3JJ   c         elementary-functions, special-functions
DRC3JM   c         elementary-functions, special-functions
DRC6J    c         elementary-functions, special-functions
DRD      c         elementary-functions, special-functions
DRF      c         elementary-functions, special-functions
DRJ      c         elementary-functions, special-functions
DROT     d1a       vector-operations
DROTG    d1a       vector-operations
DROTM    d1a       vector-operations
DROTMG   d1a       vector-operations
DS2LT    d2        linear-equations
DS2Y     d1b       matrix-operations
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Date and Revisions

Revision  Keyword
date      affected            Description of changes
--------  --------            ----------------------

03Apr96   entire              Text updated for SLATEC version 4.1.
                              Adapted for LC (from NERSC).

31Oct91   background          New keyword for document comparisons.
          loading-slatec      New loading instructions for UNICOS, CSOS.
          entire              Text upgraded to cover SLATEC version 4.0.

30Nov87   entire              Text upgraded to cover SLATEC version 3.1.
                              Page index added;
                              keyword index expanded.

26Oct82   entire              First edition of new writeup.

TRG (03Apr96)

UCID-19631,19632,19633
Privacy and Legal Notice (URL: http://www.llnl.gov/disclaimer.html)
TRG (03Apr96) Contact on the OCF: lc-hotline@llnl.gov, on the SCF: lc-hotline@pop.llnl.gov
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